Lab 11: Regular Expressions

Comp Sci 1585

Data Structures Lab:
Tools for Computer Scientists

MISSOURI

Sy ‘ Computer Science

Outline

Introduction

@ Introduction

Introduction

What are Regular Expressions?

Regex is a language for describing patterns in strings.

Use regex for:
e Finding needles in haystacks.
e Changing one string to another.
e Pulling data out of strings.

e Finding lines or content in large text files

Outline

D grep

Looking for stuff with grep

$ grep is Global Regular Expression Print

e § grep ‘REGEX’ FILES: Search FILES for REGEX
and print matches.
If you don't specify FILES, grep will read STDIN (so

you can pipe stuff into it).
$ echo ‘text with REGEX in it’ | grep ‘REGEX’

-C LINES prints LINES lines of context around the
match.

e -v prints every line that doesn't match (invert).
e -i Ignore case when matching.
e -P Use Perl-style regular expressions.

e -0 Only print the part of the line the regex matches.

Outline

D grep

Basic patters

Basic Patterns

Matches one of any character.

\w Matches a word character
(letters, numbers, and _).

\W Matches everything \w doesn't.

\d Matches a digit.

\D Matches anything that isn't a digit.

\s Matches whitespace
(space, tab, newline, carriage return, etc.).

\S Matches non-whitespace

(everything \s doesn't match).

\ is also the escape character.

Outline

D grep

Variable-length patterns

Variable-length Patterns

{n} matches n of the previous character.

{n,m} matches between n and m of the previous
character (inclusive).

e {n,} matches at least n of the previous character.

* matches 0 or more of the previous character ({0,}).

+ matches 1 or more of the previous character ({1,}).

? matches 0 or 1 of the previous character ({0,1}).

Outline

D grep

DIY character classes

DIY character classes

e [abc\d]l matches a character that is either a, b, ¢, or a
digit.
e [a-z] matches characters between a and z.

e ~ negates a character class: [Tabc] matches everthing
except a, b, and c.

Outline

D grep

Anchors

Anchors

= forces the pattern to start matching at the beginning of
the line.

$ forces the pattern to finish matching at the end of the
line.

\b forces the next character to be a word boundary.

\B forces the next character to not be a word boundary.

Outline

D grep

Groups

Groups

(ablc) matches either ‘ab’ or ‘c’.

You can use length modifiers on groups, too: (abc)+
matches one or more ‘abc’

One benefit of grouping is back-references. You can refer
to the thing matched by the 1st group, etc.

For example, (ablcd)\1 matches ‘abab’ or ‘cdcd’ but
not ‘abcd’ or ‘cdab’. Useful for repeats.

Outline

D grep

Greedy vs. Polite matching

Greedy vs. Polite matching

Regular expressions are greedy by default: they match as
large of a block of string as they possibly can.

Usually this is what you want, but sometimes it isn't.
You can make a variable-length match non-greedy by
putting a 7 after it.

For example: .+\. vs. .+7\.

(the former quits as late as possible,

and latter is quits as early as possible)

This means it will quit at the minimum length fitting
criteria

Outline

@ sed

sed: Editing with regex

$ sed is a stream editor-use it for editing files or STDIN.

It uses regular expressions to perform edits to text.

-r enables extended regular expressions.

e -n makes sed only print the lines it matches.

Outline

@ sed

sed print command

The Print Command

e $ sed -n ‘/regex/ p’ f.txt works pretty much
exactly like $§ grep .

e Use this to make sure your regex is matching what you
want it to.

e You can also use p in conjunction with s, which we'll
talk about immediately.

Outline

@ sed

sed substitute command

The Substitute Command

$ echo ‘sometext...’ | sed -i s/PATTERN/REPLACEMENT/
replaces the thing matched by PATTERN with
REPLACEMENT (-i means in-place).

Patterns can be any regular expression that we've talked
about so far.

Replacements can be plain text and/or back-references!

s/ / /g makes the substitution global (every match on
each line), e.g.,
$ sed -i s/PATTERN/REPLACEMENT/g infile.txt

s/ / /i makes the match case-insensitive.

Outline

C++ regex

@ C++ regex

C++ regex

e http://en.cppreference.com/w/cpp/regex

e http://www.cplusplus.com/reference/regex/

C++ regex

http://en.cppreference.com/w/cpp/regex
http://www.cplusplus.com/reference/regex/

C++ regex

#include <iostream>
#include <iterator>
#include <string>
#include <regex>

int main(){
std::string s = "Some people, when confronted
with a problem, think | know, I'Il use

regular expressions.

Now they have two problems.”;
std ::regex self_regex("regular”);
if (std::regex_search(s, self_regex)){

std ::cout << "Text contains ’'regular’\n";
}

std ::regex long_regex (" (\\w{7,})");
std::string new.s = std::regex_replace(s,
long_regex ,

"[$&]");

C++ regex

std ::cout << new_s << '\n';

	Introduction
	grep
	Basic patters
	Variable-length patterns
	DIY character classes
	Anchors
	Groups
	Greedy vs. Polite matching

	sed
	sed print command
	sed substitute command

	C++ regex

