The Linux Command Line

Sixth Internet Edition

William Shotts

A LinuxCommand.org Book

Copyright ©2024, William E. Shotts, Jr.

@ @ @ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-nd/3.0/

This work is licensed under the Creative Commons Attribution-Noncommercial-No De-
rivative Works 3.0 United States License. To view a copy of this license, visit the link
above or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

A version of this book is also available in printed form, published by No Starch Press.
Copies may be purchased wherever fine books are sold. No Starch Press also offers elec-
tronic formats for popular e-readers. They can be reached at: https://www.nostarch.com.

Linux® is the registered trademark of Linus Torvalds. All other trademarks belong to
their respective owners.

This book is part of the LinuxCommand.org project, a site for Linux education and advo-
cacy devoted to helping users of legacy operating systems migrate into the future. You
may contact the LinuxCommand.org project at https://linuxcommand.org.

Release History

Version Date Description

24.11 November 1, 2024 Sixth Internet Edition

19.01A January 28, 2019 Fifth Internet Edition (Corrected TOC)
19.01 January 17, 2019 Fifth Internet Edition.

17.10 October 19, 2017 Fourth Internet Edition.

16.07 July 28, 2016 Third Internet Edition.

13.07 July 6, 2013 Second Internet Edition.

09.12 December 14, 2009 First Internet Edition.

https://linuxcommand.org/
https://linuxcommand.org/
https://www.nostarch.com/

Table of Contents

g1 0 To (1 Lo 1 Lo T xvi
Why Use the Command LINE?........occciiiiiiiiiieee ettt e e e e e e e e e e eeeaeennans XVi
What This BOOK IS ADOUL.........coiiiiiiiiieiieee et r e e e e e e e e e eeeaaaees Xvii
Who Should Read ThisS BOOK..........ccooiiiiiiiiic e XVii
What's iN ThiS BOOK......ciiieee ittt e e e e e e e e e e e s s anea e a e e e e XViii
How To Read ThisS BOOK.........cccuuviiiiiiieee et XiX

L 1 L= U] = ST XiX

Why | Don't Call It “GNU/LINUX".......eeiiiiiiiiiee ettt XiX

What's New in the Sixth Internet EAitioN...........cccuvviiiiiiiiie e XX
ACKNOWIEAGMENTS.cci i e e e e e e s s e e e e e e e e e e e s s snebrbaaaeeeeeeeees XX

SiXth INternet EditioN............ooiiiiiiie e XXi

o (Vo U L =T 1o SRR XXi

Your Feedback IS Needed!............coooiiiiiiee e XXi

T a1 g =T To [T T PP XXi
Part 1 — Learning the Shell...........ciiiiimmcr s 1

1 — What IS the SREII?...........eeecsscsssc s s r s s 2
Terminal EMUIALOIS.uuiiiiiiiii et e e e e e e e e e e e s s s b e e e eeaaeeeeeeeeees 2
MakKing YoUr First KEYSIIOKES..........cciciiiiiiie ettt a e e e e e e e 2

COMMEANT HISTOMYceiiiiitiiie ettt e e e e 3
CUISOI MOVEIMENL. ...ttt e e e e e e e e e e e e e e e e e e et e e e e e aaa s 3

A Few Words About Mice and FOCUS...........cceeiiiiiiiiiiiiiiiieeeee e 3

Try Some Simple COMMEANAS........uuiiiiiiiiieeee e e e e e e rrrr e e e ee e e e e e s saneenreeeeees 4
ENdinNg @ TermiNal SESSION........ocuuiiiiiiiiiieie ettt et e et a e s e e e eeeeees 5
The Console Behind the CUMAIN............oiiiiieiiiiiieee e 5
Y0017 o 1 o PP 5
FUMNEE REAMING. ittt bbb e e e e e e e s s s s nab b b baeeees 6

ARl |V = 17 T I 1 o o TS 7
Understanding the File SyStem Tree........coooiiiiiiiiiiiiiie e 7
The Current WOorking DIF€CIOIY.......cieeiiieiecciiieeeiiee e e e e e e e s e e e e e e e e e e e 7
Listing the Contents Of @ DIFECLONY.........ocuuiiieiiiiiiiie e 8
Changing the Current Working DIr€CIOIY.........ccuuuiiiiiiiiieee et e e e e e eeeees 9

ADSOIULE PathNamES. ...ttt e e e e e e e e e e e aaeeeee 9
Relative PathNamEs........coooiiiiiiii e 9
Some Helpful SNOMCULS.......c.ooi e e e 11

Important Facts About FileNames.........c..evveiiiiiiii e 11

YU 1T T 0 o S OPPPPUR 12
3 — EXPIoring the SYStEM..........eecciiiiisiennessssssissssssnssssssssssnssssssnssssssnnsssssnnnnss 13
Having More FUN WIth [S.........oooooiiii e e e e e e e e e e e e eenes 13
(@10 1[0] g IS Vgl AN £ [0 41T 0| £ 14

A Longer LooK at LONg FOIMMAL..........cooiuiiiiiiiiiiiee ettt 16
Determining a File's Type With file........cooeeee i 17
Viewing File Contents WIth 1€SS........coiiiiiiiiiiie e 17
WAL IS “TOXE" 2.ttt ettt ettt e e et e e e e b e e e e 17

LESS IS IMOTE... ettt ettt e a s 19

B2 L o = T T 1T =T o S S 19
SYMDBDOIIC LINKS.....ce ittt e e e e et e e e e e e e e s s s st eaaereeaeeeeeeeaannnnnes 24
[F= 100 I IR]RSO PSRP 25
YU 01T o L o OO 25
FUNEr REAAING. ... ittt e et e e e e sne e e e s enee e e e e enee 25
4 — Manipulating Files and Dir€CtOrI€S...........cossuemmmrmmmsssmrmsmmssmmmssmsnssssssssssns 26
LT o (o= o R TSR 26
CharacCter RANGES.ttt e e e e e s e e e e e e e e e s s e snnnereeeeeees 28

DOt FlES. ..ttt 28
Wildcards Work in the GUI TOO........oouiiiiiiiiiiiiiiieee ettt 29
MKAIr — Create DIFECIOMES.cii ittt e e enee 29
CP — COopY FileS and DIFECLOMES.uiiiiiiiiiiee ittt e e e e e e e e e 30
Useful Options and EXAmMPIES.........euiiiieeeiiiiiiiiiieie e 30
MV — Move and ReNAME FIlES...........ooiuiiiiii it 31
Useful Options and EXAmMPIES.........coiuuiiiiiiiiiiiee e 32
rm — Remove Files and Dir€CIOMES.uuiiiiiiiiee ettt 33
Useful Options and EXamPIES.coiuiiiiiaiiiiiiee et e e ee e 33
Be Careful With rml..... ... 34

[N — CrEALE LINKS...ci ittt e e et e e e e e et e e e e s e nrreeae s 34
HAIA LINKS. ..ttt ettt e sttt e e e e e e e 35
SYMDBDOIIC LINKS.....coi i e e e e e e e s s r e e e e e e e e e e anaeas 35
Let's BUild @ PIaYQrOUNG...........eeuiiiiiiiiiiiiiiiiieeee et e e e e e e e e e e eeeae 36
(O == U oo T T (=T o] (o] 1= 36
COPYING FlES ettt e et e e e e et e e e s enbeaeeeeeeees 36
Moving and Renaming FileS..........cooiiiiiiiiiiiiieice e 37
Creating Hard LINKS...........cooiiiie e a e 38
Creating SYMDbDOIC LINKS.........uviiiiiiii e 39
Removing Files and DIr€CLOMNES.cuvueiii i e e 41
Creating Symlinks With The GUIL........cooiiiiiiiii e 42
YU 1T T 0 o S OPPPPUR 43
FUINEr REAAING. ... ittt e et e e e et e e e s eane e e e e e saees 43
5 — Working with COMMANAS........cccoueemmmmmmssssssssmmmnmsssmmsssssssssssssssssssssssssssssssss 44
What Exactly Are COMMAaNAS?......cviiiie it e e e ea e 44
1dentifying COMIMANTS.cocoiiiiiiiee et s et 45
type — Display @ Command's TYPE......ccceeiiiiiiiiiiiiieieeee e e e e e e e e e e e e e e e eaanaes 45
which — Display an Executable's LOCatioN...........ccueiiiiiiieiiiiiiieceeeeeeeeeeeeeeeeeee e, 45

Getting a Command's DOCUMENTALION...........cuuviiiiiiiiieee e e e esescieeee e e e e eeeeeeenes 46

help — Get Help for Shell BUIItINS.oouiiiiiiieee e 46

--help — Display Usage INformation...........c..uuueiiiirieeoii i e e e e e eeeens 47
man — Display a Program's Manual Page..........ccccocueiiiiiiiiiiiiiiiiie e 48
apropos — Display Appropriate CoOmMMAaNdS..........coovviicuiiiiiieieeeeee e e e e eeeees 49
whatis — Display One-line Manual Page Descriptions..............ccccvvvvieeeeeeeeeeeeceeeennn, 50
The Most Brutal Man Page Of Them All..........ooooiiiiiiieei 50

info — Display a Program's INfO ENtrY........ccooiiiiiiiiiiiiiciccee e 51
README and Other Program Documentation Files............cccccooiiiiiiiiiiiiiiieiiieneee 52
Creating Our Own Commands With ali@S...........ccccvviieeiiiiiiiee e 52
ST U] 0] T o 1 o SRR 55
FUINEr REAAINGvieiie it e e 55
6 — REAIFECHION......cccsssereennsiissssssssssssnnnnnsssssssssssssnnnnnnnssssssssssssssnnnsssnsssssssssnnnnnnn 56
Standard Input, OQUIPUL, @NA ETOF........uuiiiiiiiiiiiie e e e 56
Redirecting Standard OULPUL...........cooiiiiiiiiiiiie e e e e e e e e e e aa e e 57
(€1 o8] oI @fo] 1 0] 17T a0 LSS 59
Redirecting Standard EITOr.........cccuuuiiiiiiiee et e e e e e e e e s s ee e e e e e e e e e e s s snennnnenes 59
Redirecting Standard Output and Standard Error to One File.........ccccoooeeeivviviinnnnnn. 60
Disposing of UnNwanted OULPUL...........ccureiiiiiiiiieeeiiiee e 61
1Aev/NUIl IN UNIX CUIUE.coiiiiiiice et 61
Redirecting Standard INPUL...........uoiiiiiiie e e e e enees 61
Ccat — CONCALENALE FilES.........eeiiiiiiiiiie e 61
PIPEIINES. ...t b e e e bbbt e e e e e e eeeees 63
The Difference Between > and |.....cccuuviiiiiiiieee e 64
(T £ T PP PTTRPPPRP 65
uniqg - Report or Omit Repeated LINES.........uuuiiiiiiieeiiiiiiiiiiiie e 65
wc — Print Line, Word, and Byte COUNLS............cccuuiiiiiiiiieee e e e e e 66
grep — Print Lines Matching @ Pattern...........coooi i 66
head / tail — Print First / Last Part of FileS...........coooiiiiii e 67
tee — Read from Stdin and Output to Stdout and Files...........ccccevvvvvviiiiiiiieeeeceeein, 69
SUMMING UP. ottt e ekt e e s s e e e e e e e e s s e e e e e aneas 69
Linux Is About IMagination.............c.uuuiiiiiiiiee e e 70

7 — Seeing the World as the Shell Sees It.............coooemmmrrriiisisssssissssssssssssnns 71
D q o 7= 1 7T o TP PRRRPPPN 71
PathName EXPANSION..........uiiiiiiiiiie ettt ettt a et e e e e e eeeeeeeees 72
Pathname Expansion of HiIdden FileS...........iieeiiiiiiciiiiieieecc e 73

TG EXPANSION. ...ttt e e e e e e e e e e e s e e e e e e e e e e e e s e sassba s e e e eeeeeeeannns 73
AMNMETIC EXPANSION.eiiiiiiiiiiee ettt eeeeeeeas 74
(2= Lot T d o 7=V] T TS 75
Parameter EXPanSION.uuiiieiiiiie et cicee ettt e e et e e e et e e e e e e e e eae s 76
Command SUDSHEULION.......ccoiiiiiiiei e 77

(@ 18 o] 11 o TSP 78
DOUDBIE QUOLES. ... e e e e e e e e e e e e 79

S o (ST @ U o] =T PRSP 81
ESCAPING CharaClerS.....ccuuviiiiiiiiiiie ettt e e e e e e e e e e e e e aeeaaaaas 81
Backslash ESCApe SEQUENCES........cuuiiieeeiiiiiiiiiiieeeeeee e e e e s s s snaaeeeaaaenn e e e eeeeeenes 82

Y0001 01T T o PP UUPUPRU 83
T LT g =T Vo [T T PR 83

1ii

8 — Advanced Keyboard TrCKS..........cuuvummmmmmmmmmsssssssssmmssssmmmsssssssssssssssssssssssas 84

(@0] 0010 g =g [o I IR o TSN =T 11 1] o PSP 84
CUISOI MOVEIMENL.......o et e e e e e e e e e e e et e e e e e e e s een b e e e e ena s 84

YT o 1137 T T = SRR 85
Cutting and Pasting (Killing and Yanking) TeXt........cccciviirriieeeeii e 85
THE META KBY ...ttt 86

(@] 41 0] =1 1o o PP 86
Programmable COmMPIEION...........uiiiiiiiiee e 88

L ST Tl 1] (o) Y2 88
SEAICHING HISTOMY....cii ittt et bebe e ee e 89

[1Y (0 VA 4 0 T= 1 13 o o PSR 91

o 1] o] 92
SUMIMING Uittt e e st e e e e e e e e e s s s bbb bt e e e e eeaaeeesssaabbbeseeeeessnnes 92
UL g =T Vo [T o PR 92
9 — PEIMISSIONS......cissiiisssnnsnnnnnsssssnns 93
Users, Group Members, and Everybody EISe............cccciiiiiiiiie e 94
Reading, Writing, and EXECULING.........uueiiaiiiiiiie et eieee ettt et e e s e eeeeeeeneeee 95
chmod — Change File MOE..........couuuiiiiiiiieeee e 97
What the HeCK iS OCLal?.........oo i 98
Setting File Mode With the GUILL.........ceuiiiiii e 101
umask — Set Default PermisSiONS...........oooiiiiiiiiiie e 102
Some Special PErMISSIONS........coiiiiiiieiiiiii et 104

(@4 o= T To 1T Il T [T 01 (L= PRSPPI 105
su — Run a Shell with Substitute User and Group IDS..........ccccccevvveviiiiiiiiieeeeieeiinn, 105
sudo — Execute a Command as Another USEr..........cccvuviiiiieiiiiiiiiiiiiiee e, 107
Modern Linux Distributions and SUdO...........oocueeiiiiiiiiiieeiiieee e 108
chown — Change File Owner and GroUP........coooiiuiiireeiiiiieee e e e e e e 108
chgrp — Change Group OWNErShIP........o oo 109
EXErciSiNg OUF PriVIIEgES.ccci ittt e e e eeees 110
Changing YOUr PASSWOIT.........ccuuuiiiiiiiiieee e st e et e e e e e e s s e e e e e e e e eeennnnn e e e eaeeees 112
Y000 01T o L o P 113
FUMNEr REAGING. ... ettt e e e e e e e e e e e e e e e e 113
J0 — PrOCESSES...cceeeeeeusssssssssssssssnsssssssssssnssssnsssssssssssmmnssssssssssssssssmnnssssnsssssssnnes 114
HOW @ PrOCESS WOIKS.....iiiieiiiie ettt ettt e e e et eeeeeeees 114
VIBWING PrOCESSES.eieiiiiiiieeee ittt e et e e e e e e e s e e e e e aaee s s s e ssnnntsa e e e eeeeeeensnnnnnn s 115
Viewing Processes Dynamically With tOP..........coooiiiiiiiiii e 118
CONLrOIlING PrOCESSES. ... et e e e e ettt e e e e e e s s e st eeeeaeeeeeeeeatnnn s e s eeeaaeeeenes 120
INEEITUPLING @ PrOCESS.eeiiiiii ittt ettt e et e e e e e e e eeeeeeeeas 121
Putting a Process in the Background..............ccccoeeiiiiiiiiiiiiiiee e 122
Returning a Process to the FOreground...........ccccceeeeiiiicciiiiiiiieiee e 123
Stopping (Pausing) @ PrOCESS.coiiiiiiei ittt 123
Changing ProCeSS PriOMILY.......uuuiiiiiie it e e e e e e e e e e e 124

S 1o = | PR 125
Sending Signals to Processes With Kill..............cooooiii e 126
Making a Process Hangup Proof............ceiviiiiiiiiiiiiie e 129
Sending Signals to Multiple Processes with Killall..............ccccooooiiiiiiiii, 129

Shutting DOWN the SYSEEIM......cceiiiiiieeie e e e e e e e e e e e e s e e e eeeeeannes 130

More Process-Related COMMEANTS.iiiereeeeeeee ettt e e e e e a e e eenaeens 130

SUMIMING UP. ittt ekttt e e et e e s e bbb et e e s e abe e e e e e annnaa 131
Part 2 — Configuration and the Environment..............ccccovreevnnnes 133
11 — TRE ENVIFONMENT...eeeeeeeeeeereeennennnennnennnnsnsunnsssnnssssusssssssnnssssssnnnnnnssssssnnes 134
What is Stored in the ENVIrONMEeNt?..........eiiiiiiii e 134
Examining The ENVIFONMENT.........ooiiiiiiii et ee e ee e 134
Some Interesting VariabIes...........oovv oo 136
How Is The Environment Established?............ooo e 137
What's in @ Startup FIlE2.......ueeeiiii et a e eeeees 139
Exploring How Child Processes Inherit Their Environments..........ccccccoeevecccceenenn. 140
Launching a Program with a Temporary Environment............cccooccuvvvviviviieieneennnnee. 142
Modifying the ENVIFONMENT.........coiiiiiiiiiee e e e e e e e e e e e e e e e e 143
Which Files Should We Modify?..........coooiiiiiiiiiieie e 143
=5 = {10] € 7P PPRPRPPPPPPRRIN 143

U LS o = W = (A = [o] P 144
Why Comments Are IMPOMaNT...........ccuiiieeiiiieee e 147
ACHIVALING OUI CRANGES. ...ciiii i e ittt e e e e e e e e s s s e rereeeeeeeeeeeaanes 148

A Little MOre @bOUL SOUICE.ccciiiiiiiieiiiiiie ettt a e e e 148

IS0] 1 011 o 6 o PP 148
T 1T g =T Vo [T o 149
12 - A Gentle Introduction tO Vi(M).......ccccemmemmemmssssssssmmmmmsmmmmmssssssssssssssssnnns 150
Why We ShoUld LEAIN Vi......cceiiiiiiieeee ettt e e e e e 150
A Little BaCKGrOUNG.......coi ettt e e e e e e e e eeeeeees 151
Starting and STOPPING Vi..ueeeeeeeeeeeiiiiieiiiiiies e e e e e e e e e s s s s e e e e e e eeeenanes 151
Compatibility MOE.........oiiiiiiiiie e 152
L] o TN o o =2 SRR 153
ENtering INSErt MOUE.uuiiiiiiiieee et e e e e e e s e e e e e e e eeaaaa s 154
SAVING OUI WOTK.....ooiiii et 154
MOVING the CUrSOr AFOUNG.........uuiiiiiiiiiie e e e e e e e e e e s e e e e e e e e e e e e s snnarereneeeeees 155
2= LS (o o 1 1 o PR OTPRRR 156
YN o] 01T 0 To 11T T = S SURREPPPRPPRRN 156

(@] 7=T T oo = U X 1TSS 157
DIBTING TEXL.....teeteeiitte ettt ettt et s b e e e nn e 158
Cutting, Copying, and Pasting TeXL........ccccuuiiiiiiee e 160

O [0 gV T 1= USSR 161
SearCh-and-ReEPIACE. ... e e e e e eaae 161
Searching Within @ LINe.........ocuuiiii it 161
Searching the ENtire File..........c.eeiiiiiiieeee e 162
Global Search-and-Replace..........ccuuuiiiiiiiiie e 162
Editing MUIIPIE FlES......uiiiiiiiiiee e 164
SWItChiNg BEIWEEN FlES.... ... e e e 165
Opening Additional Files for EitiNg.........cccooiuiiiiaaiiiiiee e 166
Copying Content from One File into ANOLNET..........oeviiiieeiiiiiice e 166
Inserting an Entire File int0 ANONET...........oveviiiiiiei e 167
SAVING OUI WOTK. ..ttt e e e e e e e e e e e e e e e e 168
BaASh DOES Vi TOO.....eeeiiieiiitiiie ettt ettt et e e e s sbbe e e e e s aabbeeaeeean 169

