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Counter to the current paradigm

“We shall envision the mind (or brain) as composed of many
partially autonomous "agents’—as a "Society” of smaller
minds. Each sub-society of mind must have its own internal
epistemology and phenomenology, with most details private,
not only from the central processes, but from one another.”
(Minsky, K-Lines; 1980)
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Neuron structure

Real neurons Synapses on dendrites (inputs) on soma (cell body) integrate
and fire spikes down axons (output) toward synapses

Microtubule

Neurofibrils Synaptic vesicles
Neurotransmitter

Synapse (Axoaxonich\

Synaptic cleft

Rough ER Axonal terminal
(Nissi body) g

Polyribosomes Node of Ranvier

Ribosomes

Coding

Golgi apparatus

Plastic/Learn
Myelin Sheath
(Schwann cell)

X Microfilament
Microtubule

I Synapse Dendrites Axon
(Axodendritiq)

Which of the full set of real biological features are enough for
domain general learning? What can we eliminate?




Outline

@ Real neurons
Connections




Synapse types

PRE-SYNAPTIC
NEURON

POST-SYNAPTIC
NEURON

DENDRITIC

DENDRITES

TERMINALS

OLIGODENDROCYTE

SYNAPSE

NODE OF
/ ) RANVIER
/ \ MYELIN
5VN£P5E SHEATH
Signals from Action potential Axon passes signal to
axons to dendites generates out of soma dendrites of other neurons

Remember for upcoming notation




Connection types

Axosecretory Axoaxonic Axodendritic Axoextracellular Axosomatic
Axon terminal Axon terminal ‘Axon terminal Axon with no Axon terminal
secretes directly secretes into ends on adendrite  connection ends on soma
into bloodstream another axon spine seccretes into Axosynaptic

extracellular fluid Axon terminal
ends on another
axon terminal

Are these relevant computationally?
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Synapses transmit chemically between neurons

Neurotransmitter

Neurotransmitter
Synaptic (G \ transporter >Axon

Voltage-
gated Ca* i N

channel " cev s Synaptic
Postsynaptic - 'I. ¥ ¢ —¥—_Receptor cleft
density /7 Dendrite

This is where most of the learning appears to happen
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Action potentials
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A 4 second recording of the neural activity recording from 30 neurons of the visual cortex of a monkey. Each
vertical bar indicates a spike. The human brain can recognize a face within 150ms, which correlates to less
than 3mm in this diagram; dramatic changes in firing frequency occur in this time span, neurons have to rely
on information carried by solitary spikes.
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Neurons fire (spike) to transmit information
(mostly)
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Action potentials
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Action potentials
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Action potentials
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Action potentials
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Action potentials

Real neurons
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Transmission

Adjacent inactive arlea into
which depolarization is
Active area at peak  spreading; will soon reach ~ Remainder of axon
of action potential  threshold still at resting potential
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Transmission
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{ 4] Falling phase of the action potential
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Saltatory conduction

Schwann cell

Depolarized region
(node of Ranvier)



Saltatory conduction

(B) Action potential propagation

t=15
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Neuron learning

Neurons are the basis of learning, consciousness, etc.
Neurons change their reactivity and “weights” to learn
e Hebbian learning (ire together wire together)

Long Term Potentiation / Depression (LTP/LTD)
Short Term Potentiation / Depression (STP/STD)
Glial learning ? (Human-mouse graft study!)
Dopamine-induced reinforcement

more??77?



Neuron learning

Phenomenon Duration Locus of induction
Short-Term Enhancement

Paired-Pulse Facilitation (PPF) 100 ms Pre
Augmentation 10s Pre
Post-Tetanic Potentiation (PTP) 1 min Pre
Long-Term Enhancement

Short-Term Potentiation (STP) 15 min Post
Long-Term Potentiation (LTP) >30 min Pre and post
Depression

Paired-Pulse Depression (PPD) 100 ms Pre
Depletion 10s Pre
Long-Term Depression (LTD) >30 min Pre and post
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Black dots represent the EPSP of neurons in the stimulated
pathway, white dots represent the EPSP in the unstimulated
pathway. Tetanic stimulation was delivered at each arrow.




