Lab 10: Profiling

Comp Sci 1585

Data Structures Lab:
Tools for Computer Scientists

MISSOURI

Sy ‘ Computer Science

Outline

Introduction

ﬂ Introduction

Introduction

Profiling

Profiling (“program profiling”, “software profiling”)
measures the empirical space (memory) or time complexity
of a program, the usage of particular instructions, or the
frequency and duration of function calls.

Most commonly, profiling information serves to aid
program optimization.

Profiling is achieved by instrumenting either the program
source code or its binary executable form using a tool
called a profiler (or code profiler).

Profilers may use a number of different techniques, such
as event-based, statistical, instrumented, and simulation
methods.

Profiling

Introduction

Profiling measures the performance of a program and can be
used to find CPU or memory bottlenecks.

e $ time A bash stopwatch

e $ callgrind Valgrind's CPU profiling tool

e $ massif Valgrind's memory profiling tool

e $ Linux-perf Linux profiling with performance counters
e $ gperftool Google performance tools

$ gprof The GNU (CPU) Profiler

Outline

@ time

Timing programs with time

e Just run $ time ./your_program argl arg2 argn

e Reading time 's output:
e Real: The wall-clock or total time of execution
e User: The time the program (and libraries) spent
executing CPU instructions
e System: The time the program spent waiting on system
calls (usually 1/0)

Timing programs with time

To improve the accuracy by taking the average across many
runs:

#!/usr/bin/env bash

n=0
for run in {1..10}
do
n=n+1
temp_var=$(time ./your_progrom)
time_extract = write code to grab time
time=time+4time_extract
done

echo your_time is: $((time / n))

Note: this needs to be fleshed out.

Outline

callgrind

© callgrind

Introduction

time

callgrind

massif

Other options

Profiling with callgrind

As with Memcheck, compile with
$ g++ -g program.cpp -o program
Run $ valgrind --tool=callgrind ./program .

It will create a file named callgrind.out.NNNN .

$ callgrind annotate --auto=yes callgrind.out.NNNN
will print some statistics on your program.
Redirect this into a file by appending &>cg.txt

$ kcachegrind callgrind.out.NNNN reads profiling
information and displays profiling statistics!

You can also view the output file directly, although the results
are not easy to read.

Understanding callgrind Output

callgrind

e Callgrind counts instructions executed, not time spent.

e The annotated source shows the number of instruction
executions a specific line caused.

e Function calls are annotated on the right with the number
of times they are called.

callgrind

Recursion and callgrind

Recursion can confuse both gprof and callgrind .

The --separate-recs=N option to Valgrind separates
function calls up to N deep.

The --separate-callers=N option to Valgrind
separates functions depending on which function called
them.

In general, when you have recursion, the call graph and
call counts may be wrong, but the instruction count will
be correct.

Outline

massif

e massif

Profiling with $ massif

Compile with $ g++ -g program.cpp -o program

massif

$ valgrind --tool=massif --time-unit=B ./program
to run.
It will create a file named massif.out.NNNN .

To get information on stack memory usage as well, include
--stacks=yes after —-time-unit=B.

e $ ms print massif.out.NNNN will print statistics for you.

o $ massif-visualizer massif.out.NNNN will show a much
nicer interface

To make every snapshot detailed, add: --detailed-freqg=1

Introduction

time

callgrind

massif

Other options

Understanding massif Output

Snapshots: massif takes a snapshot of the heap on
every allocation and deallocation.
e Most snapshots are plain. They record only how much
heap was allocated.
e Every 10th snapshot is detailed. These record where
memory was allocated in the program.
o A detailed snapshot is also taken at peak memory usage.
e By default, at most 100 snapshots are taken.
The graph: Memory allocated vs. time. Time can be
measured in milliseconds, instructions, or bytes allocated.
Colons (:) indicate plain snapshots, ‘at’ signs (@) indicate
detailed snapshots, and pounds (#) indicate the peak
snapshot.
The chart shows the snapshot number, time, total memory
allocated, currently-allocated memory, and extra allocated
memory.
The chart also shows the allocation tree from each
detailed snapshot.

Outline

Other options

6 Other options

Outline

6 Other options
gperftool

gperftool

Compile with: $ g++ -g -lprofiler

e Run your program:

e Set the CPUPROFILE environment variable to the name of
the file to store profile results in.

e Then, run your program like normal.

e For example,
$ CPUPROFILE=gperftool.prof ./my-exe

Use $ pprof to convert your output into cachegrind

format:
$ pprof --callgrind ./my-exe gperftool.prof > gperftool.out

® $ kcachegrind gperftool.out displays profiling statistics!

Outline

6 Other options

perf

perf

e perf began as a tool for using the performance counters
subsystem in Linux, and has had various enhancements to
add tracing capabilities.

e $ perf stat -B ./myProg argl arg2

e Tutorial:
https:

//perf .wiki.kernel.org/index.php/Tutorial

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

	Introduction
	time
	callgrind
	massif
	Other options
	gperftool
	perf

