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Learning in spiking neural networks

CNS Lab

Computational Neural Simulations
Complex Network Studies
Central Nervous Systems
Cyber-Natural Systems

Cryptography, Networking, and Steganography
Cellular NeuroSciences

Cognitive NeuroSciences
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Counter to the current paradigm

“We shall envision the mind (or brain) as composed of many
partially autonomous ”agents”—as a ”Society” of smaller
minds. Each sub-society of mind must have its own internal
epistemology and phenomenology, with most details private,
not only from the central processes, but from one another.”
(Minsky, K-Lines; 1980)
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Neuron structure

Synapses on dendrites (inputs) on soma (cell body) integrate
and fire spikes down axons (output) toward synapses

Which of the full set of real biological features are enough for
domain general learning? What can we eliminate?
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Synapse types

Remember for upcoming notation
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Connection types

Are these relevant computationally?
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Synapses transmit chemically between neurons

This is where most of the learning appears to happen
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Action potentials

A 4 second recording of the neural activity recording from 30 neurons of the visual cortex of a monkey. Each
vertical bar indicates a spike. The human brain can recognize a face within 150ms, which correlates to less
than 3mm in this diagram; dramatic changes in firing frequency occur in this time span, neurons have to rely
on information carried by solitary spikes.
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Neurons fire (spike) to transmit information
(mostly)
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Channels
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Saltatory conduction



Real neurons

Connections

Synapses

Action potentials

Transmission

Learning

Models

Original models

Modeling spikes

Detailed models

Efficient models

Comparisons

Coding

Plastic/Learn

Rate-based

Timing-based

Task learning

Rate vs. Timing

Supervised

Unsupervised

Reservoir

Reinforcement

Saltatory conduction



Real neurons

Connections

Synapses

Action potentials

Transmission

Learning

Models

Original models

Modeling spikes

Detailed models

Efficient models

Comparisons

Coding

Plastic/Learn

Rate-based

Timing-based

Task learning

Rate vs. Timing

Supervised

Unsupervised

Reservoir

Reinforcement

Outline
1 Real neurons

Connections
Synapses
Action potentials
Transmission
Learning

2 Models
Original models
Modeling spikes
Detailed models
Efficient models
Comparisons

3 Coding
4 Plastic/Learn

Rate-based
Timing-based
Task learning
Rate vs. Timing
Supervised
Unsupervised
Reservoir
Reinforcement



Real neurons

Connections

Synapses

Action potentials

Transmission

Learning

Models

Original models

Modeling spikes

Detailed models

Efficient models

Comparisons

Coding

Plastic/Learn

Rate-based

Timing-based

Task learning

Rate vs. Timing

Supervised

Unsupervised

Reservoir

Reinforcement

Neuron learning

• Neurons are the basis of learning, consciousness, etc.

• Neurons change their reactivity and “weights” to learn
• Hebbian learning (ire together wire together)

• Long Term Potentiation / Depression (LTP/LTD)

• Short Term Potentiation / Depression (STP/STD)

• Glial learning ? (Human-mouse graft study!)

• Dopamine-induced reinforcement

• more????
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Neuron learning
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LTP

Black dots represent the EPSP of neurons in the stimulated
pathway, white dots represent the EPSP in the unstimulated
pathway. Tetanic stimulation was delivered at each arrow.
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LTP

Cartoon depiction of the two classical methods of inducing LTP. Vertical
lines do not depict spikes, but pulses applied to the presynaptic cell. +
marks show which synapse is potentiated. (A) Homosynaptic
(synapse-specific) LTP is induced by high-frequency tetanic stimulus
(usually 100Hz for 1 second) of the presynaptic cell. (B) Associative LTP
is induced by pairing a tetanic stimulus in one or more presynaptic cells
with a low-frequency (usually 5Hz) stimulus in the presynaptic cell whose
synapse is to be potentiated. Note that typically the synapses stimulated
with the tetanic stimulation will also be potentiated.
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LTD

Cartoon depiction of the two classical methods of inducing LTD. Vertical
lines do not depict spikes, but pulses applied to the presynaptic cell. -
marks show which synapse is depressed. (A) Heterosynaptic LTD is
induced with tetanic stimulation in some presynaptic cells; those that are
not stimulated may become depressed. Note that the stimulated cells often
have their synapses potentiated. (B) Homosynaptic LTD is induced with
long period of low-frequency stimulation (typically 1 Hz for 10 minutes) of
the presynaptic cell.
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Order matters