LTP

Real neurons
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A) Homosynaptic LTP B) Associative LTP
Cartoon depiction of the two classical methods of inducing LTP. Vertical
lines do not depict spikes, but pulses applied to the presynaptic cell. +
marks show which synapse is potentiated. (A) Homosynaptic
(synapse-specific) LTP is induced by high-frequency tetanic stimulus
(usually 100Hz for 1 second) of the presynaptic cell. (B) Associative LTP
is induced by pairing a tetanic stimulus in one or more presynaptic cells
with a low-frequency (usually 5Hz) stimulus in the presynaptic cell whose
synapse is to be potentiated. Note that typically the synapses stimulated
with the tetanic stimulation will also be potentiated.




LTD
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A) Homosynaptic LTP B) Associative LTP

Cartoon depiction of the two classical methods of inducing LTD. Vertical
lines do not depict spikes, but pulses applied to the presynaptic cell. -
marks show which synapse is depressed. (A) Heterosynaptic LTD is
induced with tetanic stimulation in some presynaptic cells; those that are
not stimulated may become depressed. Note that the stimulated cells often
have their synapses potentiated. (B) Homosynaptic LTD is induced with
long period of low-frequency stimulation (typically 1 Hz for 10 minutes) of
the presynaptic cell.
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Evidence that the temporal order of pre- and postsynaptic stimulation affects the induction of LTP/LTD.
(Left) The stimulation protocol. Each vertical line represents a pulse of current. (Right) The ratio of the
amplitude of the EPSP before the stimulation protocol and 20 minutes after the stimulation protocol. Note
that depression happens when postsynaptic neurons are stimulated before presynaptic neurons, potentiation
when presynaptic neurons are stimulated before postsynaptic neurons, and strong potentiation occurs when
they are simultaneously stimulated.



Spike-timing dependent plasticity
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Neuron modeling

Spike transmission

Spike integration
Thresholding

e etc.
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Early artificial neuron models
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First mathematical model of artificial neuron




Basic neuron model
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Neuron operations:

Xy
xﬂ
@ Sum (inputs x weights)

® Apply activation function
© Transmit signal




Basic neuron model

— N e Yy
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e Often a bias 6 can be applied/learned

.




Basic neuron model

- Fixed input x; = +1 =

J.’I

Activation
function

%o
Inputs < i) Ou;pm
13
e
Synaptic
weights
{including bias)
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i=0
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Multi-layer feed forward network

Input layer Layer of Layer of
of source hidden output
nodes neurons NEurons

Feed-forward networks with omniscient top-down knowledge
are good at static feature extractions (e.g., AlphaGo)




From-scratch backprop beats you at digit class:

With no fancy libraries, from scratch, and this is the entire source (minus a 3-4 line main)

def sigmoid(x):
return 1.0/(1.0 + np.exp(—x))

def sigmoid_prime(x):
return sigmoid(x)*(1.0—sigmoid(x))

class NN:
def __init__(self, nl=3, nH=4, nO=1):
self.synl = 2 % np.random.random((nH, nO)) — 1

def runNN(self, X):
self. 10 = X
self. 11 = sigmoid(np.dot(self.10, self.syn0))
self.12 = sigmoid(np.dot(self.Il, self.synl))
return self .2

def backPropagate(self, y, N):
12_error =y — self.l2

12_delta = I2_error x sigmoid_prime(self.[2)
I1_error = I2_delta.dot(self.synl.T)
I1_delta = Il_error * sigmoid_prime(self.I1)

self.synl 4= (self.l11.T.dot(l2_delta)) = N
self.syn0 += (self.10.T.dot(ll_delta)) = N

def train(self, X, y, max.iterations=10000, N=0.8):
for roundNum in range(max_iterations):
self.runNN(X)
self.backPropagate(y, N)

def test(self, X, y):
final_prediction = self.runNN(X)
return np.mean((final_prediction — y)*x2)




What are brains for?

e "Deep” convolutional feed forward networks tend to be
good for static feature extractions

e Recurrent networks tend to be better for control and time
series
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EPSP and IPSP
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(a) Schematic drawing of a neuron. (b) Incoming postsynaptic potentials alter the membrane voltage so it
crosses threshold value theta; the neuron spikes and goes into a refractory state. (c) Typical forms of
excitatory and inhibitory postsynaptic potentials over time