SUMMING U .ttt st e e s ettt e e e e st ae e e s eannee e e e s anbeeeaeaeeeeas 170

T LT g =T Vo [T T 170
13 — Customizing the Prompt..............cceeecvsismsmemmmmsssssssssssmssssssssssssssssssssnnnns 172
F N g T= 10 .Y = T 01] o SRR 172
Trying Some Alternative Prompt DESIGNS........uuviiiiiiieee e 174
AAING COlOT ittt e e st e e e et e e e 175
Terminal CONFUSION........coii e 176
MOVING thE CUISOI ... iiiiee e ettt ettt e e e e ettt e e s ettt e e e s aabee e e e e e nnnnnnnennes 178
SaVING the PrOMPL.. ... e e e e e e e s e e s s st rereeaaeeeeeeeennnes 179
SUMMING Uttt ettt e e sttt e e e e st b et e e s enbbe e e e s snbreeaaaaaeeas 180
T LT g L= To [T T 180
Part 3 - Common Tasks and Essential TOOIS......cccccouvrmrmnnirnnnnnns 181
14 — Package Management..........cccccusssssssssmmmmmmssssssssssssssssnssssssssssssssssnsnnsssns 182
PacKaging SYSIEIMS......ooiiiiieiii it e e e s s e e e e e e e e e e s asaa s e e e e eeees 182
How a Package SYStem WOTKS.........ccoii i e e 183
PaACKAGE FIlES. ... ittt a e 183
=T 0101571 (0] 1= SRR 183
D=7 oT=] oo (=] g Tod 1 PP 184
High and Low-level Package TOOIS.........cccuuiiiiiiiiiiee e 184
Common Package Management TASKS.........cuuiiveoiiiiiiciiiiiieieccee e 185
Finding a Package in @ REPOSITONY..........uviiiiiiiiiiieiiiie e 185
Installing a Package from a RepOSItOry.........ccvuviiiiiiiiee e 186
Installing a Package from a Package File...........ccccooeviiiiiiiiinie e 186
REMOVING @ PACKAQE.......cccoi ittt e e e e e e ee e s 187
Updating Packages from @ REPOSITOIY...........cieiiiiiiiiiiiiiiiie e 187
Upgrading a Package from a Package File...........ccccccvviieiiiiiiccieeeeee e 188
Listing INstalled PaCKages.........cccoii ittt 188
Determining Whether a Package is Installed..............ccccccoeiiiiniiiiii, 188
Displaying Information About an Installed Package............cccooecvvvivveeerevieeviiinnnnn. 189
Finding Which Package Installed a File...........ccoooiiiiiiiiiie e 189
Distribution-Independent Package FOrmats.............ooccvvvviiiiiiiieee e 190

51U] '] T o T J o PP RR 191
The Linux Software Installation Myth............cccooiiiiii e, 191
T T =T Vo [T T 192
Y (o T To L= 1 =T | . 193
Mounting and Unmounting Storage DEVICES..........uuueiiiiieeiiiiiiiiiiiieeeeee e e e eeeeenneeees 193
Viewing a List of Mounted File SYStemMS..........ccooiiiiiiiiiie e 195
Why Unmounting IS IMPOrtant..............eeeeiiieeeroiiiiiieieeccee e 198
Determining DeVICEe NAMES..........uuiiiiiiiiie e a e e 199
Creating New File SYSIEMS.........uiiiiiiiieii e 203
Manipulating Partitions with parted..............cccviieiiiiie e 203
Creating a New File System with mKfs..........ccccco i 207
Testing and Repairing File SYStEMS.........ooiiiiiiiiiiiieice e 209
WAL the FSCK ... e e e e e e e 210
Moving Data Directly to and from DeVICES.........cuvveiiiiiiiciiiiiiiiiiee e 210

vi

Creating CD-ROM IMAQJES.......uiii it iiiiiee e et eseee e s eetete e e s s s s s s e s e s asas s ennnes 211

Creating an Image Copy 0f @ CD-ROM..........uueiiiiiieeiiiiiiiireee e 211
Creating an Image From a Collection of Files..........cccocoiiiiiiiiis 211

A Program by Any Other NamMe.........oooeiiiiiiiiiiieeee e 212
WIitiNGg CD-ROM IMAJES.....uuviiiiieeee ettt e s e e e e e e e e e s s eeeaaaaaeeees 212
Mounting an ISO IMage Dir€CHY.........cooiiiiiiiiiiiieie e 212
Blanking a Rewritable CD-ROM...........cccuiiiiiiiiiee e 212
WIEING @N TMAGE. ... ottt e aaeaaas 213

BV =] 171 Lo T = - 213
51U] 0] 0T o 6 1 o TS EP PR 214
FUINEr REAAING. ...t ettt 214
16 — NEIWOIKING......cccuumeemnsemmsmnmmmnsmmsnsmnmsssnsnssnmnssssssnssssssssssssssssssssssnsssssssssssssns 216
Examining and Monitoring @& NETWOIK...........cuuueriiiiiiiiiiiiee e 217
11 o 217

LU= (o2 ST L0 10 (PPN 218

]« TP TSP OT P PPN 219
Transporting Files Over a NetWOIK.........ccccuiiiiiiiiiecce e 221
11 RSP 221
110 T =T £ (= 1o TS 223
CUM = Transfer @ URL......ocuviiiiiie et e e e e e e 224
wget - Non-interactive network downloader.............ccccvvieiiieeeeee e 224
Secure Communication with Remote HOSES...........cooiiiiiiiiiiiiie e 225
1] PO PP PP TP PP PP PPTP PP 225
TUNNElNG WIth SSH.... ..o 229

ST 0= 10T = 11 o TP TPUPPPPPPPIN 229
AN SSH Client for WINAOWS?.......cooiiiiiiieiiiiee et 231
SUMMING U .ttt ettt e e e s et bt e e e e sttt e e e eanbee e e e e snbeeeaaaeaeens 231
T LT g =T Vo [T T S 231
17 — Searching fOr FilEsS..........ccceuussssissssmmmmssssssssssssssssmmsssssssssssssssssssssssnnnss 232
locate — Find Files the EaSy WaAY.......ccouei it eeeeeeaees 232
Where Does the locate Database Come From?........ccccoceeiiiiiiiiii, 234

find — Find Files the Hard Wayccuuuiiiiiiieeee e 234
=S TP PP PRRUPPPPRPIN 235

L@ 01T - 1o £ TP PP TTTTT TR 237
Predefined ACHIONS.ooi et 240
User-Defined ACLIONS.ciiii ittt et e e e e anbbe e eeeees 242
IMProving EffICIENCYuuiiiiiiiiee e 243
D= L 1= TSRS UPPPPPRTR TSP 244
Dealing with Funny Filenames. ..o 244

A Return to the Playground..............eeeiiieeiiiiiiiiiieeee e e e e e e eeeees 245

(@7 0] 1 0] o 1= T PR 247
IS0]] 011 o 6 o PR 248
T 1T g =T Vo [T o 248
18 — Archiving and BaCKUP..........cceveuemmmmmmimsssssssssssnnssssmsssssssssssssssssssssssnssnnns 249
COMPIESSING FlIES....oeiiiiie et e e e e e e e e e e e s s e eannarrenaeees 249
[0 74 o TSP 250
071 017 252

vii

Don't Be Compressive COMPUISIVE..........ccuiiiiiiiiiiiiee e 253

N (ol TNV o T T 253
L2 | PP PPPPPPPPPRPRPIN 254
4| o TP TSP 259

Synchronizing Files and DIr€CIOMES.uuuiiiiiee e e e e e e e e e e aeaaanes 261
USINg rsync OVEr @ NETWOTK.........uuuiiiiiiiieeieiiiiiiiiiie ettt 264

Y001 01T o L o PP 265

FUNEr REAAING. ... ettt e e e e eeneeenees 265

19 — ReguIar EXPreSSiONS......ccuvssmeesmsmmmssssssssssssmsssssmsssssssssssmssssssmsssssssssssnnss 266
What are Regular EXPreSSIONS?.......uuiiii ittt eteee ettt e e eanaee e 266

[0 (=] o TP 266

Metacharacters and LItEralS.........c.oo i 269

THE ANY CRAIACTET ... uuuiiiiiiiie et e e e e e e s s e e e e e e e e e ee bbb aeeeas 269

F Y (o3 s [0] (= TR PPPPPPPPP 270

A Crossword Puzzle HEIPEr........cooo i 271

Bracket Expressions and Character ClasSes..........cccuvvveiiiiiieeieiiiisiiiieeeeeee e 271
NN [=T0 = L1 o PRSP 272
Traditional Character RANGES.ciiuiiiiiiiiiie ettt 272
POSIX CharacCter CIaSSES.cuiiiiiiiiieiiiiit e sttt e ettt e e e sabe e e eeeeeees 273

Reverting to Traditional Collation Order.............cccoovieiiiiiiiies e 276

POSIX Basic vs. Extended Regular EXPressions.........ccccvvvieiiieeeeeeie v e 277

O 151) PP 278

ALEINALION. ..ottt e ettt e e e e e et et e e e e e 278

(@10 E=1 011] { =] £ T OO PP PP PPPTPR 279
? - Match an Element Zero or ONe TIME.........uuuiiiiiiiiieeeiiiiiiiiiiiiiee e ee e e e eeeaeenns 279
* - Match an Element Zero or More TiMES.......cooiuuiiieiiiiieie et 280
+ - Match an Element One or MOre TIMES.......oovuuiiiaiiiiieiee s iieee e 281
{} - Match an Element a Specific Number of TIMeS............cccccvvrireriiieeeeeeiscniennnnn 281

Putting Regular EXpressions 10 WOrK............ooooiiiiiiiiieeeeee e 282
Validating a Phone List With grep ... 282
Finding Ugly Filenames With find............ccccceeoiiiiii e 284
Searching for Files With [0CAtE...........ccuuiiiiiii e 284
Searching for Text With 1€SS and ViM..........ccooriiiiiiiiiiiii e 285

SUMMING UP. ettt e ettt e e e e et b et e e s enbb e e e e s snbreeaaaeaeaas 286

T LT g L= To [T T 287

20 — TeXt PrOCESSING......ccceveeersisssesssnsnnns 288

APPHCALIONS OF TEXL...ei ittt e et e s 288
Do o 01 0411 o | £ PP TPPTPTR 289
WED PagES. ... i e a e e e e e 289
EMAIL .. e 289
PHINEEI OULPUL.....eeeie ettt e e ettt e e e e s bt e e e e e e e e e e e eeeeeeeeas 289
Program SOUICE COUE.........ociiiiiiiiiee e et e e e e e e e s e e e e e e e e e e s s e s 289

Revisiting SOmMe Old FriendS..........coocciiiiiiiiieee et e e e e 290
[oF= | PP 290

MS-DOS TeXE VS. UNIX TEXL....eiiiiiiiiiiie ettt 291

510 1 F PP UPPTUPT 292
LU0 PO 299

] [Te] 1 g J= T To I 5 Tox | o USSP 301

viii

D eq o =Yg o 11 o T F= 1 LT PPP 304

0= L] (T PP 305
(o] PP 306

€2 Lo PP PP PPTTPPPPRPPPPPPPPIN 309
LS PSPPI 309
(@] 10T 0= 1T o T = PP 310
(o701 1] 0 R PP PP 310

L0 11 P PP P PP PPN 311
21 (] USRS 314
EdItiNg ON the FIY....ooo i 315
L TP PPRTTTPTRPPI 315
ROT13: The Not-So-Secret Decoder RiNg.........cccuvveeiiiiiiieeiiiiieee e 316

L= o [TP PPUPPTTPTPTPN 317
People Who Like sed AlISO LIKe........coiuuiiiiiiiiiic e 326

=] 01| SRR 326
Y001 01T o L o PP 330
FUMNEr REAMING. ittt e e e e e e ta e as 330
= W O (= [S TP PUT PP PPPTTOUPPR 331
21 — Formatting OULPUL..........ccemmmmmmmmmmmmmmmmmmmmmmsmmsmmmssmmsmmmssmmssssssmmmsmmssmmssmmssnnns 332
Simple FOrmatting TOOIS.......cuiiieeiiii e e e e e e e e e e e eeeeanees 332
NE— NUMDBDEE LINES.....eeiiiiiie ettt 332
fold — Wrap Each Line to a Specified Length..........ccccvveeieiiiieiiiicii e 336
fmt — A SIMpPle TeXt FOMMALLEN........cciveeiii e e e e e e aeaees 337
pr— Format TeXt fOr PriNtiNg.........cooiiiiiiiiiiiieeiee e 340
printf — Format and Print Data.............cueeiiiieeiiiiiiiiiiieeeee e 341
Document FOrmMatting SYSTEMS......ccoiiuiiiiiaiiiiiiee ettt e et e e e ee e e e s s 345
0 0) P EEESRSRPN 346

51U] 0] 0T o 6 o P PPPRR 352
FUINEr REAAING.etiiie ettt 352
22 — PriNUNQ......cuuuuusssnnnns 354
A Brief HiStOry Of PriNtiNg........oooo it 354
Printing in the DM TIMES.....uuuiiiiiee et e e e e e e e e eeeeaaeeas 354
Character-Based PriNtErS..........cooi ittt 355
(1T o] g Tor= 1IN o o101 (T 6T 356
Printing WIth LINUX.....eeeiiee ettt e e e e e e e e e e e ar b eaaee e 357
Preparing Files fOr PrinNtiNg.........cooreeieoiiiee et 357
pr — Convert Text Files for Printing...........ceeeoii i 357
Sending a Print JOD t0 @ PrINEr.........ooiiiiiiii e 359
Ipr — Print Files (Berkeley StYIE)........uuuueiiiiiee i 359

Ip — Print Files (SyStem V StYl€)......c..ueiiiiiiiiie e 360
ANOTNEE OPLION: B2PS. . eiiiiiieeeeii ettt e e e e e e e r e e e e e e e s s s e s ssarrrerreeeaaeeessaannnens 361
Monitoring and Controlling Print JODBS..........cccuviiiiiii 364
Ipstat — Display Print SyStemM StatUS.........ccoooviiiiiiiiiiiiieeieee e 364
Ipg — Display Printer QUEUE StatUS...........cccuvviiiiiiiiee e e et r e e e e e 365
Iprm / cancel — Cancel Print JODS..........oooiiiiiiiii e 366
YU 21T o L o PSP 366
T 1T gl =T Vo [T o 366

ix

23 — CoOMPIliNG Programs..........ccossseeeemmsmmmssssssssssssssssmmmsssssssssssssssssmmsssmssssnnes 367

LAY F= U T O 0] o1 o 11TV 367
Are All Programs COmMPIlEA?........oii it e e 368
(@] 0] o1 TTaTe Jr= WO = TeTo | = o 1SR 369
Obtaining the SOUrCe COdE..........ccuiiiiiiiiiiee e 369
EXamining the SOUICE TIE........uiiiiiiiiiiee ittt 371
BUIldING the Program.............iee e s 373
INStalling the Program...........coiiiiiiiee et e e 377
YU 1T o L o PP 378
FUNEr REAAING. ... ittt ettt e aenebenee 378
Part 4 — Writing Shell SCHPLS......ccciimmmmminnmimmsimrr . 379
24 — Writing YOUr FirSt SCriPt.......eeeuemmmiiissssssssemnnssssssssssssssssssssssssmssmsmsssnnnns 380
What are Shell SCPLS?......uiii i et e et e e 380
HOW t0 WIite @ Shell SCHIPL.......eeiiiiiiiee e 380
SCHPL FIlE FOIMMAL.....iii i e e e e e e e e e e e e s s s e e e e e e e e e e eaanes 381
EXECULabIE PeIMISSIONS.uuiiiiiiiiiiiii i 382
Yol] o T[S o Tox o o SRR 382
[€ToTo ol WoTor=14[o] g Fo3l (o] g o 1] o €T SRR 384

MoOre FOrmMatting TrICKS......iioeeeiiiiiieii e e e e e s e e e e e e e e e s s e e e e eeeeees 384
o] g e @] o] 1 0T I\ F= T 41T PRSP 384
Indentation and Line-CoNtiNUALION..........cuuuuiiiiiiieeee et e e e e e eeeees 384
Configuring vim For Script WItING.......cccvvvviiiiieee e 385
SUMMING U .ttt s et e e e s ettt e e e e st ae e e e ennee e e e s anreeeaeaeeeens 386
T LT g =T Vo [T T 386
25 — Starting @ PrOJECT.........cceeuuuissiiiiiissnnnsessssssssssssnsssssssssssssssssssnsssssssssssssnnns 387
First Stage: MiniMal DOCUMENT...........uuuiiiiiiiieeie it e e e e e e e e e e 387
Second Stage: Adding a Little Data............cccccvviiiiiiiieee e 389
Variables and CONSTANTS.ooiiiiiiiiiiieie e e e e e e e e e eeas 390
Assigning Values to Variables and Constants................occccvviiiiiiiie e, 393

HEIE DOCUMENTS. ...ttt e e e e e e e et et e e e e et reeeeeaaaeaees 395
YU 01T o L o PP 398
FUNEr REAAING. ... ettt e e eaeaeabnebeeee 398
26 — TOP-DOWN DE@SIQN....cceeiiiisssisssssnnnnnssssssssssssssssnsssssmmsssssssssssssssssmmsssssnnnnnes 399
SNEI FUNCHONS. ...cciii ettt e e e e et e e e e e e e e aaaeaas 400

[0 Tor= LY = 1= o] 1= PPN 403
Shell Functions and RedirECLION.coiiuiiiiiiiiii e 404
Keep SCHPLS RUNNMING.iiiiieiiiiiie ettt ettt e et e e e e s st e e e e snraeeeeeannns 406
Shell Functions In Your .bashrc File.........c.oooiiiie e 409
SUMMING UP. ettt e ettt e e e e et b et e e s enbb e e e e s snbreeaaaeaeaas 409
T LT g L= To [T T 409
27 - Flow Control: Branching With if................cceeveeemveississssssssssssssssssssssnnnns 410
] SRR 410

LT PP 413
FlE EXPIESSIONS. ..ottt ettt ettt et e e e sttt e e e e e bbb eee e e et e e eeeeeeeeeeas 413
SHING EXPrESSIONS. ... ieeiiiiiiiee e et e e e e e e e s s e e e e e eeeeeeessannnerereeeeeeeees 416
INEEOET EXPIrESSIONS. ... eteiie ettt ettt ettt ettt e et e e e e ettt e e e s nbe e e e e s aabbeeeeeeees 417

A More Modern VErsion Of tEST. ...t 419

(@) IR BI=TS o T T=To I (o] g 1] (=Te = =R RRRR 420

COMDBINING EXPIrESSIONS.eiiiieiiiiiie ettt e e ettt e ettt e e e sttt e e e e anbee e e e ssnneeeeaeaanseeeeesanns 421

Portability is the Hobgoblin of Little MindS.............cooeeciiiiiieiieeee e 424

Control Operators: Another Way to BrancCh...........ccccccooiiiiiiiiiiiiee e 424

SUMMING UP.ctieiieiiii et e et e s st e e s e e e e e e s 425

T T =T Vo [T T 426

28 — Reading Keyboard INPUL............ccoccvvvsmmmmmmmmimmsssssssssnssssssmssssssssssssssssnnns 427

read — Read Values from Standard INPUL............ooooiiiiiiiiiiiiiee e 428
(@7 0] 1 0] o 1= T ST 430
| TP ST P PP P PP PP PPPPPPPPPP 432

YOU Can't PIPE rAU.........uuviiiiiiiiee et 434

Validating INPUL. ..ot s e 435

LT 01U L TP 436

SUMMING Uittt et e e s ettt e e e e st ae e e e eantee e e e s anbeeeaeeeeeeas 438
EXIrA CrEAIL.eeeeeieieeee et et e et 438

FUINEr REAAING. ...ttt e e e s aenebeeee 438

29 - Flow Control: Looping with while / UNil............ceeeeevvvviisvieennnnnnnnnnnnns 440

1o o 1T RSP S 440
WIIIE. .. e aa———————— 441
break and CONLINUE. ... 443
L= L=t SO S R PPRPPPPPPIN 445
UNIEIL ettt et e e st e e b e e e e 448

Reading Files With LOOPS.cuiiiiiiiiiee ittt 449

IS0] 1 011 o 6 o PP 450

T 1T g =T Vo [T o 450

ST IR o 17 o (== g Lo To X 1] o RS 451

0371 €= Lo (ol = PP 451
Y TESE] [0 To T @ T8 o) = RPN 452
Missing or Unexpected TOKENS...........iiicueiiiiiiieiee e e e e et e e e e e e e s eneeeeeeeee s 453
Unanticipated EXPanSIONS.coiuuiiiaiiiiiiie sttt eeeeeees 453