Evidence that the temporal order of pre- and postsynaptic stimulation affects the induction of LTP/LTD.
(Left) The stimulation protocol. Each vertical line represents a pulse of current. (Right) The ratio of the
amplitude of the EPSP before the stimulation protocol and 20 minutes after the stimulation protocol. Note
that depression happens when postsynaptic neurons are stimulated before presynaptic neurons, potentiation
when presynaptic neurons are stimulated before postsynaptic neurons, and strong potentiation occurs when
they are simultaneously stimulated.
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Spike-timing dependent plasticity

The STDP curve. Each dot represents the relative change in
synaptic strength after 60 pre-post or post-pre spike pairings.
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Neuron modeling

• Spike transmission

• Spike integration

• Thresholding

• etc.
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Early artificial neuron models
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Basic neuron model

Neuron operations:

1 Sum (inputs x weights)

2 Apply activation function

3 Transmit signal
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Basic neuron model

• Often a bias θ can be applied/learned
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Basic neuron model
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Multi-layer feed forward network

Feed-forward networks with omniscient top-down knowledge
are good at static feature extractions (e.g., AlphaGo)
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From-scratch backprop beats you at digit class:
With no fancy libraries, from scratch, and this is the entire source (minus a 3-4 line main)

d e f s i g m o i d ( x ) :
r e t u r n 1 . 0 / ( 1 . 0 + np . exp(−x ) )

d e f s i g m o i d p r i m e ( x ) :
r e t u r n s i g m o i d ( x )∗(1.0− s i g m o i d ( x ) )

c l a s s NN:
d e f i n i t ( s e l f , n I =3, nH=4, nO=1):

s e l f . syn1 = 2 ∗ np . random . random ( ( nH , nO ) ) − 1

d e f runNN ( s e l f , X ) :
s e l f . l 0 = X
s e l f . l 1 = s i g m o i d ( np . dot ( s e l f . l 0 , s e l f . syn0 ) )
s e l f . l 2 = s i g m o i d ( np . dot ( s e l f . l 1 , s e l f . syn1 ) )
r e t u r n s e l f . l 2

d e f backPropagate ( s e l f , y , N ) :
l 2 e r r o r = y − s e l f . l 2
l 2 d e l t a = l 2 e r r o r ∗ s i g m o i d p r i m e ( s e l f . l 2 )
l 1 e r r o r = l 2 d e l t a . dot ( s e l f . syn1 . T)
l 1 d e l t a = l 1 e r r o r ∗ s i g m o i d p r i m e ( s e l f . l 1 )
s e l f . syn1 += ( s e l f . l 1 . T . dot ( l 2 d e l t a ) ) ∗ N
s e l f . syn0 += ( s e l f . l 0 . T . dot ( l 1 d e l t a ) ) ∗ N

d e f t r a i n ( s e l f , X , y , m a x i t e r a t i o n s =10000 , N= 0 . 8 ) :
f o r roundNum i n r a n g e ( m a x i t e r a t i o n s ) :

s e l f . runNN (X)
s e l f . backPropagate ( y , N)

d e f t e s t ( s e l f , X , y ) :
f i n a l p r e d i c t i o n = s e l f . runNN (X)
r e t u r n np . mean ( ( f i n a l p r e d i c t i o n − y )∗∗2)



Real neurons

Connections

Synapses

Action potentials

Transmission

Learning

Models

Original models

Modeling spikes

Detailed models

Efficient models

Comparisons

Coding

Plastic/Learn

Rate-based

Timing-based

Task learning

Rate vs. Timing

Supervised

Unsupervised

Reservoir

Reinforcement

What are brains for?

• ”Deep” convolutional feed forward networks tend to be
good for static feature extractions

• Recurrent networks tend to be better for control and time
series
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EPSP and IPSP

(a) Schematic drawing of a neuron. (b) Incoming postsynaptic potentials alter the membrane voltage so it
crosses threshold value theta; the neuron spikes and goes into a refractory state. (c) Typical forms of
excitatory and inhibitory postsynaptic potentials over time
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Spike summation, spiking, hyper-polarization
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Hodgkin-Huxley

Accurate in dynamics, but computationally inefficient, to the
point of being useless for everything but validating faster
models or bio-models...
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Integrate and fire