Spike summation, spiking, hyper-polarization

uj 1)
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pre-synaptic / '] post-synaptic
neurons ‘ neuron
® .
N EPSP = excitatory post-synaptic potential
s IPSP = inhibitory post-synaptic potential

each pre-synaptic spike generates
an EPSP (red curves) or IPSP in
case of negative weight ;

they are all added (blue line) ;

when u, (t) reaches the threshold 9’

the post-synaptic neuron Nl
emits a spike, in its turn.
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Detailed models




Hodgkin-Huxley

d
Cd—': = —gnam h(u— Ena) — gxn*(u — Ex) — gu(u— Er) +1(t) (1
dn dm dh
T = —[n—nop(u)], T = —[m—mp(u)], T = —[h—hy(u)]
() input eurrent

But) (V]

u membrane potential

d
— A Frmeiw
o

2 4= GuhiUE,) + () +5 (w£) "I N
- jrefractory)

oy o
.. where variables m, n et h are themselves gaverned ¢ period 1 rolalive rofractory poried 4
by 3 other differential equations, function of time. Dynamics of spike ﬁring

Accurate in dynamics, but computationally inefficient, to the
point of being useless for everything but validating faster
models or bio-models...
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Integrate and fire
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Schematic drawing of the integrate-and-fire neuron. On the left side, the
low-pass filter that transforms a spike to a current pulse I(t) that charges
the capacitor. On the right, the schematic version of the soma, which
generates a spike when voltage u over the capacitor crosses threshold.




Integrate and fire

u being the membrane potential,

O 2 (ult) ~t) +10)

spike firing time r'/) is defined by

w(ty =0  with  #' (1Y) >0




Leaky Integrate and fire (LIF)

Outside Membrane

4

Inside Membrane

Circuit diagram that corresponds to the leaky integrate-and-fire
(LIF) neuron

J(t) is weighted sum of inputs

R is resistance

C is membrane capacitance

V/(t) is voltage at time t

And the model is: 9¥ = — 2 (V(t) — J(t)R)




Leaky Integrate and fire (LIF)

Simulated LIF Mauran Spike

iR=] 3

oal Pasted Spike

o7F

Tirme [ms)

Membrane voltage of a LIF neuron with constant input J,




Leaky Integrate and fire (LIF)

& external input currant i) e presynaplic spike train & syn_current it)
[ e 1l
time:
C.
LIF state u(t)
8
U
time:
D. | I I | cutput spike traln I I
time:

Time course of the membrane potential u(t) of a leaky-integrate-and-fire neuron
LIF (panel C) driven by the external input current io(t) (shown in panel A) or by
the synaptic current ij (t) evoked by the sample presynaptic spike train (panel B).
Initially, the state u(t) of the LIF neuron is at the resting value ures. The currents
io(t) and ij(t) increase the membrane potential towards the firing threshold theta.
Whenever the threshold is crossed the neuron emits a spike and the membrane
voltage u(t) is reset to a new value - here assumed ures. The firing times of the
LIF neuron are shown as vertical bars in panel D.




Spike response model (SRM)

uilt) = n(E- )+ 33 e (- ) + upegt
i

Potential:
_ n(t- D)
spike (stereotyped):
A Y
i1 ()
W [— """~ t
5

EPSP:

u(t) = ¥ and d%ui(t) >0 = t=t0
spike-condition:




Theta neuron

Sink Saddle
/ -

Dynamics of the theta model on the unit circle. Blue denotes a
stable fixed point; Green denotes an unstable fixed point. By varying
the input parameter, the two equilibria collide and form a stable limit
cycle; Gray arrows indicate that the points are attracting in R?; Black
arrows indicate the direction of movement along the unit circle




Theta neuron

Spiking
Region

Refractory
Region

The phase-trajectory in a Theta-neuron evolves according to:

98 — (1 cos(@) + at(r)(1 +cos(6))

where theta is the neuron phase, alpha is a scaling constant, and I(t) is the input current. The main
advantage of the Theta-neuron model is that neuronal spiking is described in a continuous manner, allowing
for more advanced gradient approaches




Ishikevich neuron

d d
Ff — 0.04u(r)> + 5u(r) + 140 —w(r) + (1) {T‘;’ — a(bu(r) — w(r))
(4)
with after-spike resetting: if u>® then u—cand w—w+d

Efficient enough, ran 100 million neuron simulation
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Diversity of neuron types
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“What magical trick
makes us intelligent?
The trick is that there is
no trick. The power of
intelligence stems from
our vast diversity (and
size), not from any
single, perfect principle.’
(Marvin Minsky, Society
of Mind; 1987)
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Diversity of neuron types cont...