[Yo [or= 1IN =1 0] =TS 455

Defensive ProgrammMiNg...........cciiii i e e e e e e s s r e e e e e e e e s aaaaaaaaees 456
set -e, set -U, and Set -0 PIPEFAIL.........coooiiiiiee e 457
ShellCheck iS YOUr FIENT.......ccooiiiiiiiiiiii et 458
Watch Out fOr FIlENAMES.cooiiiiiie e 458

Portable FIlENamMES. ... 459
VErfYING INPUL. ... e e e e e e e e s s e e e e e e e e eeeaenees 459
Design is @ FUNCHON Of TIME.......coiiiiiiiiii e 460

215 1 o 460
TESE CASES. .ttt e e e e e e e e e e e e e e e e e aee 461

9 7= 18 o o o 461

Xi

Finding the Problem Area...........oocueiii e 462

I = (X T PRSPPI 462
Examining Values DUring EXECULION..........c.uuiiiiiiiiiiie ettt 465

IS0] 1 011 o 6 o R 465
T 1T g =T Vo [T o 465
31 - Flow Control: Branching with CaSe..........ccccuuvvvviissssmmmnmssinmnsssssssssssnns 467
(02 LS < OO PUPTTTTR 467
= L] 1 1 PPN 469
Performing MUItIPle ACHIONS........ccoii i s 471
SUMMING Uttt ettt e e sttt e e e e st b et e e s enbbe e e e s snbreeaaaaaeeas 473
T LT g L= To [T T 473
32 — PoSitional PArameters........ccoussueermmmmmmssssssssssssnsssssssssssssssssmssssssssssssssssss 474
Accessing the ComMMANG LINE........ooiiiiii e e e e e e e e e 474
Determining the Number of ArguMENtS.........ccuiiiiiiiiiii e 475
shift — Getting AcCess to Many ArgUMENTS..........cceeviuiiiieeiiiiieeeeeeiieee e ereee e e e 476
0] 0] (3N o][oF= 4T o L 478
Using Positional Parameters with Shell FUNCtions...........cccociiiiiiiiiis 478
Handling Positional Parameters €n MaSSE..........c.uuuueeeiiieeeiiiiiiciieeee e 479
A More Complete APPLICALION...........uuuiiiiiieeee e 482
The getOPLS OPLION. ..cciiiiiii ittt e e e e e e e e e s e e e e aaeeaenne 483
INEEIACTIVE MOUE......eeiiie ittt e e e e e e e eeeees 485
1 LI 11 1 11| S TP 486
YU 01T o L o PSP 487
T 1T gl =T Vo [T o 490
33 - Flow Control: LoOPiNg With fOr..........cccccovvsmmmmmmmiiinsssissssssnesssssssssssssnas 491
for: Traditional Shell FOrM.......o.uuii e 491
(T8 SRR 494

(0] S O 1= T To U = To = o] o o 1 494
SUMMING U .ttt e e e st bt e e e e st e e e e eanbee e e e e snbreaaaeaaeens 496
T 1T g =T Vo [T T S 497
34 — Strings and NUMDBEIS.........eeeevisiiissimmmemmsssnnnns 498
Parameter EXPANSION.ccuiiii ittt e e e e e e e st r e e e e e e e e aana e e e e e e 498
BaSIC ParamMeterS.eeiiiiiiiiiiie ettt b et e e e e ee e 498
Expansions to Manage Empty Variables..........ccccoooiiiiiiiiiiiin 499
Expansions That Return Variable Names...........ccveeeiiiiiiiciiieeiiiie s e e 501
SING OPEIALIONS. ... eeieiee ettt et e e e e e ettt e e s snbae e e e s anbeeeaeeannn 501
CASE CONVEISION.ittieie ettt ettt ettt e e s sttt e e e et b et e e e s bbbt e e s s bbr e e e e e e nenannees 505
Arithmetic Evaluation and EXPanSion..............eceieeeeeeiiiiiiiiiiiiiiecccee e e e 507
NUMDBDEE BASES.......ccoiiiiiiieeeeeeeee st e e e e e e ettt a e e e eaanns 507

O aT g @ 01T = 10 £ TR 508
SIMPIE AMTNMELIC.eeiiii e e e e s e 508
YT T | 1= o | SRR 509
2 A O] o 1T = Vi o] o T PP PP 512

0 o o PSUR 513

bc — An Arbitrary Precision Calculator Language.............oocccvvvvieieeeeeee e 516

xii

LU] oo TN o oSSR 516

AN EXAMPIE SCHPL..ciiiiiieei i e e e s s e e e e e e e e e e e s e e e aeeeenene 517
SUMMING UP. ettt e ettt e e e e st bt e e e s enbb e e e e s snbeeeaeaeaeeas 518
EXITA CFEAIT.eeee ettt et e e e e b e e e n b e e e 519
T 1T g =T Vo [T o 519

B L g T 520
QAT T L I A £ =NV 520
(O LT L1 g T = L N4 = Y2 520
ASSIGNING ValIUES 10 @N AITAY....cciiiiieeeei ittt e e e e e e s e s esseererereeeeeee e s s e snnnnerenneeeeeeeees 521
AcCeSSING Array EIEMENTS........uiiiiiiiiiie e 522
F N = |V O o T= = o 524

Outputting the Entire Contents of an Array........cccceeevveeeeeeiiicccciiieeeeeee e 524

Determining the Number of Array EIements...........ueeiiiiiiiiiiiciiiiieeeeeeee e 525

Finding the Subscripts Used by an Array ... iiiiiccciiiiieieeeeee e 525

Assigning Array Elements With read ..o 526

Adding Elements to the End Of an ArTay..........uueeeeeieeeeeiiiiiciiiieeeeecin e e e e eeeeeeens 526

Reading @ File INt0 @N AITAY.........cooiiiiiiiieeeee e 526

SHCING @N ATTAY ...ttt e e e e e e bbb e e s e e e e s 528

Yo T]l =T a1 AN = 2P 529

D=1 1= o =T AN 4 - 2SS 530
ASSOCIALIVE ATTAYS. . .ueuitieieeieeeeeeeseeaseetttteeeeeeeaaeesssaaaneraaaerreeeeaaeesssaasssereeneesnsnnnnanseeeres 531

Using Associative Arrays to Simulate Multiple DIimensions...............cccccvvvveeeeeeenn.. 532
IS0] 1 011 o 6 o SRR 534
T 1T g =T Vo [T o 534

36 — EXOUICA...ccssrsssnnnnns 535
Group Commands and SUDSHEIIS...........ocooiiiiii e e e 535
Process SUDSHIULION.........uiiiiiiiii e e e e aee e e 540
Constructing Commands With @Val..............oocciiiiiiiiiee e 542

Be Careful With @Val............cueiiiii e 544

AWOIAIE HEIPET ...t e e e e e e e e et s e e e e e aeeeeeees 544

L= 1 LTSS SRRRRRRR 548
TEMPOTAIY FlES....cciiiiiii i 551
ASYNCAIONOUS EXECULION......cci ittt e e e et e e e e e e e s s r e e e e e e e e e e a e e e eaaees 552

LTz V| ST PSRPPPPPPIN 552
NP2 T =0 I T 0T 554

Setting Up @ NamMeEd PiPE......uuueiiiiiiie ettt 554

USING NAMEA PIPES. ... ittt e e 555
YU 1T o L o PSP 555
(U1 =T g = L= Vo [T o TR 555

Lo L= N 557

(050] (o] ¢ 1 Lo o TSN 570

xiil

Xiv

For Karen

XV

Introduction

I want to tell you a story.

No, not the story of how, in 1991, Linus Torvalds wrote the first version of the Linux ker-
nel. You can read that story in lots of Linux books. Nor am I going to tell you the story of
how, some years earlier, Richard Stallman began the GNU Project to create a free Unix-
like operating system. That's an important story too, but most other Linux books have that
one, as well.

No, I want to tell you the story of how to take back control of your computer.

When I began working with computers as a college student in the late 1970s, there was a
revolution going on. The invention of the microprocessor had made it possible for ordi-
nary people like you and me to actually own a computer. It's hard for many people today
to imagine what the world was like when only big business and big government ran all
the computers. Let's just say, you couldn't get much done.

Today, the world is very different. Computers are everywhere, from tiny wristwatches to
giant data centers to everything in between. In addition to ubiquitous computers, we also
have a ubiquitous network connecting them together. This has created a wondrous new
age of personal empowerment and creative freedom, but over the last couple of decades
something else has been happening. A few giant corporations have been imposing their
control over most of the world's computers and deciding what you can and cannot do
with them. Fortunately, people from all over the world are doing something about it. They
are fighting to maintain control of their computers by writing their own software. They
are building Linux.

Many people speak of “freedom” with regard to Linux, but I don't think most people
know what this freedom really means. Freedom is the power to decide what your com-
puter does, and the only way to have this freedom is to know what your computer is do-
ing. Freedom is a computer that is without secrets, one where everything can be known if
you care enough to find out.

Why Use the Command Line?

Have you ever noticed in the movies when the “super hacker,”—you know, the guy who
can break into the ultra-secure military computer in less than 30 seconds—sits down at
the computer, he never touches a mouse? It's because filmmakers realize that we, as hu-
man beings, instinctively know the only way to really get anything done on a computer is

XVi

by typing on a keyboard!

Most computer users today are familiar only with the graphical user interface (GUI) and
have been taught by vendors and pundits that the command line interface (CLI) is a terri-
fying thing of the past. This is unfortunate, because a good command line interface is a
marvelously expressive way of communicating with a computer in much the same way
the written word is for human beings. It's been said that “graphical user interfaces make
easy tasks easy, while command line interfaces make difficult tasks possible” and this is
still very true today.

Since Linux is modeled after the Unix family of operating systems, it shares the same
rich heritage of command line tools as Unix. Unix came into prominence during the early
1980s (although it was first developed a decade earlier), before the widespread adoption
of the graphical user interface and, as a result, developed an extensive command line in-
terface instead. In fact, one of the strongest reasons early adopters of Linux chose it over,
say, Windows NT was the powerful command line interface that made the “difficult tasks
possible.”

What This Book Is About

This book is a broad overview of “living” on the Linux command line. Unlike some
books that concentrate on just a single program, such as the shell program, bash, this
book will try to convey how to get along with the command line interface in a larger
sense. How does it all work? What can it do? What's the best way to use it?

This is not a book about Linux system administration. While any serious discussion of
the command line will invariably lead to system administration topics, this book touches
on only a few administration issues. It will, however, prepare the reader for additional
study by providing a solid foundation in the use of the command line, an essential tool for
any serious system administration task.

This book is very Linux-centric. Many other books try to broaden their appeal by in-
cluding other platforms such as generic Unix and macOS. In doing so, they “water down”
their content to feature only general topics. This book, on the other hand, only covers
contemporary Linux distributions. Ninety-five percent of the content is useful for users of
other Unix-like systems, but this book is highly targeted at the modern Linux command
line user.

Who Should Read This Book

This book is for new Linux users who have migrated from other platforms. Most likely
you are a “power user” of some version of Microsoft Windows. Perhaps your boss has
told you to administer a Linux server, or you’re entering the exciting new world of single
board computers (SBC) such as the Raspberry Pi. You may just be a desktop user who is
tired of all the security problems and wants to give Linux a try. That's fine. All are wel-
come here.

XVii

That being said, there is no shortcut to Linux enlightenment. Learning the command line
is challenging and takes real effort. It's not that it's so hard, but rather it's so vast. The av-
erage Linux system has literally thousands of programs you can employ on the command
line. Consider yourself warned; learning the command line is not a casual endeavor.

On the other hand, learning the Linux command line is extremely rewarding. If you think
you're a “power user” now, just wait. You don't know what real power is—yet. And, un-
like many other computer skills, knowledge of the command line is long lasting. The
skills learned today will still be useful 10 years from now. The command line has sur-
vived the test of time.

It is also assumed that you have no programming experience, but don’t worry, we'll start
you down that path as well.

What's in This Book

This material is presented in a carefully chosen sequence, much like a tutor sitting next to
you guiding you along. Many authors treat this material in a “systematic” fashion, ex-
haustively covering each topic in order. This makes sense from a writer’s perspective, but
can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which is different from
the Windows way of thinking. Along the way, we'll go on a few side trips to help you un-
derstand why certain things work the way they do and how they got that way. Linux is
not just a piece of software; it's also a small part of the larger Unix culture, which has its
own language and history. I might throw in a rant or two, as well.

This book is divided into four parts, each covering some aspect of the command line ex-
perience:

e Part 1 — Learning The Shell starts our exploration of the basic language of the
command line including such things as the structure of commands, file system
navigation, command line editing, and finding help and documentation for com-
mands.

e Part 2 — Configuration And The Environment covers editing configuration
files that control the computer's operation from the command line.

e Part 3 - Common Tasks And Essential Tools explores many of the ordinary
tasks that are commonly performed from the command line. Unix-like operating
systems, such as Linux, contain many “classic” command line programs that are
used to perform powerful operations on data.

e Part 4 — Writing Shell Scripts introduces shell programming, an admittedly
rudimentary, but easy to learn, technique for automating many common comput-
ing tasks. By learning shell programming, you will become familiar with concepts
that can be applied to many other programming languages.

Xviii

How To Read This Book

Start at the beginning of the book and follow it to the end. It isn’t written as a reference
work, it's really more like a story with a beginning, middle, and end.

Prerequisites

To use this book, all you will need is a working Linux installation. You can get this in one
of two ways:

1. Install Linux on a (not so new) computer. It doesn't matter which distribution
you choose, though most people today start out with either Ubuntu, Fedora, or
OpenSUSE. If in doubt, try Ubuntu first. Installing a modern Linux distribution
can be ridiculously easy or ridiculously difficult depending on your hardware. I
suggest a desktop computer that is a couple of years old and has at least 2 GB of
RAM and 6 GB of free hard disk space. Avoid laptops and wireless networks if at
all possible, as these are often more difficult to get working.

2. Use a “Live CD” or USB flash drive. One of the cool things you can do with
many Linux distributions is run them directly from a CD-ROM or USB flash
drive without installing them at all. Just go into your BIOS setup and set your
computer to boot from a CD-ROM drive or USB device, and reboot. Using this
method is a great way to test a computer for Linux compatibility prior to installa-
tion. The disadvantage is that it may be very slow compared to having Linux in-
stalled on your hard drive. Both Ubuntu and Fedora (among others) have live ver-
sions.

Regardless of how you install Linux, you will need to have occasional superuser (i.e., ad-
ministrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along with your own com-
puter. Most of the material in this book is “hands on,” so sit down and get typing!

Why | Don't Call It “GNUILinux”

In some quarters, it's politically correct to call the Linux operating system the
“GNU/Linux operating system.” The problem with “Linux” is that there is no
completely correct way to name it because it was written by many different peo-
ple in a vast, distributed development effort. Technically speaking, Linux is the
name of the operating system's kernel, nothing more. The kernel is very important
of course, since it makes the operating system go, but it's not enough to form a
complete operating system.

Enter Richard Stallman, the genius-philosopher who founded the Free Software
movement, started the Free Software Foundation, formed the GNU Project, wrote

Xix

the first version of the GNU C Compiler (gcc), created the GNU General Public
License (the GPL), etc., etc., etc. He insists that you call it “GNU/Linux” to prop-
erly reflect the contributions of the GNU Project. While the GNU Project predates
the Linux kernel, and the project's contributions are extremely deserving of recog-
nition, placing them in the name is unfair to everyone else who made significant
contributions. Besides, I think “Linux/GNU” would be more technically accurate
since the kernel boots first and everything else runs on top of it.

In popular usage, “Linux” refers to the kernel and all the other free and open
source software found in the typical Linux distribution, that is, the entire Linux
ecosystem, not just the GNU components. The operating system marketplace
seems to prefer one-word names such as DOS, Windows, macOS, Solaris, Irix,
and AIX. I have chosen to use the popular format. If, however, you prefer to use
“GNU/Linux” instead, please perform a mental search-and-replace while reading
this book. I won't mind.

What's New in the Sixth Internet Edition

While he shell itself only has major version releases every ten years or so, hardware and
tools constantly evolve. This edition of The Linux Command Line has been again mod-
ernized reflecting the change in the command line environment. There are numerous
small edits and corrections, new command coverage and accompanying example scripts.
All in all, nearly forty pages of new material. For a detailed list of changes, see the re-
lease notes available at LinuxCommand.org. Also new with this edition is a collection of
example scripts from the book. This too can be downloaded at LinuxCommand.org.

Acknowledgments
I want to thank the following people, who helped make this book possible:

Jenny Watson, Acquisitions Editor at Wiley Publishing who originally suggested that I
write a shell scripting book.

John C. Dvorak, noted columnist and pundit. In an episode of his video podcast, “Cranky
Geeks,” Mr. Dvorak described the process of writing: “Hell. Write 200 words a day and
in a year, you have a novel.” This advice led me to write a page a day until I had a book.

Dmitri Popov wrote an article in Free Software Magazine titled, “Creating a Book Tem-
plate with Writer,” which inspired me to use OpenOffice.org Writer (and later,
LibreOffice Writer) for composing the text. As it turned out, it worked wonderfully.

Mark Polesky performed an extraordinary review and test of the text.

Jesse Becker, Tomasz Chrzczonowicz, Michael Levin, and Spence Miner also tested and
reviewed portions of the text.

XX

Karen M. Shotts contributed a lot of hours, polishing my so-called English by editing the
manuscript.

Sixth Internet Edition

Special thanks go out to the following individuals who provided valuable feedback incor-
porated into the Sixth Internet Edition: Ala'a Ali, Mikey Barboza, Emanuele Bernardi,
Andreas Bjgrnestad, Richard Cooke, Ethan Dowlatshah, Marc Evans, Ryan Flynn, Janro-
dion, Robert Kennington, Klaus M. Kérmendi, Vladimir Milovanovi¢, Sea Monkey, Tim
Nelson, Oktay-Akin Okutan, Nick Owens, Michael Parrish, Patrick, Esra Purba, Amir
Razgandi, Pat Roche, Avid Seeker, Pooya Taherkhani, Carl Westman, and John Wiersba.

Previous Editions

Special thanks go out to the following individuals who provided valuable feedback incor-
porated into the previous editions: Adrian Arpidez, Jesse Becker, Hu Bo, Steve Bragg,
John Burns, Heriberto Cantd, Enzo Cardinal, Paolo Casati, Tomasz Chrzczonowicz, Lixin
Duan, Joshua Escamilla, Bruce Fowler, Devin Harper, Jgrgen Heitmann, Jonathan Jones,
Sunil Joshi, Ma Jun, Eric Kammerer, Seth King, Chris Knight, Jaroslaw Kolosowski, Jim
Kovacs, Michael Levin, Bartlomiej Majka, Bashar Maree, Frank McTipps, Mike O'Don-
nell, Justin Page, Parviz Rasoulipour, Waldo Ribeiro, Waldo Ribeiro, Waldo Ribeiro,
Nick Rose, Satej Kumar Sahu, Mikhail Sizov, Ben Slater, Pickles Spill, Gabriel Stutz-
man, Francesco Turco, Francesco Turco, Wolfram Volpi, Boyang Wang, Valter Wierzba,
and Christian Wuethrich.

And lastly, many thanks to the readers of LinuxCommand.org, who have sent me so
many kind emails. Their encouragement gave me the idea that I was really on to some-
thing!

Your Feedback Is Needed!

This book is an ongoing project, like many open source software projects. If you find a
technical error, drop me a line at:

bshotts@users.sourceforge.net

Be sure to indicate the exact edition of the book you are reading. Your changes and sug-
gestions may get into future releases.

Further Reading

e Here are some Wikipedia articles about the famous people mentioned above:
http://en.wikipedia.org/wiki/Linus Torvalds

http://en.wikipedia.org/wiki/Richard Stallman

e The Free Software Foundation and the GNU Project:
http://en.wikipedia.org/wiki/Free Software Foundation

Xxi

http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Linux_Torvalds
http://en.wikipedia.org/wiki/Linux_Torvalds
mailto:bshotts@users.sourceforge.net
http://linuxcommand.org/

http://www.fsf.org
http://www.gnu.org

e Richard Stallman has written extensively on the “GNU/Linux” naming issue:
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/gnu-linux-faq.html#tools

xxii

http://www.gnu.org/gnu/gnu-linux-faq.html#tools
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/
http://www.fsf.org/
http://www.fsf.org/
http://en.wikipedia.org/wiki/Free_Software_Foundation

Further Reading

Part 1 — Learning the Shell

1 — What Is the Shell?

1 - What Is the Shell?