Schematic drawing of the integrate-and-fire neuron. On the left side, the
low-pass filter that transforms a spike to a current pulse I(t) that charges
the capacitor. On the right, the schematic version of the soma, which
generates a spike when voltage u over the capacitor crosses threshold.
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Integrate and fire
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Leaky Integrate and fire (LIF)

Circuit diagram that corresponds to the leaky integrate-and-fire
(LIF) neuron

• J(t) is weighted sum of inputs
• R is resistance
• C is membrane capacitance
• V (t) is voltage at time t
• And the model is: dV

dt = − 1
RC (V (t)− J(t)R)
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Leaky Integrate and fire (LIF)
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Leaky Integrate and fire (LIF)

Time course of the membrane potential u(t) of a leaky-integrate-and-fire neuron
LIF (panel C) driven by the external input current io(t) (shown in panel A) or by
the synaptic current ij (t) evoked by the sample presynaptic spike train (panel B).
Initially, the state u(t) of the LIF neuron is at the resting value ures. The currents
io(t) and ij(t) increase the membrane potential towards the firing threshold theta.
Whenever the threshold is crossed the neuron emits a spike and the membrane
voltage u(t) is reset to a new value - here assumed ures. The firing times of the
LIF neuron are shown as vertical bars in panel D.
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Spike response model (SRM)

Potential:

spike (stereotyped):

EPSP:

spike-condition:
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Theta neuron

Dynamics of the theta model on the unit circle. Blue denotes a
stable fixed point; Green denotes an unstable fixed point. By varying
the input parameter, the two equilibria collide and form a stable limit
cycle; Gray arrows indicate that the points are attracting in R2; Black
arrows indicate the direction of movement along the unit circle
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Theta neuron

where theta is the neuron phase, alpha is a scaling constant, and I(t) is the input current. The main
advantage of the Theta-neuron model is that neuronal spiking is described in a continuous manner, allowing
for more advanced gradient approaches
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Ishikevich neuron

Efficient enough, ran 100 million neuron simulation
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Diversity of neuron types

“What magical trick
makes us intelligent?
The trick is that there is
no trick. The power of
intelligence stems from
our vast diversity (and
size), not from any
single, perfect principle.”
(Marvin Minsky, Society
of Mind; 1987)
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Diversity of neuron types cont...

Network structure varies on a macro scale.
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Estimating variability in populations of neurons

Not all neuron models can match this diversity (e.g., integrate and fire does not have refractory period)
Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the
same model (1) and (2), with different choices of parameters. Each horizontal bar denotes a 20-ms time
interval.
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Estimating variability in populations of neurons

Comparison of the neuro-computational properties of spiking and bursting models; “number of FLOPS” is an
approximate number of floating point operations (addition, multiplication, etc.) needed to simulate the
model during a 1 ms time span. Each empty square indicates the property that the model should exhibit in
principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters
within a reasonable period of time.
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Estimating variability in populations of neurons

Comparison of the neuro-computational properties of spiking and

bursting models; “num of FLOPS” is an approximate number of

floating point operations (addition, multiplication, etc.) needed to

simulate the model during a 1 ms time span. Each empty square

indicates the property that the model should exhibit in principle (in

theory) if the parameters are chosen appropriately, but the author

failed to find the parameters within a reasonable period of time.
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Input coding (sensory transducers)

Distinction: inputs versus internals
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Code types

(A) time to first spike; (B) rank-coding or spike-order coding; (C) latency coding based on the exact timing
of spikes; (D) resonant burst coding; (E) coding by synchrony; (F) phase coding. Legend: n1,...,n7 are the
labels of neurons; the vertical bars in the particular plots represent the neural firing times; the numbers 1,...,5
in the circles indicate the order of spike arrival; ∆t is the latency between the stimulus onset and the first
spike; ∆t1,...,∆t4 are the inter-spike latencies; u(t) is the neuron model state variable.
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Code types

Coding by relative delay. The neurons in figure emit spikes at different
moments (f ) in time tj . The most strongly activated neuron fires first
(i.e., second from left). Its spike travels a considerable distance along the
axon, until last neuron fires (i.e., the fourth from left). The latencies xj are
computed with respect to a reference time T
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Rate coding, time coding, rank coding
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Weight updating

• The first was Hebbian: 4ωij = κaiaj where:

• ωij is the synaptic strenth of the synapse between the axon
of the presynaptic neuron i and the dendrite of the
poststynaptic neuron j .