Real neurons

Models

Coding

Plastic/Learn
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Network structure varies on a macro scale.




Estimating variability in populations of neurons

() tonie spiking

(B) phasic spiking

(C) tonic bursting

(D) phasic bursting

rreweemer

(E) mixed mode

(F) spike frequency
O aion

(@) Glass 1 excitable

(H) Class 2 excitable

v Jl - —
= = — .
() spike latency ) suviresha (K) resonator Ly integrator
| y
1 L - L P
(W robound spike (W) ebound burst (© tresna Poitasiy
WJ aany [
= Y _ = p— [ I
i 18) m
R poiortel g Cursing
/DAP —\/J\/

Not all neuron models can match this diversity (e.g., integrate and fire does not have refractory period)
Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the
same model (1) and (2), with different choices of parameters. Each horizontal bar denotes a 20-ms time

interval.



Estimating variability in populations of neurons
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Comparison of the neuro-computational properties of spiking and bursting models; “number of FLOPS” is an
approximate number of floating point operations (addition, multiplication, etc.) needed to simulate the
model during a 1 ms time span. Each empty square indicates the property that the model should exhibit in
principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters
within a reasonable period of time.




Estimating variability in populations of neurons

‘intagrata-and-ﬁra
9 ¥ gintegrate-and-fire with adaptation

'.quadratic integrate-and-fire

(poar)

" integrate-and-fire-or-burst i .
e Y Ire-or .FltzHugh Nagumo
resonate-and-fire

. Mon'ls-LEcar.

o lzhikevich (2003) - - Findmarsh-Ros R,

biclogical plausibility (# of features)

raa  SOER e /
= 5 13 2 Hodgkin-Huxley
(efficient) implementation cost (# of FLOPS) (prohibitive)

Comparison of the neuro-computational properties of spiking and
bursting models; “num of FLOPS" is an approximate number of
floating point operations (addition, multiplication, etc.) needed to
simulate the model during a 1 ms time span. Each empty square
indicates the property that the model should exhibit in principle (in
theory) if the parameters are chosen appropriately, but the author
failed to find the parameters within a reasonable period of time.
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Input coding (sensory transducers)
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Distinction: inputs versus internals



Code types

A B.
n n2 |e—(s
n2 | n3 | @
n3 | nd | —(3
nd | n5 Je—
‘A—l‘ time time
c. D.
n1 Burst 1 Burst2
stimulus I
n2 -

n3 4|_. n, ulty ‘
et R [ SR
ns | n2, uft) l

oy At Aot time =

time
E. .8
n 1 n |
n2 | " n2 | | .
3 | n3 |
ne | na | |
ns | .
Tl A\
n7 | reference time
77777777777 time oscillations

(A) time to first spike; (B) rank-coding or spike-order coding; (C) latency coding based on the exact timing
of spikes; (D) resonant burst coding; (E) coding by synchrony; (F) phase coding. Legend: nl,...,n7 are the
labels of neurons; the vertical bars in the particular plots represent the neural firing times; the numbers 1,...,5
in the circles indicate the order of spike arrival; At is the latency between the stimulus onset and the first
spike; Atl,...,At4 are the inter-spike latencies; u(t) is the neuron model state variable.