When we speak of the command line, we are really referring to the shell. The shell is a
program that takes keyboard commands and passes them to the operating system to carry
out. Almost all Linux distributions supply a shell program from the GNU Project called
bash. The name “bash” is an acronym for “Bourne Again SHell”, a reference to the fact
bash is an enhanced replacement for sh, the original Unix shell program written by
Steve Bourne.

Terminal Emulators

When using a graphical user interface (GUI), we need another program called a terminal
emulator to interact with the shell. If we look through our desktop menus, we will proba-
bly find one. KDE uses konsole and GNOME uses gnome-terminal, though it's
likely called simply “terminal” on our menu. A number of other terminal emulators are
available for Linux, but they all basically do the same thing; give us access to the shell.
You will probably develop a preference for one or another terminal emulator based on the
number of bells and whistles it has.

Making Your First Keystrokes

So let's get started. Launch the terminal emulator! Once it comes up, we should see some-
thing like this:

[me@linuxbox ~]$%$

This is called a shell prompt and it will appear whenever the shell is ready to accept in-
put. While it may vary in appearance somewhat depending on the distribution, it will typ-
ically include your username@machinename, followed by the current working directory
(more about that in a little bit) and a dollar sign.

Note: If the last character of the prompt is a pound sign (“#”) rather than a dollar

Making Your First Keystrokes

sign, the terminal session has superuser privileges. This means either we are
logged in as the root user or we selected a terminal emulator that provides supe-
ruser (administrative) privileges.

Assuming things are good so far, let's try some typing. Enter some gibberish at the
prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Because this command makes no sense, the shell tells us so and give us another chance.

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History

If we press the up-arrow key, we will see that the previous command kaekfjaeifj
reappears after the prompt. This is called command history. Most Linux distributions re-
member the last 1000 commands by default. Press the down-arrow key and the previous
command disappears.

Cursor Movement

Recall the previous command by pressing the up-arrow key again. If we try the left and
right-arrow keys, we'll see how we can position the cursor anywhere on the command
line. This makes editing commands easy.

A Few Words About Mice and Focus

While the shell is all about the keyboard, you can also use a mouse with your ter-
minal emulator. A mechanism built into the X Window System (the underlying
engine that makes the GUI go) supports a quick copy and paste technique. If you
highlight some text by holding down the left mouse button and dragging the
mouse over it (or double clicking on a word), it is copied into a buffer maintained
by X. Pressing the middle mouse button will cause the text to be pasted at the cur-
sor location. Try it.

1 — What Is the Shell?

Note: Don't be tempted to use Ctrl-c and Ctr1-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before the release of
Microsoft Windows.

Your graphical desktop environment (most likely KDE or GNOME), in an effort
to behave like Windows, probably has its focus policy set to “click to focus.” This
means for a window to get focus (become active) you need to click on it. This is
contrary to the traditional X behavior of “focus follows mouse” which means that
a window gets focus just by passing the mouse over it. The window will not come
to the foreground until you click on it but it will be able to receive input. Setting
the focus policy to “focus follows mouse” will make the copy and paste technique
even more useful. Give it a try if you can (though some desktop environments no
longer support it). I think if you give it a chance you will prefer it. You will find
this setting in the configuration program for your window manager.

Try Some Simple Commands

Now that we have learned to enter text in our terminal emulator, let's try a few simple
commands. Let's begin with the date command, which displays the current time and
date.

[me@linuxbox ~]$ date
Thu Mar 8 15:09:41 EST 2025

Another handy command is uptime which displays how long the system has been run-
ning and the average number of processes running over various periods of time.

[me@linuxbox ~]1$ uptime

15:12:22 up 3 days, 23:40, 7 users, load average: 0.37, 0.37, 0.64

To see the current amount of free space on our disk drives, enter df.

[me@linuxbox ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home

Try Some Simple Commands

/dev/sdal 147764 17370 122765 13% /boot
tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free command.

[me@linuxbox ~]$ free

total used free shared buffers cached
Mem: 513712 503976 9736 (C] 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending a Terminal Session

We can end a terminal session by either closing the terminal emulator window, by enter-
ing the exit command at the shell prompt, or pressing Ctr 1-d.

[me@linuxbox ~]$ exit

The Console Behind the Curtain

Even if we have no terminal emulator running, several terminal sessions continue
to run behind the graphical desktop. We can access these sessions, called virtual
terminals or virtual consoles, by pressing Ctr 1-Alt-F1 through Ctr1-Alt-
F6 on most Linux distributions. When a session is accessed, it presents a login
prompt into which we can enter our username and password. To switch from one
virtual console to another, press Alt-F1 through Alt-F6. On most system we
can return to the graphical desktop by pressing ALt -F7.

Summing Up

This chapter marks the beginning of our journey into the Linux command line with an in-
troduction to the shell and a brief glimpse at the command line and a lesson on how to
start and end a terminal session. We also saw how to issue some simple commands and
perform a little light command line editing. That wasn't so scary was it?

In the next chapter, we'll learn a few more commands and wander around the Linux file

1 — What Is the Shell?

system.

Further Reading

e To learn more about Steve Bourne, father of the Bourne Shell, see this Wikipedia
article:
http://en.wikipedia.org/wiki/Steve Bourne

e This Wikipedia article is about Brian Fox, the original author of bash:
https://en.wikipedia.org/wiki/Brian Fox (computer programmer)

e Here is an article about the concept of shells in computing:
http://en.wikipedia.org/wiki/Shell (computing)

http://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Brian_Fox_(computer_programmer)
http://en.wikipedia.org/wiki/Steve_Bourne

2 — Navigation

2 — Navigation

The first thing we need to learn (besides how to type) is how to navigate the file system
on our Linux system. In this chapter we will introduce the following commands:

e pwd — Print name of current working directory
e cd — Change directory

e ls — List directory contents

Understanding the File System Tree

Like Windows, a Unix-like operating system such as Linux organizes its files in what is
called a hierarchical directory structure. This means they are organized in a tree-like pat-
tern of directories (sometimes called folders in other systems), which may contain files
and other directories. The first directory in the file system is called the root directory. The
root directory contains files and subdirectories, which contain more files and subdirecto-
ries and so on.

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are attached
(or more correctly, mounted) at various points on the tree according to the whims of the
system administrator, the person (or people) responsible for the maintenance of the sys-
tem.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

2 — Navigation

Imagine that the file system is a maze shaped like an upside-down tree and we are able to

P bin
Pl boot
P cdrom
P dev
P etc
vl home
[bshotts
P& karen
| lost+Found
Vlew me
b .cache
> .compiz
| .config

> .gconf

Figure 1: file system tree as shown by a
graphical file manager

stand in the middle of it. At any given time, we are inside a single directory and we can
see the files contained in the directory and the pathway to the directory above us (called
the parent directory) and any subdirectories below us. The directory we are standing in is
called the current working directory. To display the current working directory, we use the
pwd (print working directory) command.

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session) our current
working directory is set to our home directory. Each user account is given its own home
directory and it is the only place a regular user is allowed to write files.

Listing the Contents of a Directory

To list the files and directories in the current working directory, we use the 1S command.

[me@linuxbox ~]$ 1s

Listing the Contents of a Directory

Desktop Documents Music Pictures Public Templates Videos

Actually, we can use the 1s command to list the contents of any directory, not just the
current working directory, and there are many other fun things it can do as well. We'll
spend more time with 1S in the next chapter.

Changing the Current Working Directory

To change our working directory (where we are standing in our tree-shaped maze) we use
the cd command. To do this, type cd followed by the pathname of the desired working
directory. A pathname is the route we take along the branches of the tree to get to the di-
rectory we want. We can specify pathnames in one of two different ways; as absolute
pathnames or as relative pathnames. Let's look at absolute pathnames first.

Absolute Pathnames

An absolute pathname begins with the root directory and follows the tree branch by
branch until the path to the desired directory or file is completed. For example, there is a
directory on our system in which most of our system's programs are installed. The direc-
tory’s pathname is /usr/bin. This means from the root directory (represented by the
leading slash in the pathname) there is a directory called "usr" which contains a directory
called "bin".

[me@linuxbox ~]%$ cd /usr/bin
[me@linuxbox bin]$ pwd

/usr/bin

[me@linuxbox bin]$ 1s

...Listing of many, many files ...

Now we can see that we have changed the current working directory to /usr/bin and
that it is full of files. Notice how the shell prompt has changed? As a convenience, it is
usually set up to automatically display the name of the working directory.

Relative Pathnames

Where an absolute pathname starts from the root directory and leads to its destination, a
relative pathname starts from the working directory. To do this, it uses a couple of special
notations to represent relative positions in the file system tree. These special notations are
"." (dot) and ".." (dot dot).

The "." notation refers to the working directory and the ".." notation refers to the working

2 — Navigation

directory's parent directory. Here is how it works. Let's change the working directory to
/usr/bin again.

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Now let's say that we wanted to change the working directory to the parent of /usr/
bin which is /usr. We could do that two different ways, either using an absolute path-
name:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

or, using a relative pathname.

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods with identical results. Which one should we use? The one that
requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in two
different ways, either using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

or, using a relative pathname.

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important to point out here. In almost all cases, we can omit the

10

Changing the Current Working Directory

"./". It is implied. Typing:

[me@linuxbox usr]$ cd bin

does the same thing. In general, if we do not specify a pathname to something, the work-
ing directory will be assumed.

Some Helpful Shortcuts

In Table 2-1 we see some useful ways the current working directory can be quickly
changed.

Table 2-1: cd Shortcuts

Shortcut Result
cd Changes the working directory to your home directory.
cd - Changes the working directory to the previous working directory.

cd ~user_name Changes the working directory to the home directory of
user_name. For example, cd ~bob will change the directory to
the home directory of user “bob.”

Important Facts About Filenames

On Linux systems, files are named in a manner similar to other systems such as
Windows, but there are some important differences.

1. Filenames that begin with a period character are hidden. This only means that
Ls will not list them unless you say 1s -a. When your account was created,
several hidden files were placed in your home directory to configure things
for your account. In Chapter 11 we will take a closer look at some of these
files to see how you can customize your environment. In addition, some appli-
cations place their configuration and settings files in your home directory as
hidden files.

2. Filenames and commands in Linux, like Unix, are case sensitive. The file-
names “File1” and “file1” refer to different files.

11

2 — Navigation

3. Linux has no concept of a “file extension” like some other operating systems.
You may name files any way you like. The contents and/or purpose of a file is
determined by other means. Although Unix-like operating systems don’t use
file extensions to determine the contents/purpose of files, many application
programs do.

4. Though Linux supports long filenames that may contain embedded spaces and
punctuation characters, limit the punctuation characters in the names of files
you create to period, dash, and underscore. Most importantly, do not embed
spaces in filenames. If you want to represent spaces between words in a file-
name, use underscore characters. You will thank yourself later.

Summing Up

This chapter explained how the shell treats the directory structure of the system. We
learned about absolute and relative pathnames and the basic commands that we use to
move about that structure. In the next chapter we will use this knowledge to go on a tour
of a modern Linux system.

12

3 — Exploring the System

3 — Exploring the System

Now that we know how to move around the file system, it's time for a guided tour of our
Linux system. Before we start however, we’re going to learn some more commands that
will be useful along the way.

e 1s — List directory contents
e file — Determine file type

e Lless — View file contents

Having More Fun with 1s

The 1s command is probably the most used Linux command, and for good reason. With
it, we can see directory contents and determine a variety of important file and directory
attributes. As we have seen, we can simply enter 1S to get a list of files and subdirecto-
ries contained in the current working directory.

[me@linuxbox ~]$ 1s
Desktop Documents Music Pictures Public Templates Videos

Besides the current working directory, we can specify a directory to list, like so:

me@linuxbox ~]$ 1s /usr
bin games include 1ib 1local sbin share src

We can even specify multiple directories. In the following example, we list both the user's
home directory (symbolized by the “~” character) and the /usr directory.

[me@linuxbox ~]$ ls ~ /usr
/home/me:
Desktop Documents Music Pictures Public Templates Videos

13

3 — Exploring the System

/usr:
bin games include 1ib 1local sbin share src

We can also change the format of the output to reveal more detail.

[me@linuxbox ~]$ 1s -1
total 56

drwxrwxr-x
drwxrwxr - X
drwxrwxr - X
drwxrwxr -x
drwxrwxr -x
drwxrwxr-x
drwxrwxr -x

me me 4096 2017-10-26 17:20 Desktop
me me 4096 2017-10-26 17:20 Documents
me me 4096 2017-10-26 17:20 Music

me me 4096 2017-10-26 17:20 Pictures
me me 4096 2017-10-26 17:20 Public

me me 4096 2017-10-26 17:20 Templates
me me 4096 2017-10-26 17:20 Videos

NNNDNDNDNNDN

By adding “-1” to the command, we changed the output to the long format.

Options and Arguments

This brings us to a very important point about how most commands work. Commands are
often followed by one or more options that modify their behavior, and further, by one or
more arguments, the items upon which the command acts. So most commands look kind
of like this:

command -options arguments

Most commands use options which consist of a single character preceded by a dash, for
example, “-1”. Many commands, however, including those from the GNU Project, also
support long options, consisting of a word preceded by two dashes. Also, many com-
mands allow multiple short options to be strung together. In the following example, the
1s command is given two options, which are the 1 option to produce long format output,
and the t option to sort the result by the file's modification time.

[me@linuxbox ~]$ 1s -1t

We'll add the long option “--reverse” to reverse the order of the sort.

14

Having More Fun with Is

[me@linuxbox ~]$ ls -1t --reverse

Note that command options, like filenames in Linux, are case-sensitive.

The 1s command has a large number of possible options. The most common are listed in

Table 3-1.

Table 3- 1: Common ls Options

Option
-a

Long Option
--all

--almost-all

--directory

--classify

--human-readable

--reverse

Description

List all files, even those with names that begin
with a period, which are normally not listed
(that is, hidden).

Like the -a option above except it does not
list . (current directory) and . . (parent
directory).

Ordinarily, if a directory is specified, Ls will
list the contents of the directory, not the
directory itself. Use this option in conjunction
with the - 1 option to see details about the
directory rather than its contents.

This option will append an indicator character
to the end of each listed name. For example, a
forward slash (/) if the name is a directory.

In long format listings, display file sizes in
human readable format rather than in bytes.

Display results in long format.

Display the results in reverse order. Normally,
Ls displays its results in ascending
alphabetical order.

Sort results by file size.

Sort by modification time.

15

3 — Exploring the System

A Longer Look at Long Format

As we saw earlier, the - 1 option causes 1S to display its results in long format. This for-
mat contains a great deal of useful information. Here is the Examp les directory from an

early Ubuntu system:

-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root

3576296
1186219
47584
44355
34391
32059
159744
27837
98816
453764
358374

2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03
2017-04-03

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

05
05
05
05
05
05
05
05
05
05
05

Experience ubuntu.ogg
kubuntu-leaflet.png
logo-Edubuntu.png
logo-Kubuntu.png
logo-Ubuntu.png
oo-cd-cover.odf
oo-derivatives.doc
oo-maxwell.odt
oo-trig.xls
oo-welcome.odt
ubuntu Sax.ogg

Table 3-2 provides us with a look at the different fields from one of the files and their

meanings.

Table 3-2: 1s Long Listing Fields

Field
-rwW-r--r--

root
root
32059
2017-04-03 11:05

oo-cd-cover.odf

Meaning

Access rights to the file. The first character indicates the
type of file. Among the different types, a leading dash
means a regular file, while a “d” indicates a directory.
The next three characters are the access rights for the
file's owner, the next three are for members of the file's
group, and the final three are for everyone else. Chapter 9
"Permissions" discusses the full meaning of this in more
detail.

File's number of hard links. See the sections "Symbolic
Links" and "Hard Links" later in this chapter.

The username of the file's owner.

The name of the group that owns the file.
Size of the file in bytes.

Date and time of the file's last modification.

Name of the file.

16

Having More Fun with Is

Determining a File's Type with file

As we explore the system it will be useful to know what kind of data files contain. To do
this we will use the file command to determine a file's type. As we discussed earlier,
filenames in Linux are not required to reflect a file's contents. While a file named “pic-
ture.jpg” would normally be expected to contain a JPEG compressed image, it is not re-
quired to in Linux. We invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the file's contents.
For example:

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

There are many kinds of files. In fact, one of the basic ideas in Unix-like operating sys-
tems such as Linux is that “everything is a file.” As we proceed with our lessons, we will
see just how true that statement is.

While many of the files on our system are familiar, for example MP3 and JPEG, there are
many kinds that are a little less obvious and a few that are quite strange.

Viewing File Contents with less

The less command is a program to view text files. Throughout our Linux system, there
are many files that contain human-readable text. The less program provides a conve-
nient way to examine them.

What Is “Text”?

There are many ways to represent information on a computer. All methods in-
volve defining a relationship between the information and some numbers that will
be used to represent it. Computers, after all, only understand numbers and all data
is converted to numeric representation.

17

3 — Exploring the System

Some of these representation systems are very complex (such as compressed
video files), while others are rather simple. One of the earliest and simplest is
called ASCII text. ASCII (pronounced "As-Key") is short for American Standard
Code for Information Interchange. This is a simple encoding scheme that was first
used on Teletype machines to map keyboard characters to numbers.

Text is a simple one-to-one mapping of characters to numbers. It is very compact.
Fifty characters of text translates to fifty bytes of data. It is important to under-
stand that text only contains a simple mapping of characters to numbers. It is not
the same as a word processor document such as one created by Microsoft Word or
LibreOffice Writer. Those files, in contrast to simple ASCII text, contain many
non-text elements that are used to describe its structure and formatting. Plain
ASCII text files contain only the characters themselves and a few rudimentary
control codes such as tabs, carriage returns and line feeds.

Throughout a Linux system, many files are stored in text format and there are
many Linux tools that work with text files. Even Windows recognizes the impor-
tance of this format. The well-known NOTEPAD.EXE program is an editor for
plain ASCII text files.

Why would we want to examine text files? Because many of the files that contain system
settings (called configuration files) are stored in this format, and being able to read them
gives us insight about how the system works. In addition, some of the actual programs
that the system uses (called scripts) are stored in this format. In later chapters, we will
learn how to edit text files in order to modify systems settings and write our own scripts,
but for now we will just look at their contents.

The less command is used like this:

less filename

Once started, the 1ess program allows us to scroll forward and backward through a text
file. For example, to examine the file that defines all the system's user accounts, enter the
following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the file is longer

18

Viewing File Contents with less

than one page, we can scroll up and down. To exit less, press the q key.

The table below lists the most common keyboard commands used by less.

Table 3-3: less Commands

Command Action

Page Up or b Scroll back one page

Page Down or space Scroll forward one page

Up arrow Scroll up one line

Down arrow Scroll down one line

G Move to the end of the text file

1Gorg Move to the beginning of the text file

/characters Search forward to the next occurrence of characters
n Search for the next occurrence of the previous search
h Display help screen

q Quit less

Less Is More

The less program was designed as an improved replacement of an earlier Unix
program called more. The name “less” is a play on the phrase “less is more”—a
motto of modernist architects and designers.

less falls into the class of programs called “pagers,” programs that allow the
easy viewing of long text documents in a page by page manner. Whereas the
more program could only page forward, the less program allows paging both
forward and backward and has many other features as well.

Taking a Guided Tour

The file system layout on a Linux system is much like that found on other Unix-like sys-
tems. The design is actually specified in a published standard called the Linux Filesystem
Hierarchy Standard. Not all Linux distributions conform to the standard exactly but most
come pretty close.

19

3 — Exploring the System

Next, we are going to wander around the file system ourselves to see what makes our
Linux system tick. This will give us a chance to practice our navigation skills. One of the
things we will discover is that many of the interesting files are in plain human-readable
text. As we go about our tour, try the following:

1. cd into a given directory
List the directory contents with 1s -1
If you see an interesting file, determine its contents with file

If it looks like it might be text, try viewing it with less

A

If we accidentally attempt to view a non-text file and it scrambles the terminal
window, we can recover by entering the reset command.

Remember the copy and paste trick! If you are using a mouse, you can double
click on a filename to copy it and middle click to paste it into commands.

As we wander around, don't be afraid to look at stuff. Regular users are largely prohibited
from messing things up. That's the system administrator's job! If a command complains
about something, just move on to something else. Spend some time looking around. The
system is ours to explore. Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. There may be some slight dif-
ferences depending on our Linux distribution. Don't be afraid to look around and try
more!

Table 3-4: Directories Found on Linux Systems

Directory Comments
/ The root directory. Where everything begins.
/bin Contains binaries (programs) that must be present for the

system to boot and run. Note that modern Linux
distributions have deprecated /bin in favor of /usr/bin
(see below).