• 4ωij is change in synaptic strength
• κ is the learning rate
• ai indexes the presynaptic neuron
• aj indexes the postsynapci neuron
• “Activity” can be interpreted many different ways. The

most common measure of activity is the firing rate of a
neuron. However, membrane voltage, spike times, the
amount of current flowing into the cell, filtered spike
trains, and other measures can be interpreted as activity.
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Various rate-schemes
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Learning: Biology of STDP

Model:
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STDP (idealized, rather than online version)

∆wj =
N∑

f =1

N∑
n=1

W (tni − t fj )

• ∆wj is synapse weight changefrom a presynaptic neuron j to i

• t fj with f = 1, 2, 3, ... indexes presynaptic spikes

• tnj with n = 1, 2, 3, ... indexes firing times of the postsynaptic neuron

• W (x) = A+ exp(−x/τ+) for x > 0 (LTP curve below)

• W (x) = −A− exp(x/τ−) for x < 0 (LTD curve below)

• A+ and A− constant changing amplitude

• x = post − pre

• τ+/− = 10ms are a time constants

W
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STDP Formulation
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Coincidence detectors

• Spiking networks are great at general coincidence
detection, which results in many capabilities:
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Analogue (iff hardware)>Spiking>Rate=artificial

• “Networks of noisy spiking neurons with temporal coding
have a strictly larger computational power than sigmoidal
neural nets with the same number of units.”

• “In some cases, for example for stationary input, it will
turn out that the spiking neuron models can be strictly
reduced to rate models; in other cases such a reduction is
not possible.”

• “Spike-based and rate-based rules of plasticity are
equivalent as long as temporal correlations are
disregarded.”

• “If rates vary rapidly, i.e. on the time scale of the learning
window, then spike-time dependent plasticity is distinct
from a rate-based formulation.”
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The supervised spike-time learning problem
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SpikeProp

• SpikeProp, operates much like traditional backpropagation
in that it calculates the global error – the time difference
between the spike train created by the network and the
desired spike train – and assigns local error for each node,
which is used to modify connection weights proportionally
to the node’s activity. Like backpropagation, however, the
local error for each node depends on the connection
weights of downstream neurons, making this algorithm
biologically implausible. It also requires the network be
feed-forward
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SpikeProp, De-correlation backpropogation,
FreqProp, ReSuMe, etc

SpikeProp does better than BackProp.
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The unsupervised spike-time learning problem

• Various rules:

• Artola, Brocher, Singer (ABS) - rate based
• Bienenstock, Cooper, Munro (BCM) - rate based
• Spike-timing dependent plasticity rules - timing based

• 4ωij(t
pre) = A−exp( tpostl −tpre

τ− )

• 4ωij(t
post) = A+exp( tpostl −tpost

τ+ )
• tpre is time of a presynaptic spike
• tpre1 is time of the last presynaptic spike
• tpost and tpostl for postsynaptic
• A−is a negative constant representing the max amp

post-pre depression
• τ− is time-constant controlling exponential decay
• A+and τ+define positive pre-post part of the curve
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Clustering

Encoding with overlapping Gaussian receptive fields. An input
value a is translated into firing times for the input-neurons
encoding this input-variable. The highest stimulated neuron
(5), fires at a time close to 0, whereas less stimu- lated neurons,
as for instance neuron 7, fire at increasingly later times.
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Clustering

Three clusters (upper left and upper right) of different scale with

noise (crosses). (b,c) Insets: actual classification. Respective classes

are marked with diamonds, squares, and circles. Noise outside the

boxes or points marked by x’s did not elicit a spike and were thus not

attributed to a class. Side panels: graded receptive fields used.
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Reservoir (supervised or reinforcement)

• Reservoir performance is improved with unsupervised
STDP in reservoir.
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Reinforcement learning
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Reinforcement learning

Changes of the synaptic weight w(t) are proportional to the product of the STDP
eligibility trace c(t) with the reward signal d(t). Contribution of a pre-before-post
spike pair and a post-before-pre spike pair to the eligibility trace c(t) is illustrated
at the top of the figure
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Reinforcement learning

Eligibility trace modulates effects that would occur with normal STDP (see, for example, the dip after a
post-pre pairing). The delivered reward allows the plasticity to occur, raising the synaptic strength
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Implementation of R-STDP variants

Various ways to make a network do R-STDP:

• Neuron-level (each neuron integrates reinforcement, like
dopamine) with various flavors within this set

• Actor-Critic: Population level (e.g., neuron compiler)

Variants on STDP:

• Triplets, etc
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