Code types

t A
T ry A A i A Iy
X b 1. .......... T y T
T_
] I
]
A
Intensity

Coding by relative delay. The neurons in figure emit spikes at different
moments (f ) in time tj . The most strongly activated neuron fires first
(i-e., second from left). Its spike travels a considerable distance along the
axon, until last neuron fires (i.e., the fourth from left). The latencies xj are
computed with respect to a reference time T




Rate coding, time coding, rank coding

¢ qa.r o count latency rank

5 3

6 5

7 6

5 4

1 1

3 2
Numeric count|binary|timing| rank
examples: code | code | code |order

left (opposite) figure
n="7T="Tms 3 7 | =19]123
Thorpe et al. [164]
n=10,T=10ms | 3.6 | 10 |~=33|21.8

Number of bits that can be transmitted
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Plastic/Learn

e The

Weight updating

first was Hebbian: Awj; = kaja; where:

wijj is the synaptic strenth of the synapse between the axon
of the presynaptic neuron i and the dendrite of the
poststynaptic neuron j.

Awjj is change in synaptic strength

K is the learning rate

a; indexes the presynaptic neuron

a; indexes the postsynapci neuron

“Activity” can be interpreted many different ways. The
most common measure of activity is the firing rate of a
neuron. However, membrane voltage, spike times, the
amount of current flowing into the cell, filtered spike
trains, and other measures can be interpreted as activity.
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Various rate-schemes

Wij = F{Wij; If!-,rfj}

dt
post  pre dwg/dfoc dwgy/dtoc dwg/df oo duw;/dE e duwyy /dt e
v v vV viyy—co  (vi—wve)vy w(vs—ue) (vi—(w))(v5—(vy))
ON ON + + + + +
ON OFF ] - D - -
OFF ON ] - - 0 -
OFF OFF 0 - i} 0 +
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Timing-based




Learning: Biology of STDP




STDP (idealized, rather than online version)

N N
Aw; = Z Z W(t — tf)

f=1n=1

® Aw; is synapse weight changefrom a presynaptic neuron j to i
° tfwith f =1,2,3,... indexes presynaptic spikes
e t'with n=1,2,3,... indexes firing times of the postsynaptic neuron
e W(x)= A exp(—x/74) for x>0 (LTP curve below)
e W(x)=—A_exp(x/7-) for x <0 (LTD curve below)
e A. and A_ constant changing amplitude
® x = post — pre
® 7,,_ = 10ms are a time constants
pre _1
1 +1&|
0 LTP
LTD
1tpre __1°
post I 1.5

W -50 0 50




STDP Formulation
%Wii(t) = ap+ 5(t) [al"’e + fmaz”’e' Post(s) Si(t - s) dS]
a

+ 5(t) [alpost+ / aPost: Pre(s) 5i(t - s) ds] ,
a

Sj(t) = Z, a(t- tim) and Si(t) = Zf a(t- tim) are pre- and postsynaptic spike trains

A
b wih=agt 29<0
kernels a;P25t Pre and a;Pre POSt _ jnspired
5 Toomm
JC% wis) = | A+ expls/ 7] fors< 0,
B ' A_ exp[-s/7] fors>0,
! " 1 _D T T
A . 05 J
c = 0D
e 05 V’
-1.0
| <40 -20 0 20 40
5 LY
RP (lt 4" [ms]
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Coincidence detectors

e Spiking networks are great at general coincidence
detection, which results in many capabilities:
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Rate vs. Timing




Analogue (iff hardware)>Spiking>Rate=artificial

Real neurons

e “Networks of noisy spiking neurons with temporal coding
have a strictly larger computational power than sigmoidal
neural nets with the same number of units.”

e “In some cases, for example for stationary input, it will
turn out that the spiking neuron models can be strictly
ST reduced to rate models; in other cases such a reduction is

Plastic/Learn not possible.”

e “Spike-based and rate-based rules of plasticity are
equivalent as long as temporal correlations are
disregarded.”

e "If rates vary rapidly, i.e. on the time scale of the learning
window, then spike-time dependent plasticity is distinct
from a rate-based formulation.”
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The supervised spike-time learning problem

Construct a network with arbitrary connection weights, w. Given
e S(tY), the desired spike train of output neuron j, and
s S(t;), the spike train of an input nenron i,

modify w such that
DSt 501

is minimized, where D05, 52) is a measure of the dissimilarity be-
tween two spike trains [47, 214]




SpikeProp

e SpikeProp, operates much like traditional backpropagation
in that it calculates the global error — the time difference
between the spike train created by the network and the
desired spike train — and assigns local error for each node,
which is used to modify connection weights proportionally
to the node's activity. Like backpropagation, however, the
local error for each node depends on the connection
weights of downstream neurons, making this algorithm
biologically implausible. It also requires the network be
feed-forward




