Lab 7: Code checking tools

Comp Sci 1585

Data Structures Lab:
Tools for Computer Scientists

MISSOURI

Sy ‘ Computer Science



Outline

Code checking
tools

0 Code checking tools




Code Checking Tools

Code checking
tools

Today we will talk about tools that will help you find bugs in
your code.

e $ valgrind and its memcheck tool

e $ asan is part runtime library, part compiler feature that
instruments your code at compile time.

e $ cppcheck does static code checking (some overlap).




Outline

Background
on memory
allocation

9 Background on memory allocation




Stack and Heap

Recall the stack frames in GDB

Backaround (which you can navigate through using bt, up, down, etc)

on memory

allocation Memory 232_ 1

Stack

|
T

Heap

BSS (uninitialized)
Data (initialized)
Text (Code)




Stack and Heap

Background hi h
on memory & stack

allocation I

heap
bss unitinialized variables
data initialized variables

0 et instoaction




Background
on memory
allocation

Stack and Heap

The stack (on x86) starts at a high address and grows
down

The heap (on x86) starts at the bottom and grows up

Destructors on stack-allocated class instances are called
when the function returns

Destructors on heap-allocated class instances are called
when delete is called on the pointer



Outline

Types of
problem

9 Types of problem




Types of problem

Types of
problem

@ Uninitialized values
® Unallocated or out-of-bounds read / write

e Out-of-bounds stack access
e Out-of-bounds heap access
e Use after free

©® Mismatched or double delete
O Memory leaks




Outline

9 Types of problem
Uninitialized values




Uninitialized Values: valgrind, memory-sanitizer

Reading a value that hasn't been initialized from the stack
or the heap.

Especially dangerous when program flow depends on that
value.

valgrind
$ valgrind --track-origins=yes keeps track of
where uninitialized values were allocated.

asan is faster

$ g++ —g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack
and set environment variables (script provided today in
repo: symbolizer.sh )

Some IDEs check unititialized values via plugins (e.g.,
CodeBlocks/KDevelop and Cppcheck plugin).



Outline

9 Types of problem

Invalid read / write




Invalid Reads / Write: valgrind, address-sanitizer

e Reading or writing values from unallocated memory.
e Sometimes may result in a segfault, but not always.

e valgrind isn't perfect:
you can invalidly read and write to things on the stack
without complaint, though it can detect out-of-bounds
heap access and use-after-free.

e asan works for all of these types:

$ g++ -g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack




Outline

9 Types of problem

Mis-used delete




Misused delete: valgrind, address-sanitizer

@ Mismatched delete, using:
new with delete[] or
new[] with delete
Both are problematic, why?

® Double delete: deleting the same memory twice.
Why is this an issue?

valgrind and asan can both detect both




Outline

9 Types of problem

Memory leaks




Memory Leaks: valgrind

Valgrind runs leak checks after the program terminates:
e Directly lost: No pointer to that block anymore.

e Indirectly lost: A pointer to that block exists, but it's in
a directly lost block.

o Still reachable: Still have a pointer to that block (don't
worry about this)

e Possibly lost: No pointer to the beginning of the block,
but a pointer to somewhere inside the block.

e $ valgrind --leak-check=full may help you
determine where

e Valgrind Memcheck Manual:
http://valgrind.org/docs/manual/mc-manual . html

The first two are the important ones to check for on homeworks



http://valgrind.org/docs/manual/mc-manual.html

	Code checking tools
	Background on memory allocation
	Types of problem
	Uninitialized values
	Invalid read / write
	Mis-used delete
	Memory leaks