20

Taking a Guided Tour

Directory
/boot

/dev

/etc

/home

/1ib

/lost+found

Comments

Contains the Linux kernel, initial RAM disk image (for
drivers needed at boot time), and the boot loader.

Interesting files:
e /boot/grub/grub.cfgormenu. lst, which is
used to configure the boot loader.
e /boot/vmlinuz (or something similar), the Linux
kernel

This is a special directory that contains device nodes.
“Everything is a file” also applies to devices. Here is where
the kernel maintains a list of all the devices it understands.

The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts that start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some all-time favorites:

e /etc/crontab, on systems that use the cron
program, this file defines when automated jobs will
run.

e /etc/fstab, atable of storage devices and their
associated mount points.

e /etc/passwd, a list of the user accounts.

In normal configurations, each user is given a directory in
/home. Ordinary users can only write files in their home
directories. This limitation protects the system from errant
user activity.

Contains shared library files used by the core system
programs. These are similar to dynamic link libraries
(DLLs) in Windows. This directory has been deprecated in
modern distributions in favor of /usr/1ib.

Each formatted partition or device using a Linux file system,
such as ext4, will have this directory. It is used in the case of
a partial recovery from a file system corruption event.
Unless something really bad has happened to our system,
this directory will remain empty.

21

3 — Exploring the System

Directory
/media

/mnt

/opt

/proc

/root

/run

/sbin

/sys

/tmp

Comments

On modern Linux systems the /media directory will
contain the mount points for removable media such as USB
drives, CD-ROMs, etc. that are mounted automatically at
insertion.

On older Linux systems, the /mnt directory contains mount
points for devices that have been mounted manually.

The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that might be installed on the system.

The /proc directory is special. It's not a real file system in
the sense of files stored on the hard drive. Rather, it is a
virtual file system maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give us a picture of how the
kernel sees the computer. Browsing this directory can reveal
many details about the computer’s hardware.

This is the home directory for the root account.

This is a modern replacement for the traditional /tmp
directory (see below). Unlike /tmp, the /run directory is
mounted using the tempfs file system type which stores its
contents in memory rather than on a physical disk.

This directory contains “system” binaries. These are
programs that perform vital system tasks that are generally
reserved for the superuser. Note that modern Linux
distributions have deprecated /sbin in favor of
/usr/sbin (see below).

The /sys directory contains information about devices that
have been detected by the kernel. This is much like the
contents of the /deV directory but is more detailed
including such things actual hardware addresses.

The /tmp directory is intended for the storage of temporary,
transient files created by various programs. Some
distributions empty this directory each time the system is
rebooted.

22

Taking a Guided Tour

Directory
/usr

/usr/bin

/usr/1ib

/usr/local

/usr/sbin

/usr/share

/usr/share/doc

/var

/var/log

Comments

The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files used
by regular users.

/usr/bin contains the executable programs installed by
the Linux distribution. It is not uncommon for this directory
to hold thousands of programs.

The shared libraries for the programs in /usr/bin.

The /usr/local tree is where programs that are not
included with the distribution but are intended for system-
wide use are installed. Programs compiled from source code
are normally installed in /usr/1local/bin. On a newly
installed Linux system, this tree exists, but it will be empty
until the system administrator puts something in it.

Contains more system administration programs.

/usr/share contains all the shared data used by
programs in /usr/bin. This includes things such as
default configuration files, icons, screen backgrounds, sound
files, etc.

Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find
documentation files organized by package.

With the exception of /tmp and /home, the directories we
have looked at so far remain relatively static, that is, their
contents don't change. The /var directory tree is where
data that is likely to change is stored. Various databases,
spool files, user mail, etc. are located here.

/var/log contains log files, records of various system
activity. These are important and should be monitored from
time to time. The most useful ones are
/var/log/messages and/or /var/log/syslog
though these are not available on all systems. Note that for
security reasons, some systems only allow the superuser to
view log files.

23

3 — Exploring the System

Directory Comments
~/ .config and These two directories are located in the home directory of
~/.local each desktop user. They are used to store user-specific

configuration data for desktop applications.

Symbolic Links

As we look around, we are likely to see a directory listing (for example in /usr/11ib)
with an entry like this:

lrwxrwxrwx 1 root root 11 2007-08-11 07:34 libc.so.6 -> 1libc-2.6.s0

Notice how the first letter of the listing is “1” and the entry seems to have two filenames?
This is a special kind of a file called a symbolic link (also known as a soft link or sym-
link). In most Unix-like systems it is possible to have a file referenced by multiple names.
While the value of this might not be obvious, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource of some kind con-
tained in a file named “foo,” but “foo” has frequent version changes. It would be good to
include the version number in the filename so the administrator or other interested party
could see what version of “foo” is installed. This presents a problem. If we change the
name of the shared resource, we have to track down every program that might use it and
change it to look for a new resource name every time a new version of the resource is in-
stalled. That doesn't sound like fun at all.

Here is where symbolic links save the day. Suppose we install version 2.6 of “foo,” which
has the filename “foo-2.6” and then create a symbolic link simply called “foo” that points
to “foo-2.6.” This means that when a program opens the file “foo”, it is actually opening
the file “foo-2.6”. Now everybody is happy. The programs that rely on “foo” can find it
and we can still see what actual version is installed. When it is time to upgrade to “foo-
2.7,” we just add the file to our system, delete the symbolic link “foo” and create a new
one that points to the new version. Not only does this solve the problem of the version
upgrade, but it also allows us to keep both versions on our machine. Imagine that “foo-
2.7” has a bug (damn those developers!) and we need to revert to the old version. Again,
we just delete the symbolic link pointing to the new version and create a new symbolic
link pointing to the old version.

The directory listing at the beginning of this section (from the /usr/1ib directory of a
Fedora system) shows a symbolic link called 1ibc. so.6 that points to a shared library
file called 1ibc-2.6.s0. This means that programs looking for 1ibc.so0.6 will ac-
tually get the file 1ibc-2.6.s0. We will learn how to create symbolic links in the next
chapter.

24

Hard Links

Hard Links

While we are on the subject of links, we need to mention that there is a second type of
link called a hard link. Hard links also allow files to have multiple names, but they do it
in a different way. We’ll talk more about the differences between symbolic and hard links
in the next chapter.

Summing Up

With our tour behind us, we have learned a lot about our system. We've seen various files
and directories and their contents. One thing we should take away from this is how open
the system is. In Linux there are many important files that are plain human-readable text.
Unlike many proprietary systems, Linux makes everything available for examination and
study.

Further Reading

e The full version of the Linux Filesystem Hierarchy Standard can be found here:
https://refspecs.linuxfoundation.org/fhs.shtml

e An article about the directory structure of Unix and Unix-like systems: http://
en.wikipedia.org/wiki/Unix directory structure

e A detailed description of the ASCII text format: http://en.wikipedia.org/wiki/
ASCII

25

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unix_directory_structure
http://en.wikipedia.org/wiki/Unix_directory_structure
https://refspecs.linuxfoundation.org/fhs.shtml

4 — Manipulating Files and Directories

4 — Manipulating Files and Directories

Now we’re are ready for some real work! This chapter will introduce the following com-
mands:

e Cp — Copy files and directories

e MV — Move/rename files and directories
e mkdir — Create directories

e rm—Remove files and directories

e Ln — Create hard and symbolic links

These five commands are among the most frequently used Linux commands. They are
used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done
with a graphical file manager. With a file manager, we can drag and drop a file from one
directory to another, cut and paste files, delete files, and so on. So why use these old com-
mand line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations
with a graphical file manager, complicated tasks can be easier with the command line
programs. For example, how could we copy all the HTML files from one directory to an-
other but only copy files that do not exist in the destination directory or are newer than
the versions in the destination directory? It's pretty hard with a file manager but pretty
easy with the command line.

cp -u *.html destination

Wildcards

Before we begin using our commands, we need to talk about a shell feature that makes
these commands so powerful. Since the shell uses filenames so much, it provides special
characters to help us rapidly specify groups of filenames. These special characters are

26

Wildcards

called wildcards. Using wildcards (which is also known as globbing) allows us to select
filenames based on patterns of characters. Table 4-1 lists the wildcards and what they se-

lect.

Table 4-1: Wildcards
Wildcard

*
?
[characters]

[!characters]
or
[Acharacters]

[[:class:]]

Meaning

Matches any characters

Matches any single character

Matches any character that is a member of the set characters

Matches any character that is not a member of the set
characters

Matches any character that is a member of the specified
class

Table 4-2 lists the most commonly used character classes.

Table 4-2: Commonly Used Character Classes

Character Class
alnum:

alpha:

[:

[:
[:digit:
[:lower:
[:

—_—t e e e

upper:

Meaning

Matches any alphanumeric character
Matches any alphabetic character
Matches any numeral

Matches any lowercase letter

Matches any uppercase letter

Using wildcards makes it possible to construct sophisticated selection criteria for file-
names. Table 4-3 provides some examples of patterns and what they match.

Table 4-3: Wildcard Examples

Pattern
*

g *
b*.txt

Matches
All files

Any file beginning with “g”
Any file beginning with “b” followed by

27

4 — Manipulating Files and Directories
any characters and ending with “.txt”
Data??? Any file beginning with “Data” followed
by exactly three characters
[abc]* Any file beginning with either an “a”, a
“b’)’ Or a “C”
BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals
[[:upper:]]* Any file beginning with an uppercase letter
['[:digit:]]* Any file not beginning with a numeral
*[[:lower:]123] Any file ending with a lowercase letter or

the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7, "Seeing the World As the Shell Sees It.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] and [a-
Z] character range notations. These are traditional Unix notations and worked in
older versions of Linux as well. They can still work, but you have to be careful
with them because they will not produce the expected results unless properly con-
figured. For now, you should avoid using them and use character classes instead.

Dot Files

If we look at our home directory with 1s using the -a option we will notice that
there are a number of files and directories whose name begin with a dot. As we
have discussed, these files are hidden. It’s not a special attribute of the file; it only
means that the file will not appear in the output of 1S unless the -a or - A options
are included. This hidden characteristic also applies to wildcards. Hidden files
will not appear unless we use a wildcard pattern such as . *. However, when we

28

Wildcards

do this we will also see both . (the current directory) and . . (the current direc-

tory’s parent) in the results. To exclude them we can use patterns suchas . [!.]*
or .??*.

Wildcards Work in the GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but because they are also supported by some graphical file
managers.

e In Nautilus (the file manager for GNOME), you can select files by pressing
Ctrl-s and entering a file selection pattern with wildcards and the files in the
currently displayed directory will be selected.

e In some versions of Dolphin and Konqueror (the file managers for KDE), you
can enter wildcards directly on the location bar. For example, if you want to
see all the files starting with a lowercase “u” in the /usr/bin directory, enter ““/
usr/bin/u*” in the location bar and it will display the result.

Many ideas originally found in the command line interface make their way into
the graphical interface, too. It is one of the many things that make the Linux desk-
top so powerful.

mkdir - Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory. ..

A note on notation: When three periods follow an argument in the description of a com-
mand (as above), it means that the argument can be repeated, thus the following com-

mand:

mkdir diri

29

4 — Manipulating Files and Directories

would create a single directory named dir1, while the following:

mkdir dirl dir2 dir3

would create three directories named dir1, dir2, and dir3.

cp — Copy Files and Directories

The cp command copies files or directories. It can be used two different ways. The fol-
lowing:

cp item1 item2

copies the single file or directory item1l to the file or directory 1tem2 and the follow-
ing:

cp item... directory

copies multiple items (either files or directories) into a directory.

Useful Options and Examples

Table 4-4 lists some of the commonly used options for cp.
Table 4-4: cp Options

Option Long Option Meaning

-a --archive Copy the files and directories and all of their
attributes, including ownerships and
permissions. Normally, copies take on the
default attributes of the user performing the
copy. We'll take a look at file permissions in
Chapter 9 "Permissions."

-1 --interactive Before overwriting an existing file, prompt the
user for confirmation. If this option is not
specified, cp will silently (meaning there will
be no warning) overwrite files.

30

cp — Copy Files and Directories

-r --recursive Recursively copy directories and their contents.
This option (or the -a option) is required when
copying directories.

-u --update When copying files from one directory to
another, only copy files that either don't exist or
are newer than the existing corresponding files,
in the destination directory. This is useful when
copying large numbers of files as it skips files
that don't need to be copied.

-V --verbose Display informative messages as the copy is
performed.

Table 4-5: cp Examples

Command Results

cp filel file2 Copy filel to file2. If file2 exists, it is overwritten
with the contents of filel. If file2 does not exist, it
is created.

cp -1 filel file2 Same as previous command, except that if file2

exists, the user is prompted before it is overwritten.

cp filel file2 dirl Copy filel and file2 into directory dirl. The
directory dirl must already exist.

cp dirl/* dir2 Using a wildcard, copy all the files in dirl into
dir2. The directory dir2 must already exist.

cp -r dirl dir2 Copy the contents of directory dir1 to directory
dir2. If directory dir2 does not exist, it is created
and, after the copy, will contain the same contents
as directory dirl.
If directory dir2 does exist, then directory dirl (and
its contents) will be copied into dir2.

mv — Move and Rename Files

The mv command performs both file moving and file renaming, depending on how it is
used. In either case, the original filename no longer exists after the operation. mv is used
in much the same way as cp, as shown here:

31

4 — Manipulating Files and Directories

mv iteml item2

to move or rename the file or directory iteml to item2 or:

mv item... directory

to move one or more items from one directory to another.

Useful Options and Examples

mv shares many of the same options as Cp as described in Table 4-6.

Table 4-6: mv Options
Option Long Option

-i --interactive
-u --update
-V --verbose

Meaning

Before overwriting an existing file, prompt the
user for confirmation. If this option is not
specified, mv will silently overwrite files.

When moving files from one directory to
another, only move files that either don't exist,
or are newer than the existing corresponding
files in the destination directory.

Display informative messages as the move is
performed.

Table 4-7 provides some examples of mv usage.

Table 4-7: mv Examples

Command
mv filel file2

mv -i filel file2

mv filel file2 diril

Results

Move filel to file2. If file2 exists, it is overwritten
with the contents of filel. If file2 does not exist, it
is created. In either case, filel ceases to exist.

Same as the previous command, except that if file2
exists, the user is prompted before it is overwritten.

Move filel and file2 into directory dirl. The
directory dirl must already exist.

32

mv — Move and Rename Files

mv dirl dir2 If directory dir2 does not exist, create directory
dir2 and move the contents of directory dirl into
dir2 and delete directory dir1.

If directory dir2 does exist, move directory dirl
(and its contents) into directory dir2.

rm — Remove Files and Directories

The rm command is used to remove (delete) files and directories, as shown here:

rm item. ..

where item is one or more files or directories.

Useful Options and Examples

Table 4-8 describes some of the common options for rm.

Table 4-8: rm Options

Option Long Option Meaning

-1 --interactive Before deleting an existing file, prompt the user
for confirmation. If this option is not specified,
rm will silently delete files.

-r --recursive Recursively delete directories. This means that if
a directory being deleted has subdirectories,
delete them too. To delete a directory, this option
must be specified.

-f --force Ignore nonexistent files and do not prompt. This
overrides the - -interactive option.

-V --verbose Display informative messages as the deletion is
performed.

Table 4-9 provides some examples of using the rm command.

Table 4-9: rm Examples

Command Results

33

4 — Manipulating Files and Directories

rm filel Delete filel silently.

rm -i filel Same as the previous command, except that the
user is prompted for confirmation before the
deletion is performed.

rm -r filel dirl Delete filel and dir1 and its contents.

rm -rf filel dirl Same as the previous command, except that if
either filel or dirl do not exist, rm will continue
silently.

Be Careful with rm!

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it's gone. Linux assumes you're smart and
you know what you're doing.

Be particularly careful with wildcards. Consider this classic example. Let's say
you want to delete just the HTML files in a directory. To do this, you type the fol -
lowing:

rm *.html

This is correct, but if you accidentally place a space between the * and the
.htm1 like so:

rm * .html

the rm command will delete all the files in the directory and then complain that
there is no file called . htm€l.

Here is a useful tip: whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with 1s. This will let you see the
files that will be deleted. Then press the up arrow key to recall the command and
replace s with rm.

n - Create Links

The 1ln command is used to create either hard or symbolic links. It is used in one of two
ways. The following creates a hard link:

34

In — Create Links

In file link

The following creates a symbolic link:

ln -s item link

to create a symbolic link where item is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links, compared to symbolic links, which
are more modern. By default, every file has a single hard link that gives the file its name.
When we create a hard link, we create an additional directory entry for a file. Hard links
have two important limitations:

1. A hard link cannot reference a file outside its own file system. This means a link
cannot reference a file that is not on the same disk partition as the link itself.

2. A hard link may not reference a directory.

A hard link is indistinguishable from the file itself. Unlike a symbolic link, when we list a
directory containing a hard link we will see no special indication of the link. When a hard
link is deleted, the link is removed but the contents of the file itself continue to exist (that
is, its space is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter them from time to
time, but modern practice prefers symbolic links, which we will cover next.

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Symbolic links
work by creating a special type of file that contains a text pointer to the referenced file or
directory. In this regard, they operate in much the same way as a Windows shortcut,
though of course they predate the Windows feature by many years.

A file pointed to by a symbolic link, and the symbolic link itself are largely indistinguish-
able from one another. For example, if we write something to the symbolic link, the refer-
enced file is written to. However when we delete a symbolic link, only the link is deleted,
not the file itself. If the file is deleted before the symbolic link, the link will continue to
exist but will point to nothing. In this case, the link is said to be broken. In many imple-
mentations, the 1S command will display broken links in a distinguishing color, such as
red, to reveal their presence.

The concept of links can seem confusing, but hang in there. We're going to try all this

35

4 — Manipulating Files and Directories

stuff and it will, hopefully, become clear.

Let's Build a Playground

Since we are going to do some real file manipulation, let's build a safe place to “play”
with our file manipulation commands. First we need a directory to work in. We'll create
one in our home directory and call it playground.

Creating Directories

The mkdir command is used to create a directory. To create our playground directory we
will first make sure we are in our home directory and will then create the new directory.

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make our playground a little more interesting, let's create a couple of directories inside
it called dirl and dir2. To do this, we will change our current working directory to
p layground and execute another mkdir.

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dirl dir2

Notice that the mkdir command will accept multiple arguments allowing us to create
both directories with a single command.

Copying Files

Next, let's get some data into our playground. We'll do this by copying a file. Using the
cp command, we'll copy the passwd file from the /etc directory to the current work-
ing directory.

[me@linuxbox playground]$ cp /etc/passwd .

Notice how we used shorthand for the current working directory, the single trailing pe-
riod. So now if we perform an 1s, we will see our file.

[me@linuxbox playground]$ 1s -1

36

Let's Build a Playground

total 12

drwxrwxr-x 2 me me 4096 2025-01-10 16:40 diril
drwxrwxr-x 2 me me 4096 2025-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2025-01-10 16:07 passwd

Now, just for fun, let's repeat the copy using the “-v” option (verbose) to see what it does.

[me@linuxbox playground]$ cp -v /etc/passwd .
“/etc/passwd' -> " ./passwd'’

The cp command performed the copy again, but this time displayed a concise message
indicating what operation it was performing. Notice that cp overwrote the first copy
without any warning. Again this is a case of cp assuming that we know what we're doing.
To get a warning, we'll include the “-i” (interactive) option.

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite °./passwd'?

Responding to the prompt by entering a y will cause the file to be overwritten, any other
character (for example, n) will cause cp to leave the file alone.

Moving and Renaming Files

Now, the name passwd doesn't seem very playful and this is a playground, so let's
change it to something else.

[me@linuxbox playground]$ mv passwd fun

Let's pass the fun around a little by moving our renamed file to each of the directories and
back again. The following moves it first to the directory dir1:

[me@linuxbox playground]$ mv fun diri

The following then moves it from dirl to dir2:

[me@linuxbox playground]$ mv dirl/fun dir2

37

4 — Manipulating Files and Directories

Finally, the following brings it back to the current working directory:

[me@linuxbox playground]$ mv dir2/fun .

Next, let's see the effect of mv on directories. First we will move our data file into dirl
again, like this:

[me@linuxbox playground]$ mv fun diril

Then we move dirl into dir2 and confirm it with 1s.

[me@linuxbox playground]$ mv dirl dir2
[me@linuxbox playground]$ 1s -1 dir2

total 4

drwxrwxr-x 2 me me 4096 2025-01-11 06:06 dir1l
[me@linuxbox playground]$ 1s -1 dir2/dir1

total 4

-rw-r--r-- 1 me me 1650 2025-01-10 16:33 fun

Note that since dir2 already existed, mv moved dir1l into dir2. If dir2 had not ex-
isted, mv would have renamed dirl to dir2. Lastly, let's put everything back.

