
Introduction

time

callgrind

massif

Other options

gperftool

perf

Lab 10: Profiling

Comp Sci 1585
Data Structures Lab:

Tools for Computer Scientists

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

Profiling

• Profiling (“program profiling”, “software profiling”)
measures the empirical space (memory) or time complexity
of a program, the usage of particular instructions, or the
frequency and duration of function calls.

• Most commonly, profiling information serves to aid
program optimization.

• Profiling is achieved by instrumenting either the program
source code or its binary executable form using a tool
called a profiler (or code profiler).

• Profilers may use a number of different techniques, such
as event-based, statistical, instrumented, and simulation
methods.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Profiling

Profiling measures the performance of a program and can be
used to find CPU or memory bottlenecks.

• $ time A bash stopwatch

• $ callgrind Valgrind’s CPU profiling tool

• $ massif Valgrind’s memory profiling tool

• $ Linux-perf Linux profiling with performance counters

• $ gperftool Google performance tools

• $ gprof The GNU (CPU) Profiler

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

Timing programs with time

• Just run $ time ./your program arg1 arg2 argn

• Reading time ’s output:
• Real: The wall-clock or total time of execution
• User: The time the program (and libraries) spent

executing CPU instructions
• System: The time the program spent waiting on system

calls (usually I/O)

Introduction

time

callgrind

massif

Other options

gperftool

perf

Timing programs with time

To improve the accuracy by taking the average across many
runs:

#! / u s r / b i n / env bash
n=0
f o r run i n {1 . . 1 0}
do

n=n+1
temp var=$ (t ime . / your progrom)
t i m e e x t r a c t = w r i t e code to grab t ime
t ime=t ime+t i m e e x t r a c t

done
echo y o u r t i m e i s : $ ((t ime / n))

Note: this needs to be fleshed out.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

Profiling with callgrind

• As with Memcheck, compile with
$ g++ -g program.cpp -o program

• Run $ valgrind --tool=callgrind ./program .

It will create a file named callgrind.out.NNNN .

• $ callgrind annotate --auto=yes callgrind.out.NNNN

will print some statistics on your program.
Redirect this into a file by appending &>cg.txt

• $ kcachegrind callgrind.out.NNNN reads profiling

information and displays profiling statistics!

• You can also view the output file directly, although the results
are not easy to read.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Understanding callgrind Output

• Callgrind counts instructions executed, not time spent.

• The annotated source shows the number of instruction
executions a specific line caused.

• Function calls are annotated on the right with the number
of times they are called.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Recursion and callgrind

• Recursion can confuse both gprof and callgrind .

• The --separate-recs=N option to Valgrind separates
function calls up to N deep.

• The --separate-callers=N option to Valgrind
separates functions depending on which function called
them.

• In general, when you have recursion, the call graph and
call counts may be wrong, but the instruction count will
be correct.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

Profiling with $ massif

• Compile with $ g++ -g program.cpp -o program

• $ valgrind --tool=massif --time-unit=B ./program

to run.
It will create a file named massif.out.NNNN .

• To get information on stack memory usage as well, include
--stacks=yes after --time-unit=B .

• $ ms print massif.out.NNNN will print statistics for you.

• $ massif-visualizer massif.out.NNNN will show a much
nicer interface

• To make every snapshot detailed, add: --detailed-freq=1

Introduction

time

callgrind

massif

Other options

gperftool

perf

Understanding massif Output

• Snapshots: massif takes a snapshot of the heap on
every allocation and deallocation.

• Most snapshots are plain. They record only how much
heap was allocated.

• Every 10th snapshot is detailed. These record where
memory was allocated in the program.

• A detailed snapshot is also taken at peak memory usage.
• By default, at most 100 snapshots are taken.

• The graph: Memory allocated vs. time. Time can be
measured in milliseconds, instructions, or bytes allocated.

• Colons (:) indicate plain snapshots, ‘at’ signs (@) indicate
detailed snapshots, and pounds (#) indicate the peak
snapshot.

• The chart shows the snapshot number, time, total memory
allocated, currently-allocated memory, and extra allocated
memory.

• The chart also shows the allocation tree from each
detailed snapshot.

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

gperftool

• Compile with: $ g++ -g -lprofiler

• Run your program:
• Set the CPUPROFILE environment variable to the name of

the file to store profile results in.
• Then, run your program like normal.
• For example,

$ CPUPROFILE=gperftool.prof ./my-exe

• Use $ pprof to convert your output into cachegrind
format:
$ pprof --callgrind ./my-exe gperftool.prof > gperftool.out

• $ kcachegrind gperftool.out displays profiling statistics!

Introduction

time

callgrind

massif

Other options

gperftool

perf

Outline

1 Introduction

2 time

3 callgrind

4 massif

5 Other options
gperftool
perf

Introduction

time

callgrind

massif

Other options

gperftool

perf

perf

• perf began as a tool for using the performance counters
subsystem in Linux, and has had various enhancements to
add tracing capabilities.

• $ perf stat -B ./myProg arg1 arg2

• Tutorial:
https:

//perf.wiki.kernel.org/index.php/Tutorial

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

	Introduction
	time
	callgrind
	massif
	Other options
	gperftool
	perf