SpikeProp, De-correlation backpropogation,
FreqProp, ReSuMe, etc

Learning Method Network Size |[Epochs Train Test
Fisher Iris Dataset

SpikeProp 50x10x3| 1000 97.4%| 96.1%
BP A 50x10x3| 2.6e6| 98.2%| 95.5%
BPB 4x8x1 le5| 98.0%| 90.0%
Theta Neuron BP 4x8x1| 1080 100% 98.0%
Wisconsin Breast Cancer Dataset

SpikeProp 6d4x15x2| 1500 97.6%| 97.0%
BP A 64x15x2| 9.2e6| 98.1%| 96.3%
BPB 9x8x1 le5| 97.2%| 99.0%
Theta Neuron BP 9x8x1| 3130| 98.3% 99.0%

SpikeProp does better than BackProp.
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Unsupervised




The unsupervised spike-time learning problem

Given input X and cost function Cix, v,

enerate output Y and minimize C'(x, v).

e Various rules:

e Artola, Brocher, Singer (ABS) - rate based
e Bienenstock, Cooper, Munro (BCM) - rate based
e Spike-timing dependent plasticity rules - timing based

o Auwy(t*) = A exp( =)

Dwi(tP) = At exp(E2

tP"is time of a presynaptic spike

tP"is time of the last presynaptic spike

tP>" and tP*" for postsynaptic

AT is a negative constant representing the max amp
post-pre depression

T~ is time-constant controlling exponential decay

e A'tand 7" define positive pre-post part of the curve



Clustering

8 7 7 7 v 3 - b
F 7 F e W i Y Iy
=9 Ta - — " Y
T 7 -~ -~ \w' i ;\'x’ T e it .,
] b h -

Ta = {*1*I912!GI8I*l*1*I*

Encoding with overlapping Gaussian receptive fields. An input
value a is translated into firing times for the input-neurons
encoding this input-variable. The highest stimulated neuron
(5), fires at a time close to 0, whereas less stimu- lated neurons,
as for instance neuron 7, fire at increasingly later times.




Clustering

| e 1
._"- Y . TS
i s ' B - [ T
y’ 65
NG . ACH
! F, J - 1 H E) 4

Three clusters (upper left and upper right) of different scale with
noise (crosses). (b,c) Insets: actual classification. Respective classes
are marked with diamonds, squares, and circles. Noise outside the
boxes or points marked by x's did not elicit a spike and were thus not
attributed to a class. Side panels: graded receptive fields used.



Outline

O Plastic/Learn

Reservoir




Kinput §
cells

Reservoir (supervised or reinforcement)

-
input connections
—_—

internal connections

output connections,
must be trained

resernvoir readout neurons

e Reservoir performance is improved with unsupervised
STDP in reservoir.
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Reinforcement learning

Given some information about a Markov Decision Process,
MDP = (8, Ay, Pals, '), Rals, &),

find a policy 7(s) = a such that following that policy maximizes

R=3 r

t=(l

Agent

State Reward Action
|"'.|:|l Ilf {jr
Tysaf

s, Environment




Reinforcement learning

200 ms

H:| - w

eligibility trace e(t)

post
pre

I\_reward signal d(t)

synaptic weight w(t)

1
1
1
1
L

Changes of the synaptic weight w(t) are proportional to the product of the STDP
eligibility trace c(t) with the reward signal d(t). Contribution of a pre-before-post
spike pair and a post-before-pre spike pair to the eligibility trace c(t) is illustrated
at the top of the figure



Reinforcement learning

| | 500 ms
ol M1

aligibility trace

5
axtracallular dopamine M_

synaplic strength L

Eligibility trace modulates effects that would occur with normal STDP (see, for example, the dip after a
post-pre pairing). The delivered reward allows the plasticity to occur, raising the synaptic strength




Implementation of R-STDP variants

Various ways to make a network do R-STDP:

o Neuron-level (each neuron integrates reinforcement, like
dopamine) with various flavors within this set

e Actor-Critic: Population level (e.g., neuron compiler)
Variants on STDP:
e Triplets, etc
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