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv diri/fun .

Creating Hard Links

Now we'll try some links. We’ll first create some hard links to our data file like so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dirl/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file fun. Let's take a look at our playground direc-
tory.

38

Let's Build a Playground

[me@linuxbox playground]$ 1s -1

total 16

drwxrwxr-x 2 me me 4096 2025-01-14 16:17 dir1l
drwxrwxr-x 2 me me 4096 2025-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun-hard

One thing we notice is that both the second fields in the listings for fun and fun-hard
contain a 4 which is the number of hard links that now exist for the file. Remember that a
file will always have at least one link because the file's name is created by a link. So, how
do we know that fun and fun-hard are, in fact, the same file? In this case, 1s is not
very helpful. While we can see that fun and fun-hard are both the same size (field 5),
our listing provides no way to be sure. To solve this problem, we're going to have to dig a
little deeper.

When thinking about hard links, it is helpful to imagine that files are made up of two
parts.

1. The data part containing the file's contents.
2. The name part that holds the file's name.

When we create hard links, we are actually creating additional name parts that all refer to
the same data part. The system assigns a chain of disk blocks to what is called an inode,
which is then associated with the name part. Each hard link therefore refers to a specific
inode containing the file's contents.

The 1s command has a way to reveal this information. It is invoked with the -1 option.

[me@linuxbox playground]$ ls -1i

total 16

12353539 drwxrwxr-x 2 me me 4096 2025-01-14 16:17 dir1l
12353540 drwxrwxr-x 2 me me 4096 2025-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun
12353538 -rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number and, as we can see, both
fun and fun-hard share the same inode number, which confirms they are the same
file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard links.

39

4 — Manipulating Files and Directories

1. Hard links cannot span physical devices.
2. Hard links cannot reference directories, only files.

Symbolic links are a special type of file that contains a text pointer to the target file or di-
rectory.

Creating symbolic links is similar to creating hard links.

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dirl/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward; we simply add the “-s” option to create a
symbolic link rather than a hard link. But what about the next two? Remember, when we
create a symbolic link, we are creating a text description of where the target file is rela-
tive to the symbolic link. It's easier to see if we look at the 1s output shown here:

[me@linuxbox playground]$ 1s -1 dir1l

total 4
-rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun-hard
Lrwxrwxrwx 1 me me 6 2025-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dirl shows that it is a symbolic link by the leading 1 in the
first field and that it points to . . /fun, which is correct. Relative to the location of fun-
sym, fun is in the directory above it. Notice too, that the length of the symbolic link file
is 6, the number of characters in the string . ./fun rather than the length of the file to
which it is pointing.

When creating symbolic links, we can either use absolute pathnames, as shown here:

[me@linuxbox playground]$ ln -s /home/me/playground/fun dirl/fun-sym

or relative pathnames, as we did in our earlier example. In most cases, using relative
pathnames is more desirable because it allows a directory tree containing symbolic links
and their referenced files to be renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories.

[me@linuxbox playground]$ ln -s dirl dirl-sym
[me@linuxbox playground]$ 1s -1

40

Let's Build a Playground

total 16

drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir1l

Lrwxrwxrwx 1 me me 4 2025-01-16 14:45 dirl-sym -> dir1l
drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir2

-rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun

-rw-r--r-- 4 me me 1650 2025-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2025-01-15 15:15 fun-sym -> fun

Removing Files and Directories

As we covered earlier, the rm command is used to delete files and directories. We are go-
ing to use it to clean up our playground a little bit. First, let's delete one of our hard links.

[me@linuxbox playground]$ rm fun-hard

[me@linuxbox playground]$ 1s -1

total 12

drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir1l

Lrwxrwxrwx 1 me me 4 2025-01-16 14:45 dirl-sym -> dir1l
drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir2

-rw-r--r-- 3 me me 1650 2025-01-10 16:33 fun

Lrwxrwxrwx 1 me me 3 2025-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count shown for fun
is reduced from four to three, as indicated in the second field of the directory listing.
Next, we'll delete the file fun, and just for enjoyment, we'll include the -1 option to
show what that does.

[me@linuxbox playground]$ rm -i fun
rm: remove regular file “fun'?

Enter y at the prompt and the file is deleted. But let's look at the output of 1S now. No-
tice what happened to fun-sym? Since it's a symbolic link pointing to a now-nonexis-
tent file, the link is broken.

[me@linuxbox playground]$ 1s -1

total 8
drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir1l
Lrwxrwxrwx 1 me me 4 2025-01-16 14:45 dirl-sym -> dir1l

41

4 — Manipulating Files and Directories

drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir2
Lrwxrwxrwx 1 me me 3 2025-01-15 15:15 ->

Most Linux distributions configure 1s to display broken links. The presence of a broken
link is not in and of itself dangerous, but it is rather messy. If we try to use a broken link
we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let's clean up a little. We'll delete the symbolic links here:

[me@linuxbox playground]$ rm fun-sym dirl-sym
[me@linuxbox playground]$ 1s -1

total 8

drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2025-01-15 15:17 dir2

One thing to remember about symbolic links is that most file operations are carried out
on the link's target, not the link itself. rm is an exception. When we delete a link, it is the

link that is deleted, not the target.

Finally, we will remove our playground. To do this, we will return to our home directory
and use rm with the recursive option (- r) to delete playground and all of its contents,
including its subdirectories.

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

Creating Symlinks With The GUI

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the Ctrl+Shift keys
while dragging a file will create a link rather than copying (or moving) the file. In
KDE, a small menu appears whenever a file is dropped, offering a choice of copy-
ing, moving, or linking the file.

42

Summing Up

Summing Up

We've covered a lot of ground here and it will take a while for it all to fully sink in. Per-
form the playground exercise over and over until it makes sense. It is important to get a
good understanding of basic file manipulation commands and wildcards. Feel free to ex-
pand on the playground exercise by adding more files and directories, using wildcards to
specify files for various operations. The concept of links is a little confusing at first, but
take the time to learn how they work. They can be a real lifesaver.

Further Reading

e Adiscussion of symbolic links: http://en.wikipedia.org/wiki/Symbolic link

43

http://en.wikipedia.org/wiki/Symbolic_link

5 — Working with Commands

5 — Working with Commands

Up to this point, we have seen a series of mysterious commands, each with its own mys-
terious options and arguments. In this chapter, we will attempt to remove some of that
mystery and even create our own commands. The commands introduced in this chapter

dare:

type — Indicate how a command name is interpreted

which — Display which executable program will be executed
he lp — Get help for shell builtins

man — Display a command's manual page

apropos — Display a list of appropriate commands

info - Display a command's info entry

whatis — Display one-line manual page descriptions

alias — Create an alias for a command

What Exactly Are Commands?

A command can be one of four different things:

1.

An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries such as programs written in C and
C++, or programs written in scripting languages such as the shell, Perl, Python,
Ruby, and so on.

A command built into the shell itself. bash supports a number of commands in-
ternally called shell builtins. The cd command, for example, is a shell builtin.

A shell function. Shell functions are miniature shell scripts incorporated into the
environment. We will cover configuring the environment and writing shell func-
tions in later chapters, but for now, just be aware that they exist.

An alias. Aliases are commands that we can define ourselves, built from other
commands.

44

Identifying Commands

Identifying Commands

It is often useful to know exactly which of the four kinds of commands is being used and
Linux provides a couple of ways to find out.

type — Display a Command's Type

The type command is a shell builtin that displays the kind of command the shell will
execute, given a particular command name. It works like this:

type command

where “command” is the name of the command we want to examine. Here are some ex-
amples:

[me@linuxbox ~]$ type type

type is a shell builtin
[me@linuxbox ~]1$ type 1s

1s is aliased to "ls --color=auto'
[me@linuxbox ~]$ type cp

cp is /usr/bin/cp

Here we see the results for three different commands. Notice the one for 1s (taken from a
Fedora system) and how the 1s command is actually an alias for the 1s command with
the “--color=tty” option added. Now we know why the output from 1s is displayed in
color!

which — Display an Executable's Location

Sometimes there is more than one version of an executable program installed on a sys-
tem. While this is not common on desktop systems, it's not unusual on large servers. To
determine the exact location of a given executable, the which command is used.

[me@linuxbox ~]$ which 1s
/usr/bin/1s

which only works for executable programs, not builtins nor aliases that are substitutes
for actual executable programs. When we try to use which on a shell builtin for exam-
ple, cd, we either get no response or get an error message:

45

5 — Working with Commands

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/usr/local/bin:/usr/bin:/bin:/usr/local
/games: /usr/games)

This response is a fancy way of saying “command not found.”

Getting a Command's Documentation

With this knowledge of what a command is, we can now search for the documentation
available for each kind of command.

help — Get Help for Shell Builtins

bash has a built-in help facility available for each of the shell builtins. To use it, type
“help” followed by the name of the shell builtin. Here is an example:

[me@linuxbox ~1%$ help cd
cd: cd [-L|[-P [-e]] [-@]] [dir]
Change the shell working directory.

Change the current directory to DIR. The default DIR is the
value of the HOME shell variable.

The variable CDPATH defines the search path for the directory
containing DIR. Alternative directory names in CDPATH are
separated by a colon (:). A null directory name is the same as
the current directory. If DIR begins with a slash (/), then
CDPATH is not used.

If the directory is not found, and the shell option "cdable_vars'
is set, the word is assumed to be a variable name. If that
variable has a value, its value is used for DIR.

Options:
-L force symbolic links to be followed: resolve symbolic
links in DIR after processing instances of ~..'
-P use the physical directory structure without following

symbolic links: resolve symbolic links in DIR before
processing instances of ~..'

-e if the -P option is supplied, and the current working
directory cannot be determined successfully, exit with
a non-zero status

46

Getting a Command's Documentation

-@ on systems that support it, present a file with extended
attributes as a directory containing the file attributes

The default is to follow symbolic links, as if "-L' were
specified. ~..' is processed by removing the immediately previous
pathname component back to a slash or the beginning of DIR.

Exit Status:
Returns @ if the directory is changed, and if $PWD is set
successfully when -P is used; non-zero otherwise.

A note on notation: When square brackets appear in the description of a command's syn-
tax, they indicate optional items. A vertical bar character indicates mutually exclusive
items. In the case of the cd command above:

cd [-L|[-P[-e]]] [dir]

This notation says that the command cd may be followed optionally by either a “-L.” or a
“-P” and further, if the “-P” option is specified the “-e” option may also be included fol-
lowed by the optional argument “dir”.

While the output of help for the cd commands is concise and accurate, it is by no
means tutorial and as we can see, it also seems to mention a lot of things we haven't
talked about yet! Don't worry. We'll get there.

Helpful hint: By using the help command with the -m option, he lp will display its
output in an alternate format.

- -help — Display Usage Information

Many executable programs support a “--help” option that displays a description of the
command's supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

-Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.

-m, --mode=MODE set file mode (as in chmod), not a=rwx - umask

-p, --parents no error if existing, make parent directories as

47

5 — Working with Commands

needed
-V, --verbose print a message for each created directory
--help display this help and exit
--version output version information and exit
Report bugs to <bug-coreutils@gnu.org>.

Some programs don't support the “--help” option, but try it anyway. Often it results in an
error message that will reveal the same usage information.

man — Display a Program's Manual Page

Most executable programs intended for command line use provide a formal piece of doc-
umentation called a manual or man page. A special paging program called man is used to
view them. It is used like this:

man program

where “program” is the name of the command to view.
Man pages vary somewhat in format but generally contain the following:
« Atitle (the page’s name)
« A synopsis of the command's syntax
« A description of the command's purpose
- Alisting and description of each of the command's options

Man pages, however, do not usually include examples, and are intended as a reference,
not a tutorial. As an example, let's try viewing the man page for the 1S command:

[me@linuxbox ~]$ man 1s

On most Linux systems, man uses Less to display the manual page, so all of the familiar
less commands work while displaying the page.

The “manual” that man displays is divided into sections and covers not only user com-
mands but also system administration commands, programming interfaces, file formats
and more. Table 5-1 describes the layout of the manual.

48

Getting a Command's Documentation

Table 5-1: Man Page Organization

Section Contents
User commands
Programming interfaces for kernel system calls
Programming interfaces to the C library
Special files such as device nodes and drivers
File formats
Games and amusements such as screen savers

Miscellaneous

L N o Ul kAW N

System administration commands

Sometimes we need to refer to a specific section of the manual to find what we are look-
ing for. This is particularly true if we are looking for a file format that is also the name of
a command. Without specifying a section number, we will always get the first instance of
a match, probably in section 1. To specify a section number, we use man like this:

man section search_term

Here's an example:

[me@linuxbox ~]1$ man 5 passwd

This will display the man page describing the file format of the /etc/passwd file.

apropos — Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based on a search
term. It's crude but sometimes helpful. Here is an example of a search for man pages us-
ing the search term partition:

[me@linuxbox ~]$ apropos partition

addpart (8) - simple wrapper around the "add partition"...
all-swaps (7) - event signalling that all swap partitions...
cfdisk (8) - display or manipulate disk partition table

49

5 — Working with Commands

cgdisk (8) -
delpart (8) -
fdisk (8) -
fixparts (8) -
gdisk (8) -
mpartition (1) -
partprobe (8) -
partx (8) -
resizepart (8) -

sfdisk (8) -
sgdisk (8) -

Curses-based GUID partition table (GPT)...
simple wrapper around the "del partition"...
manipulate disk partition table

MBR partition table repair utility
Interactive GUID partition table (GPT)...
partition an MSDOS hard disk

inform the 0S of partition table changes

tell the Linux kernel about the presence...
simple wrapper around the "resize partition...

partition table manipulator for Linux
Command-1line GUID partition table (GPT)...

The first field in each line of output is the name of the man page, and the second field
shows the section. Note that the man command with the “-k” option performs the same

function as apropos.

whatis — Display One-line Manual Page Descriptions

The whatis program displays the name and a one-line description of a man page match-

ing a specified keyword:

[me@linuxbox ~]$ whatis 1s
1s (1) - list directory contents

The Most Brutal Man Page Of Them All

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has got to go
to the man page for bash. As I was doing research for this book, I gave the bash
man page careful review to ensure that I was covering most of its topics. When
printed, it's more than 80 pages long and extremely dense, and its structure makes
absolutely no sense to a new user.

On the other hand, it is very accurate and concise, as well as being extremely
complete. So check it out if you dare and look forward to the day when you can
read it and it all makes sense.

50

Getting a Command's Documentation

info — Display a Program's Info Entry

The GNU Project provides an alternative to man pages for their programs, called “info.”
Info manuals are displayed with a reader program named, appropriately enough, info.
Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: 1s invocation, Next: dir invocation,
Up: Directory listing
10.1 “1s': List directory contents

The “1s' program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.

For non-option command-line arguments that are directories, by
default “1ls' lists the contents of directories, not recursively, and
omitting files with names beginning with °~.'. For other non-option
arguments, by default “1s' lists just the filename. If no non-option
argument is specified, " 1s' operates on the current directory, acting
as if it had been invoked with a single argument of ~.'

By default, the output is sorted alphabetically, according to the

--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top

The info program reads info files, which are tree structured into individual nodes, each
containing a single topic. Info files contain hyperlinks that can move the reader from
node to node. A hyperlink can be identified by its leading asterisk and is activated by
placing the cursor upon it and pressing the Enter key.

To invoke info, type info followed optionally by the name of a program. Table 5-2 de-
scribes the commands used to control the reader while displaying an info page.

Table 5-2: info Commands

Command Action
? Display command help

PgUp or Backspace Display previous page

PgDn or Space Display next page

n Next - Display the next node

p Previous - Display the previous node

u Up - Display the parent node of the currently displayed

node, usually a menu

51

5 — Working with Commands

Enter Follow the hyperlink at the cursor location
q Quit

Most of the command line programs we have discussed so far are part of the GNU
Project's coreutils package, so typing the following:

[me@linuxbox ~]$ info coreutils

will display a menu page with hyperlinks to each program contained in the coreutils
package.

README and Other Program Documentation Files

Many software packages installed on our system have documentation files residing in the
/usr/share/doc directory. Most of these are stored in plain text format and can be
viewed with less. Some of the files are in HTML format and can be viewed with a web
browser. We may encounter some files ending with a “.gz” extension. This indicates that
they have been compressed with the gzip compression program. The gzip package in-
cludes a special version of less called zless that will display the contents of gzip-
compressed text files.

Creating Our Own Commands with alias

Now for our first experience with programming! We will create a command of our own
using the alias command. But before we start, we need to reveal a small command line
trick. It's possible to put more than one command on a line by separating each command
with a semicolon. It works like this:

commandl; command2; command3. ..

Here's the example we will use:

[me@linuxbox ~]%$ cd /usr; 1ls; cd -

bin games include 1ib Tlocal shin share src
/home/me

[me@linuxbox ~]$%$

52

Creating Our Own Commands with alias

As we can see, we have combined three commands on one line. First we change directory
to /usr then list the directory and finally return to the original directory (by using 'cd
- ') so we end up where we started. Now let's turn this sequence into a new command us-
ing alias. The first thing we have to do is dream up a name for our new command.
Let's try “test”. Before we do that, it would be a good idea to find out if the name “test” is
already being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

Oops! The name test is already taken. Let's try f0o0:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; 1ls; cd -'

Notice the structure of this command shown here:

alias name='string'

After the command alias, we give alias a name followed immediately (no whitespace
allowed) by an equal sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, we can use it anywhere the shell
would expect a command. Let's try it:

[me@linuxbox ~]$ foo

bin games include 1lib Tlocal sbin share src
/home/me

[me@linuxbox ~1%

We can also use the type command again to see our alias:

53

5 — Working with Commands

[me@linuxbox ~]$ type foo
foo is aliased to "cd /usr; ls; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the 1s command is
often aliased to add color support:

[me@linuxbox ~]$ type 1s
1s is aliased to “1ls --color=tty'

To see all the aliases defined in the environment, use the alias command without argu-
ments. Here are some of the aliases defined by default on a Fedora system. Try to figure
out what they all do:

[me@linuxbox ~]$ alias

alias l.='ls -d .* --color=tty'
alias 11='1s -1 --color=tty'
alias ls='1ls --color=tty'

There is one tiny problem with defining aliases on the command line. They vanish when
our shell session ends. In Chapter 11, "The Environment"”, we will see how to add our
own aliases to the files that establish the environment each time we log on, but for now,
enjoy the fact that we have taken our first, albeit tiny, step into the world of shell pro-
gramming!

Summing Up

Now that we have learned how to find the documentation for commands, go and look up
the documentation for all the commands we have encountered so far. Study what addi-
tional options are available and try them!

54

Further Reading

Further Reading

There are many online sources of documentation for Linux and the command line. Here
are some of the best:

e The Bash Reference Manual is a reference guide to the bash shell. It’s still a ref-
erence work but contains examples and is easier to read than the bash man page.
http://www.gnu.org/software/bash/manual/bashref.html

e The Bash FAQ contains answers to frequently asked questions regarding bash.
This list is aimed at intermediate to advanced users, but contains a lot of good in-
formation.

http://mywiki.wooledge.org/BashFAQ

e The GNU Project provides extensive documentation for its programs, which form
the core of the Linux command line experience. You can see a complete list here:

http://www.gnu.org/manual/manual.html

e Wikipedia has an interesting article on man pages:
http://en.wikipedia.org/wiki/Man_page

55

http://en.wikipedia.org/wiki/Man_page
http://www.gnu.org/manual/manual.html
http://mywiki.wooledge.org/BashFAQ
http://www.gnu.org/software/bash/manual/bashref.html

6 — Redirection

6 — Redirection

In this lesson we are going to unleash what may be the coolest feature of the command
line. It's called I/O redirection. The “I/O” stands for input/output and with this facility we
can redirect the input and output of commands to and from files, as well as connect multi-
ple commands together into powerful command pipelines. To show off this facility, we
will introduce the following commands:

e cat — Concatenate files

e sort — Sort lines of text

e unig — Report or omit repeated lines

e grep — Print lines matching a pattern

e WC — Print newline, word, and byte counts for each file
e head — Output the first part of a file

e tail - Output the last part of a file

e tee —Read from standard input and write to standard output and files

Standard Input, Output, and Error

Many of the programs that we have used so far produce output of some kind. This output
often consists of two types:

The program's results, that is, the data the program is designed to produce
Status and error messages that tell us how the program is getting along

If we look at a command like 1S, we can see that it displays its results and its error mes-
sages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such as 1s actually send
their results to a special file called standard output (often expressed as stdout) and their
status messages to another file called standard error (stderr). By default, both standard
output and standard error are linked to the screen and not saved into a disk file.

56

Standard Input, Output, and Error

In addition, many programs take input from a facility called standard input (stdin), which
is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input comes from. Nor-
mally, output goes to the screen and input comes from the keyboard, but with I/O redi-
rection, we can change that.

Redirecting Standard Output

I/O redirection allows us to redefine where standard output goes. To redirect standard
output to another file instead of the screen, we use the > redirection operator followed by
the name of the file. Why would we want to do this? It's often useful to store the output of
a command in a file. For example, we could tell the shell to send the output of the 1s
command to the file Ls-output. txt instead of the screen:

[me@linuxbox ~]$ 1s -1 /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the results to the file
ls-output. txt. Let's examine the redirected output of the command, shown here:

[me@linuxbox ~]$ 1s -1 ls-output.txt
-rw-rw-r-- 1 me me 167878 2025-02-01 15:07 1ls-output.txt

Good — a nice, large, text file. If we look at the file with less, we will see that the file
ls-output. txt does indeed contain the results from our 1S command.

[me@linuxbox ~]$ less ls-output.txt

Now, let's repeat our redirection test, but this time with a twist. We'll change the name of
the directory to one that does not exist:

[me@linuxbox ~]$ 1s -1 /bin/usr > ls-output.txt
1s: cannot access /bin/usr: No such file or directory

We received an error message. This makes sense since we specified the nonexistent direc-
tory /bin/usr, but why was the error message displayed on the screen rather than be-
ing redirected to the file Ls-output. txt? The answer is that the 1s program does not
send its error messages to standard output. Instead, like most well-written Unix programs,

57

6 — Redirection

it sends its error messages to standard error (stderr). Since we only redirected standard
output and not standard error, the error message was still sent to the screen. We'll see how
to redirect standard error in just a minute, but first let's look at what happened to our out-
put file:

[me@linuxbox ~]$ ls -1 ls-output.txt
-rw-rw-r-- 1 me me @ 2025-02-01 15:08 ls-output.txt

The file now has zero length! This is because when we redirect output with the “>” redi-
rection operator, the destination file is always rewritten from the beginning. Since our 1s
command generated no results and only an error message, the redirection operation
started to rewrite the file and then stopped because of the error, resulting in its truncation.
In fact, if we ever need to actually truncate a file (or create a new, empty file), we can use
a trick like this:

[me@linuxbox ~]$ > 1ls-output.txt

Simply using the redirection operator with no command preceding it will truncate an ex-
isting file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting the file from the
beginning? For that, we use the >> redirection operator, like so:

[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the file. If the file does
not already exist, it is created just as though the > operator had been used. Let's put it to
the test by repeating a command and appending its output to a file:

[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt
[me@linuxbox ~]$ 1s -1 /usr/bin >> 1ls-output.txt
[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt
[me@linuxbox ~]$ 1s -1 ls-output.txt

-rw-rw-r-- 1 me me 503634 2025-02-01 15:45 1ls-output.txt

We repeated the 1s command three times resulting in an output file three times as large.

58

Group Commands

Group Commands

Let’s imagine a situation where we want to execute a series of commands and send the re-
sults to a log file. With we know already, we could do this:

[me@linuxbox ~]$ commandl > logfile.txt
[me@linuxbox ~]$ command2 >> logfile.txt
[me@linuxbox ~]$ command3 >> logfile.txt

The first command in this sequence creates/truncates a file named logfile. txt and
each subsequent command appends its output to that file. This technique will work but
there is a lot of redundant typing. There must be a better way.

As we saw in the previous chapter, we can put multiple commands on a single line like
this:

[me@linuxbox ~]$ commandl; command2; command3

So we could place all of our commands and redirections on a single line:

[me@linuxbox ~]$ commandl > logfile.txt; command2 >> logfile.txt;
command3 >> logfile.txt

But what if we could treat the sequence as a single entity with a single output stream? We
can do this by creating a group command. To do this, we surround our sequence with
brace characters:

[me@linuxbox ~]1$ { commandl; command2; command3; } > logfile.txt

With our sequence surrounded by braces, the shell will consider it a single command in
terms of redirection. Note that the shell requires whitespace around the braces and the fi-
nal command in the sequence must be terminated with either a semicolon or a newline.

Redirecting Standard Error

Redirecting standard error lacks the ease of a dedicated redirection operator. To redirect
standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file de-

59

6 — Redirection

scriptors 0, 1, and 2, respectively. The shell provides a notation for redirecting files using
the file descriptor number. Since standard error is the same as file descriptor number 2,
we can redirect standard error with this notation:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file Ls-error. txt.

Redirecting Standard Output and Standard Error to One File

There are cases in which we may want to capture all of the output of a command to a sin-
gle file. To do this, we must redirect both standard output and standard error at the same
time. There are two ways to do this. Shown here is the traditional way, which works with
old versions of the shell:

[me@linuxbox ~]$ 1s -1 /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect standard output to the
file Ls-output.txt and then we redirect file descriptor 2 (standard error) to file de-
scriptor 1 (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of stan-
dard error must always occur dfter redirecting standard output or it doesn't work.
The following example redirects standard error to the file ls-output. txt:

>1ls-output.txt 2>&1

However, if the order is changed to the following, standard error is directed to
the screen.

2>&1 >1s-output.txt

Recent versions of bash provide a second, more streamlined method for performing this
combined redirection shown here:

[me@linuxbox ~]$ 1s -1 /bin/usr &> ls-output.txt

60

Redirecting Standard Error

In this example, we use the single notation &> to redirect both standard output and stan-
dard error to the file ls-output.txt. We can also append the standard output and
standard error streams to a single file like so:

[me@linuxbox ~]$ 1s -1 /bin/usr &>> ls-output.txt

Disposing of Unwanted Output

Sometimes “silence is golden,” and we don't want output from a command, we just want
to throw it away. This applies particularly to error and status messages. The system pro-
vides a way to do this by redirecting output to a special file called “/dev/null”. This file is
a system device often referred to as a bit bucket, which accepts input and does nothing
with it. To suppress error messages from a command, we do this:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> /dev/null

/dev/null In Unix Culture

The bit bucket is an ancient Unix concept and because of its universality, it has
appeared in many parts of Unix culture. When someone says he/she is sending
your comments to /dev/null, now you know what it means. For more exam-
ples, see the Wikipedia article on /dev/null.

Redirecting Standard Input

Up to now, we haven't encountered any commands that make use of standard input (actu-
ally we have, but we’ll reveal that surprise a little bit later), so we need to introduce one.

cat — Concatenate Files

The cat command reads one or more files and copies them to standard output like so:

cat [file...]

In most cases, we can think of cat as being analogous to the TYPE command in DOS.

61

http://en.wikipedia.org/wiki//dev/null
http://en.wikipedia.org/wiki//dev/null

6 — Redirection

We can use it to display files without paging. For example, the following will display the
contents of the file Ls-output. txt:

[me@linuxbox ~]$ cat 1ls-output.txt

cat is often used to display short text files. Since cat can accept more than one file as
an argument, it can also be used to join files together. Say we have downloaded a large
file that has been split into multiple parts (multimedia files are often split this way on
Usenet), and we want to join them back together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could join them back together with this command as follows:

cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be arranged in the cor-
rect order.

This is all well and good, but what does this have to do with standard input? Nothing yet,
but let's try something else. What happens if we enter cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It might seem that way, but it's really do-
ing exactly what it's supposed to do.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try adding
the following text and pressing Enter:

[me@linuxbox ~]$ cat
The quick brown fox jumps over the lazy dog.

Next, type a Ctr1-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has
reached end of file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumps over the lazy dog.

62

Redirecting Standard Input

The quick brown fox jumps over the lazy dog.

In the absence of filename arguments, cat copies standard input to standard output, so
we see our line of text repeated. We can use this behavior to create short text files. Let's
say we wanted to create a file called lazy_dog. txt containing the text in our exam-
ple. We would do this:

[me@linuxbox ~]$ cat > lazy_dog. txt
The quick brown fox jumps over the lazy dog.

Type the command followed by the text we want to place in the file. Remember to type
Ctrl-d at the end. Using the command line, we have implemented the world's dumbest
word processor! To see our results, we can use cat to copy the file to stdout again.

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumps over the lazy dog.

Now that we know how cat accepts standard input, in addition to filename arguments,
let's try redirecting standard input.

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumps over the lazy dog.

Using the < redirection operator, we change the source of standard input from the key-
board to the file lazy_dog. txt. We see that the result is the same as passing a single
filename argument. This is not particularly useful compared to passing a filename argu-
ment, but it serves to demonstrate using a file as a source of standard input. Other com-
mands make better use of standard input, as we will soon see.

Before we move on, check out the man page for cat, because it has several interesting
options.

Pipelines

The capability of commands to read data from standard input and send to standard output
is utilized by a shell feature called pipelines. Using the pipe operator | (vertical bar), the
standard output of one command can be piped into the standard input of another.

63

6 —

Redirection

commandl | command2

To fully demonstrate this, we are going to need some commands. Remember how we said
there was one we already knew that accepts standard input? It's less. We can use less
to display, page by page, the output of any command that sends its results to standard out-
put:

[me@linuxbox ~]$ ls -1 /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the output

of any command that produces standard output.

The Difference Between > and |

At first glance, it may be hard to understand the redirection performed by the
pipeline operator | versus the redirection operator >. Simply put, the redirection
operator connects a command with a file, while the pipeline operator connects the
output of one command with the input of a second command.

commandl > filel
commandl | command2

A lot of people will try the following when they are learning about pipelines, “just
to see what happens”:

command1l > command?2

Answer: sometimes something really bad.

Here is an actual example submitted by a reader who was administering a Linux-
based server appliance. As the superuser, he did this:

cd /usr/bin

1s > less

The first command put him in the directory where most programs are stored and
the second command told the shell to overwrite the file less with the output of
the 1s command. Since the /usr/bin directory already contained a file named
less (the less program), the second command overwrote the lesSs program
file with the text from 1s, thus destroying the 1ess program on his system.

64

Pipelines

The lesson here is that the > redirection operator silently creates or overwrites
files, so you need to treat it with a lot of respect.

Filters

Pipelines are often used to perform complex operations on data. It is possible to put sev-
eral commands together into a pipeline. Frequently, the commands used this way are re-
ferred to as filters. Filters take input, change it somehow, and then output it. The first one
we will try is sort. Imagine we wanted to make a combined list of all the executable
programs in /bin and /usr/bin, put them in sorted order and view the resulting list:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of 1s would have
consisted of two sorted lists, one for each directory. By including sort in our pipeline,
we changed the data to produce a single, sorted list.

sort is a powerful command with many features and options. We’ll cover them in detail
in Chapter 20.

uniq - Report or Omit Repeated Lines

The uniq command is often used in conjunction with sort. uniq accepts a sorted list
of data from either standard input or a single filename argument (see the uniq man page
for details) and, by default, removes any duplicates from the list. So, to make sure our list
has no duplicates (that is, any programs of the same name that appear in both the /bin
and /usr/bin directories), we will add uniq to our pipeline.

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output of the sort
command. If we want to see the list of duplicates instead, we add the “-d” option to uniq
like so:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

65

6 — Redirection

wc — Print Line, Word, and Byte Counts

The wc (word count) command is used to display the number of lines, words, and bytes
contained in files. Here's an example:

[me@linuxbox ~]$ wc ls-output.txt
7902 64566 503634 ls-output.txt

In this case, it prints out three numbers: lines, words, and bytes contained in ls-out -
put.txt. Like our previous commands, if executed without command line arguments,
wc accepts standard input. The “-1” option limits its output to only report lines. Adding it
to a pipeline is a handy way to count things. To see the number of items we have in our
sorted list, we can do this:

[me@linuxbox ~]1$ 1s /bin /usr/bin | sort | uniq | wc -1
2728

grep — Print Lines Matching a Pattern

grep is a powerful program used to find text patterns within files. It's used like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines containing it. The
patterns that grep can match can be very complex, but for now we will concentrate on
simple text matches. We'll cover the advanced patterns, called regular expressions in
Chapter 19.

Let's say we wanted to find all the files in our list of programs that had the word zip em-
bedded in the name. Such a search might give us an idea of some of the programs on our
system that had something to do with file compression. We would do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip
bunzip2

bzip2

gunzip

gzip

unzip

66

Pipelines

zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Here are a few handy options for grep:

« -1, causes grep to ignore case when performing the search (normally searches
are case sensitive)

« -1, causes grep to only output the names of the files containing text that
matches the pattern.

« -V, causes grep to print only those lines that do not match the pattern.

« -W, causes grep to only match whole words.

head / tail — Print First / Last Part of Files

Sometimes we don't want all the output from a command. We may only want the first few
lines or the last few lines. The head command prints the first ten lines of a file, and the
tail command prints the last ten lines. While both commands print ten lines of text by
default, this can be adjusted with the - n option.

[me@linuxbox ~]%$ head -n 5 ls-output.txt
total 343496

-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [

-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2007-11-26 14:27 a2p

-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt

-rwxr-xr-x 1 root root 5234 2007-06-27 10:56 znew

-rwxr-xr-x 1 root root 691 2005-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2016-01-31 05:22 zsoelim -> soelim

These commands can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5

67

6 — Redirection

znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

Using the -n option with head and tail together allows us to cut an excerpt from the
middle of a file. Let’s imagine we have a text file with a 5 line header and a 5 line footer
that we want to remove leaving only the “good” part in the middle containing the data.
We could do a trick like this:

[me@linuxbox ~]$ head -n -5 text_header_ footer.txt | tail -n +5 >
text. txt

The -n option when used with head allows a negative value which causes all but the
last n lines to be output. Similarly, the -n option with tail allows a plus sign causing
all but the first n lines to be output.

tail also has an option which allows us to follow the contents of a file in real time. This
is useful for watching the progress of log files as they are being written. In the following
example, we will look at the messages file in /var/log (or the /var/log/sys-
log file if messages is missing). Superuser privileges may be required to do this on
some Linux distributions because log files may contain security information:

[me@linuxbox ~]$ tail -f /var/log/messages

Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1

Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1652 seconds.

Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in

192.168.1.0/24, twin7.localdomain

Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth® to 192.168.1.1
port 67

Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1

Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1771 seconds.

Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART
Prefailure Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in

68

Pipelines

192.168.1.0/24, twin7.localdomain

Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user
me by (uid=0)

Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user
root by me(uid=500)

Using the -f option, tail continues to monitor the file, and when new lines are ap-
pended, they immediately appear on the display. This continues until we press Ctr 1-c.

tee — Read from Stdin and Output to Stdout and Files

In keeping with our plumbing metaphor, Linux provides a command called tee which
creates a “tee” fitting on our pipe. The tee program reads standard input and copies it to
both standard output (allowing the data to continue down the pipeline) and to one or more
files. This is useful for capturing a pipeline's contents at an intermediate stage of process-
ing. Here we repeat one of our earlier examples, this time including tee to capture the
entire directory listing to the file 1s. txt before grep filters the pipeline's contents:

[me@linuxbox ~]$ 1s /usr/bin | tee 1ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Summing Up

As always, check out the documentation of each of the commands we have covered in
this chapter. We have seen only their most basic usage. They all have a number of inter-
esting options. As we gain Linux experience, we will see that the redirection feature of
the command line is extremely useful for solving specialized problems. There are many
commands that make use of standard input and output, and almost all command line pro-
grams use standard error to display their informative messages.

69

6 —

Redirection

Linux Is About Imagination

When I am asked to explain the difference between Windows and Linux, I often
use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new in the
box. You take it home, turn it on, and play with it. Pretty graphics, cute sounds.
After a while, though, you get tired of the game that came with it, so you go back
to the store and buy another one. This cycle repeats over and over. Finally, you go
back to the store and say to the person behind the counter, “I want a game that
does this!” only to be told that no such game exists because there is no “market
demand” for it. Then you say, “But I only need to change this one thing!” The
person behind the counter says you can't change it. The games are all sealed up in
their cartridges. You discover that your toy is limited to the games others have de-
cided that you need.

Linux, on the other hand, is like the world's largest Erector Set. You open it, and
it's just a huge collection of parts. There's a lot of steel struts, screws, nuts, gears,
pulleys, motors, and a few suggestions on what to build. So, you start to play with
it. You build one of the suggestions and then another. After a while you discover
that you have your own ideas of what to make. You don't ever have to go back to
the store, as you already have everything you need. The Erector Set takes on the
shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you find
more satisfying?

70

7 — Seeing the World as the Shell Sees It

7 — Seeing the World as the Shell Sees It

In this chapter we are going to look at some of the “magic” that occurs on the command
line when we press the Enter key. While we will examine several interesting and complex
features of the shell, we will do it with just one new command.

e echo - Display a line of text

Expansion

Each time we type a command and press the Enter key, bash performs several substitu-
tions upon the text before it carries out our command. We have seen a couple of cases of
how a simple character sequence, for example *, can have a lot of meaning to the shell.
The process that makes this happen is called expansion. With expansion, we enter some-
thing and it is expanded into something else before the shell acts upon it. To demonstrate
what we mean by this, let's take a look at the echo command. echo is a shell builtin that
performs a very simple task. It prints its text arguments on standard output.

[me@linuxbox ~]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try an-
other example.

[me@linuxbox ~]$ echo *
Desktop Documents 1ls-output.txt Music Pictures Public Templates
Videos

So what just happened? Why didn't echo print *? As we recall from our work with wild-
cards, the * character means match any characters in a filename, but what we didn't see in
our original discussion was how the shell does that. The simple answer is that the shell
expands the * into something else (in this instance, the names of the files in the current
working directory) before the echo command is executed. When the Enter key is

71

7 — Seeing the World as the Shell Sees It

pressed, the shell automatically expands any qualifying characters on the command line
before the command is carried out, so the echo command never saw the *, only its ex-

panded result. Knowing this, we can see that echo behaved as expected.

Pathname Expansion

The mechanism by which wildcards work is called pathname expansion. If we try some
of the techniques that we employed in earlier chapters, we will see that they are really ex-
pansions. Given a home directory that looks like this:

[me@linuxbox ~]$ 1s
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and this:

[me@linuxbox ~]$ echo *s
Documents Pictures Templates Videos

or even this:

[me@linuxbox ~]%$ echo [[:upper:]]1*
Desktop Documents Music Pictures Public Templates Videos

and looking beyond our home directory, we could do this:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

72

Expansion

Pathname Expansion of Hidden Files

As we know, filenames that begin with a period character are hidden. Pathname
expansion also respects this behavior. An expansion such as the following does
not reveal hidden files.

echo *

It might appear at first glance that we could include hidden files in an expansion
by starting the pattern with a leading period, like this:

echo .*

It almost works. However, if we examine the results closely, we will see that the
names . and .. will also appear in the results. Because these names refer to the
current working directory and its parent directory, using this pattern will likely
produce an incorrect result. We can see this if we try the following command:

ls -d .* | less

To better perform pathname expansion in this situation, we have to employ a
more specific pattern.

echo .[!.]*

This pattern expands into every filename that begins with only one period fol-
lowed by any other characters. This will work correctly with most hidden files
(though it still won't include filenames with multiple leading periods). The 1s
command with the -A option (“almost all”) will provide a correct listing of hid-
den files.

1ls -A

Tilde Expansion

As we may recall from our introduction to the cd command, the tilde character (~) has a
special meaning. When used at the beginning of a word, it expands into the name of the
home directory of the named user or, if no user is named, the home directory of the cur-

rent user.

[me@linuxbox ~]$ echo ~
/home/me

If user “bob” has an account, then it expands into this:

73

7 — Seeing the World as the Shell Sees It

[me@linuxbox ~]$ echo ~bob
/home/bob

Arithmetic Expansion

The shell allows arithmetic to be performed by expansion. This allows us to use the shell
prompt as a calculator.

[me@linuxbox ~]$ echo $((2 + 2))
4

Arithmetic expansion uses the following form:
$((expression))

where expression is an arithmetic expression consisting of values and arithmetic opera-
tors.

Arithmetic expansion supports only integers (whole numbers, no decimals) but can per-
form quite a number of different operations. Table 7-1 describes a few of the supported
operators.

Table 7-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (but remember, since expansion supports only integer
arithmetic, results are integers)

% Modulo, which simply means “remainder”

*x Exponentiation

Spaces are not significant in arithmetic expressions and expressions may be nested. For
example, to multiply 5 squared by 3, we can use this:

[me@linuxbox ~]$ echo $(($((5**2)) * 3))

74

Expansion

75

Single parentheses may be used to group multiple subexpressions. With this technique,
we can rewrite the previous example and get the same result using a single expansion in-
stead of two.

[me@linuxbox ~]% echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of inte-
ger division.

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

[me@linuxbox ~]$ echo with $((5%2)) left over.

with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With it, we can create multiple
text strings from a pattern containing braces. Here's an example:

[me@linuxbox ~]%$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a preamble and a
trailing portion called a postscript. The brace expression itself may contain either a
comma-separated list of strings or a range of integers or single characters. The pattern
may not contain unquoted whitespace. Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_ {1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

In bash version 4.0 and newer, integers may also be zero-padded like so:

75

7 — Seeing the World as the Shell Sees It

[me@linuxbox ~]$ echo {01..15}

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

[me@linuxbox ~]$ echo {061..15}

001 002 003 004 005 006 007 008 009 010 011 012 013 014 015

Here is a range of letters in reverse order:

[me@linuxbox ~]$ echo {Z..A}
ZYXWVUTSRQPONMLKIIHGFEDCBA

Brace expansions may be nested.

[me@linuxbox ~]1%$ echo a{A{1,2},B{3,4}}b
aAlb aA2b aB3b aB4b

So, what is this good for? The most common application is making lists of files or direc-
tories to be created. For example, if we were photographers and had a large collection of
images that we wanted to organize into years and months, the first thing we might do is
create a series of directories named in numeric “Year-Month” format. This way, the direc-
tory names would sort in chronological order. We could type out a complete list of direc-
tories, but that's a lot of work and it's error-prone. Instead, we could do this:

[me@linuxbox ~]$ mkdir Photos

[me@linuxbox ~]$ cd Photos

[me@linuxbox Photos]$ mkdir {2007..2009}-{01..12}
[me@linuxbox Photos]$ 1s

2007-01 2007-07 2008-01 2008-07 2009-01 2009-07
2007-02 2007-08 2008-02 2008-08 2009-02 2009-08
2007-03 2007-09 2008-03 2008-09 2009-03 2009-09
2007-04 2007-10 2008-04 2008-10 2009-04 2009-10
2007-05 2007-11 2008-05 2008-11 2009-05 2009-11
2007-06 2007-12 2008-06 2008-12 2009-06 2009-12

Pretty slick!

Parameter Expansion

We're going to touch only briefly on parameter expansion in this chapter, but we'll be
covering it extensively later. It's a feature that is more useful in shell scripts than directly

76

Expansion

on the command line. Many of its capabilities have to do with the system's ability to store
small chunks of data and to give each chunk a name. Many such chunks, more properly
called variables, are available for our examination. For example, the variable named
USER contains our username. To invoke parameter expansion and reveal the contents of
USER we would do this:

[me@linuxbox ~]$ echo $USER
me

To see a list of available variables, try this:

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if we mistype a pattern, the ex-
pansion will not take place, and the echo command will simply display the mistyped
pattern. With parameter expansion, if we misspell the name of a variable, the expansion
will still take place but will result in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~1$

Command Substitution

Command substitution allows us to use the output of a command as an expansion.

[me@linuxbox ~]$ echo $(1ls)
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ ls -1 $(which cp)
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the 1S command, thereby

77

7 — Seeing the World as the Shell Sees It

getting the listing of the cp program without having to know its full pathname. We are
not limited to just simple commands. Entire pipelines can be used (only partial output is
shown here):

[me@linuxbox ~]$ file $(ls -d /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to “bzip2'
/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared 1libs), for
GNU/Linux 2.6.9, stripped

/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared 1libs), for
GNU/Linux 2.6.9, stripped

/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped

/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to "~../../bin/gunzip'
/usr/bin/gzip: symbolic link to "../../bin/gzip'
/usr/bin/mzip: symbolic link to "mtools'

In this example, the results of the pipeline became the argument list of the file com-
mand.

There is an alternate syntax for command substitution used by older shell programs that is
also supported in bash. It uses backquotes instead of the dollar sign and parentheses.

[me@linuxbox ~]$ ls -1 “which cp"
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Quoting

Now that we've seen how many ways the shell can perform expansions, it's time to learn
how we can control it. Take for example the following:

[me@linuxbox ~]$ echo this is a test
this is a test

or this one:

78

Quoting

[me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word-splitting by the shell removed extra whitespace from the echo
command's list of arguments. In the second example, parameter expansion substituted an
empty string for the value of $1 because it was an undefined variable. The shell provides
a mechanism called quoting to selectively suppress unwanted expansions.

Double Quotes

The first type of quoting we will look at is double quotes. If we place text inside double
quotes, all the special characters used by the shell lose their special meaning and are
treated as ordinary characters. The exceptions are $, \ (backslash), and ~ (back-quote).
This means that word-splitting, pathname expansion, tilde expansion, and brace expan-
sion are suppressed, but parameter expansion, arithmetic expansion, and command sub-
stitution are still carried out. Using double quotes, we can cope with filenames containing
embedded spaces. Say we were the unfortunate victim of a file called two word-
S. txt. If we tried to use this on the command line, word-splitting would cause this to be
treated as two separate arguments rather than the desired single argument.

[me@linuxbox ~]$ 1ls -1 two words.txt
1s: cannot access two: No such file or directory
1s: cannot access words.txt: No such file or directory

By using double quotes, we stop the word-splitting and get the desired result; further, we
can even repair the damage.

[me@linuxbox ~]$ 1s -1 "two words.txt"
-rw-rw-r-- 1 me me 18 2016-02-20 13:03 two words.txt
[me@linuxbox ~]%$ mv "two words.txt" two_words.txt

There! Now we don't have to keep typing those pesky double quotes.

Remember, parameter expansion, arithmetic expansion, and command substitution still
take place within double quotes.

[me@linuxbox ~]$ echo "$USER $((2+2)) $(df -h)"
me 4 Filesystem Size Used Avail Use% Mounted on
tmpfs 1.66 2.06M 1.6G 1% /run

79

7 — Seeing the World as the Shell Sees It

/dev/sda2 94G 19G 716G 21% /

tmpfs 7.8G 0 7.8G 0% /dev/shm

tmpfs 5.0M 4.0K 5.0M 1% /run/lock
/dev/sdal 975M 6.1M 969M 1% /boot/efi
/dev/sdb1l 907G 574G 287G 67% /home

tmpfs 1.66 1.8M 1.6G 1% /run/user/1000

We should take a moment to look at the effect of double quotes on command substitution.
First let's look a little deeper at how word splitting works. In our earlier example, we saw
how word-splitting appears to remove extra spaces in our text.

[me@linuxbox ~]$ echo this is a test
this is a test

By default, word-splitting looks for the presence of spaces, tabs, and newlines (linefeed
characters) and treats them as delimiters between words. This means unquoted spaces,
tabs, and newlines are not considered to be part of the text. They serve only as separators.
Since they separate the words into different arguments, our example command line con-
tains a command followed by four distinct arguments. If we add double quotes:

[me@linuxbox ~]$ echo "this is a test"
this is a test

word-splitting is suppressed and the embedded spaces are not treated as delimiters; rather
they become part of the argument. Once the double quotes are added, our command line
contains a command followed by a single argument.

The fact that newlines are considered delimiters by the word-splitting mechanism causes
an interesting, albeit subtle, effect on command substitution. Consider the following:

[me@linuxbox ~]$ echo $(df -h)

Filesystem Size Used Avail Use% Mounted on tmpfs 1.6G 2.0M 1.6G 1%
/run /dev/sda2 94G 19G 71G 21% / tmpfs 7.8G @ 7.8G 0% /dev/shm tmpfs
5.0M 4.0K 5.0M 1% /run/lock /dev/sdal 975M 6.1M 969M 1% /boot/efi
/dev/sdbl 907G 574G 287G 67% /home tmpfs 1.6G 1.8M 1.6G 1%
/run/user/1000

[me@linuxbox ~]$ echo "$(df -h)"

Filesystem Size Used Avail Use% Mounted on

tmpfs 1.66G 2.0M 1.6G 1% /run

80

Quoting

/dev/sda2 94G 19G 716G 21% /

tmpfs 7.8G 0 7.8G 0% /dev/shm

tmpfs 5.0M 4.0K 5.0M 1% /run/lock
/dev/sdal 975M 6.1M 969M 1% /boot/efi
/dev/sdb1l 907G 574G 287G 67% /home

tmpfs 1.66 1.8M 1.6G 1% /run/user/1000

In the first instance, the unquoted command substitution resulted in a command line con-
taining 49 arguments. In the second, it resulted in a command line with one argument that
includes the embedded spaces and newlines.

Single Quotes

If we need to suppress all expansions, we use single quotes. Here is a comparison of un-
quoted, double quotes, and single quotes:

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) SUSER
text /home/me/ls-output.txt a b foo 4 me

[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me

[me@linuxbox ~]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more of the expansions
are suppressed.

Escaping Characters

Sometimes we want to quote only a single character. To do this, we can precede a charac-
ter with a backslash, which in this context is called the escape character. Often this is
done inside double quotes to selectively prevent an expansion.

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a character in a
filename. For example, it is possible to use characters in filenames that normally have
special meaning to the shell. These would include $, !, &, spaces, and others. To include
a special character in a filename we can do this:

81

7 —

Seeing the World as the Shell Sees It

[me@linuxbox ~]$ mv bad\&filename good_ filename

To allow a backslash character to appear, escape it by typing \\. Note that within single

quotes, the backslash loses its special meaning and is treated as an ordinary character.

Another use of the backslash escape is suppressing aliases. For example, assuming the 1s
command is aliased to Ls="1s --color=auto’, the default on many Linux distribu-
tions, we can precede the command with a backslash and the alias will be ignored and the

1s command will be executed without the color option.

Backslash Escape Sequences

In addition to its role as the escape character, the backslash is also used as part of
a notation to represent certain special characters called control codes. The first 32
characters in the ASCII coding scheme are used to transmit commands to tele-
type-like devices. Some of these codes are familiar (tab, backspace, linefeed, and
carriage return), while others are not (null, end-of-transmission, and acknowl-
edge).

Escape Sequence Meaning

\a Bell (an alert that causes the computer to
beep)

\b Backspace

\n Newline. On Unix-like systems, this
produces a linefeed.

\r Carriage return

\t Tab

The table above lists some of the common backslash escape sequences. The idea
behind this representation using the backslash originated in the C programming
language and has been adopted by many others, including the shell.

Adding the -e option to echo will enable interpretation of escape sequences.
You may also place them inside $' '. Here, using the s leep command, a sim-

ple program that just waits for the specified number of seconds and then exits, we
can create a primitive countdown timer:

sleep 10; echo -e "Time's up\a"

82

Quoting

We could also do this:

sleep 10; echo "Time's up" $'\a'

Summing Up

As we move forward with using the shell, we will find that expansions and quoting will
be used with increasing frequency, so it makes sense to get a good understanding of the
way they work. In fact, it could be argued that they are the most important subjects to
learn about the shell. Without a proper understanding of expansion, the shell will always
be a source of mystery and confusion, with much of its potential power wasted.

Further Reading

e The bash man page has major sections on both expansion and quoting which
cover these topics in a more formal manner.

e The Bash Reference Manual also contains chapters on expansion and quoting;:
http://www.gnu.org/software/bash/manual/bashref.html

83

http://www.gnu.org/software/bash/manual/bashref.html

8 — Advanced Keyboard Tricks

8 — Advanced Keyboard Tricks

I often kiddingly describe Unix as “the operating system for people who like to type.” Of
course, the fact that it even has a command line is a testament to that. But command line
users don't like to type that much. Why else would so many commands have such short
names like cp, 1s, mv, and rm? In fact, one of the most cherished goals of the command
line is laziness; doing the most work with the fewest number of keystrokes. Another goal
is never having to lift our fingers from the keyboard and reach for the mouse. In this
chapter, we will look at bash features that make keyboard use faster and more efficient.

The following commands will make an appearance:
e clear —Clear the screen

e history — Display the contents of the history list

Command Line Editing

bash uses a library (a shared collection of routines that different programs can use)
called Readline to implement command line editing. We have already seen some of this.
We know, for example, that the arrow keys move the cursor, but there are many more fea-
tures. Think of these as additional tools that we can employ in our work. It’s not impor-
tant to learn all of them, but many of them are very useful. Pick and choose as desired.

Note: Some of the key sequences below (particularly those that use the Alt key)
may be intercepted by the GUI for other functions. All of the key sequences
should work properly when using a virtual console.

Cursor Movement

The following table lists the keys used to move the cursor:

Table 8-1: Cursor Movement Commands

Key Action

84

Command Line Editing

Ctrl-a
Ctrl-e
Ctrl-f
Ctrl-b
Alt-f

Alt-b

Ctrl-1

Modifying Text

Move cursor to the beginning of the line.

Move cursor to the end of the line.

Move cursor forward one character; same as the right arrow key.
Move cursor backward one character; same as the left arrow key.
Move cursor forward one word.

Move cursor backward one word.

Clear the screen and move the cursor to the top-left corner. The
c Lear command does the same thing.

Since we might make a mistake when composing a command, we need a way to correct
them efficiently. Table 8-2 describes keyboard commands that are used to edit characters
on the command line.

Table 8-2: Text Editing Commands

Key
Ctrl-d

Ctrl-t

Alt-t
Alt-1

Alt-u

Action
Delete the character at the cursor location.

Transpose (exchange) the character at the cursor location with the
one preceding it.

Transpose the word at the cursor location with the one preceding it.

Convert the characters from the cursor location to the end of the
word to lowercase.

Convert the characters from the cursor location to the end of the
word to uppercase.

Cutting and Pasting (Killing and Yanking) Text

The Readline documentation uses the terms killing and yanking to refer to what we would
commonly call cutting and pasting. Items that are cut are stored in a buffer (a temporary
storage area in memory) called the kill-ring.

85

8 — Advanced Keyboard Tricks

Table 8-3: Cut and Paste Commands

Key Action

Ctrl-k Kill text from the cursor location to the end of line.

Ctrl-u Kill text from the cursor location to the beginning of the line.

Alt-d Kill text from the cursor location to the end of the current word.

Alt- Kill text from the cursor location to the beginning of the current

Backspace word. If the cursor is at the beginning of a word, kill the previous
word.

Ctrl-y Yank text from the kill-ring and insert it at the cursor location.

The Meta Key

If you venture into the Readline documentation, which can be found in the
“READLINE” section of the bash man page, you will encounter the term meta
key. On modern keyboards this maps to the ALt key but it wasn't always so.

Back in the dim times (before PCs but after Unix), not everybody had their own
computer. What they might have had was a device called a terminal. A terminal
was a communication device that featured a text display screen and a keyboard
and just enough electronics inside to display text characters and move the cursor
around. It was attached (usually by serial cable) to a larger computer or the com-
munication network of a larger computer. There were many different brands of
terminals, and they all had different keyboards and display feature sets. Since they
all tended to at least understand ASCII, software developers wanting portable ap-
plications wrote to the lowest common denominator. Unix systems have an elabo-
rate way of dealing with terminals and their different display features. Since the
developers of Readline could not be sure of the presence of a dedicated extra con-
trol key, they invented one and called it meta. While the Alt key serves as the
meta key on modern keyboards, you can also press and release the ESC key to get
the same effect as holding down the Alt key if you're using a terminal (which
you can still do in Linux!).

Completion

Another way that the shell can help us is through a mechanism called completion. Com-
pletion occurs when we press the tab key while typing a command. Let's see how this

86

Completion

works. Given a home directory that looks like this:

[me@linuxbox ~]$ 1s
Desktop ls-output.txt Pictures Templates Videos
Documents Music Public

Try typing the following but don't press the Enter key:

[me@linuxbox ~]$ 1s 1

Now press the Tab key.

[me@linuxbox ~]$ 1s ls-output.txt

See how the shell completed the line for us? Let's try another one. Again, don't press En-
ter.

[me@linuxbox ~]$ 1s D

Press Tab.

[me@linuxbox ~]$ 1s D

No completion, just nothing. This happened because D matches more than one entry in
the directory. For completion to be successful, the “clue” we give it has to be unambigu-
ous. If we go further as with the following:

[me@linuxbox ~]$ 1ls Do

and then press Tab:

[me@linuxbox ~]$ 1ls Documents

the completion is successful.

87

8 — Advanced Keyboard Tricks

While this example shows completion of pathnames, which is its most common use,
completion will also work on variables (if the beginning of the word is a $), user names
(if the word begins with ~), commands (if the word is the first word on the line) and host-
names (if the beginning of the word is @). Hostname completion works only for host-
names listed in /etc/hosts.

There are a number of control and meta key sequences that are associated with comple-
tion, as listed in Table 8-4.

Table 8-4: Completion Commands

Key Action

Alt-? Display a list of possible completions. On most systems you can
also do this by pressing the Tab key a second time, which is much
easier.

Alt-* Insert all possible completions. This is useful when you want to use

more than one possible match.

There are quite a few more that are rather obscure. A list appears in the bash man page
under “READLINE”.

Programmable Completion

Recent versions of bash have a facility called programmable completion. Pro-
grammable completion allows you (or more likely, your distribution provider) to
add additional completion rules. Usually this is done to add support for specific
applications. For example, it is possible to add completions for the option list of a
command or match particular file types that an application supports. Ubuntu has a
fairly large set defined by default. Programmable completion is implemented by
shell functions, a kind of mini shell script that we will cover in later chapters. If
you are curious, try the following:

set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 1, bash maintains a history of commands that have been
entered. This list of commands is kept in our home directory in a file called

88

Using History

.bash_history. The history facility is a useful resource for reducing the amount of
typing we have to do, especially when combined with command line editing.

Searching History

At any time, we can view the contents of the history list by doing the following:

[me@linuxbox ~]$ history | less

By default, most modern Linux distributions configure bash to store the last 1000 com-
mands we have entered. We will see how to adjust this value in Chapter 11. Let's say we
want to find the commands we used to list /usr/bin. This is one way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let's say that among our results we got a line containing an interesting command like
this:

88 1s -1 /usr/bin > ls-output.txt

The 88 is the line number of the command in the history list. We could use this immedi-
ately using another type of expansion called history expansion. To use our discovered
line, we could do this:

[me@linuxbox ~]$!'88

bash will expand !88 into the contents of the 88th line in the history list. There are
other forms of history expansion that we will cover in the next section.

bash also provides the ability to search the history list incrementally. This means we can
tell bash to search the history list as we enter characters, with each additional character
further refining our search. To start incremental search press Ctr 1-r followed by the
text we are looking for. When we find it, we can either press Enter to execute the com-
mand or press Ctr 1-j to copy the line from the history list to the current command line.
To find the next occurrence of the text (moving “up” the history list), press Ctrl-r
again. To quit searching, press either Ctr1-g or Ctr L-c. Here we see it in action:

[me@linuxbox ~]$%$

89

8 — Advanced Keyboard Tricks

First press Ctrl-r.

(reverse-i-search) ':

The prompt changes to indicate that we are performing a reverse incremental search. It is
“reverse” because we are searching from “now” to some time in the past. Next, we start
typing our search text. In this example, /usr/bin:

(reverse-i-search) /usr/bin': 1s -1 /usr/bin > 1ls-output.txt

Immediately, the search returns our result. With our result, we can execute the command
by pressing Enter, or we can copy the command to our current command line for fur-
ther editing by pressing Ctr 1-j. Let's copy it. Press Ctr1-j.

[me@linuxbox ~]$ 1s -1 /usr/bin > 1ls-output.txt

Our shell prompt returns, and our command line is loaded and ready for action!

The Table 8-5 lists some of the keystrokes used to manipulate the history list.

Table 8-5: History Commands

Key Action

Ctrl-p Move to the previous history entry. This is the same action as the up
arrow.

Ctrl-n Move to the next history entry. This is the same action as the down
arrow.

Alt-< Move to the beginning (top) of the history list.

Alt-> Move to the end (bottom) of the history list, i.e., the current
command line.

Ctrl-r Reverse incremental search. This searches incrementally from the
current command line up the history list.

Alt-p Reverse search, nonincremental. With this key, type in the search
string and press enter before the search is performed.

Alt-n Forward search, nonincremental.

Ctrl-o Execute the current item in the history list and advance to the next

90

Using History

one. This is handy if we are trying to re-execute a sequence of
commands in the history list.

History Expansion

The shell offers a specialized type of expansion for items in the history list by using the !
character. We have already seen how the exclamation point can be followed by a number
to insert an entry from the history list. There are a number of other expansion features, as
described in Table 8-6.

Table 8-6: History Expansion Commands

Sequence Action

M Repeat the last command. It is probably easier to press up arrow and
enter.

'number Repeat history list item number.

I'string Repeat last history list item starting with string.

I?string Repeat last history list item containing string.

Use caution with the ! sString and !?string forms unless youyou are absolutely sure
of the contents of the history list items. We can mitigate this problem somewhat by ap-
pending “:p” to our expansion. This tells the shell to print the result of the expansion and
place it into the command history. Here’s an example:

[me@linuxbox ~]1%$!1ls:p
ls -1 /usr/bin > ls-output.txt

Now that the command has been recalled and placed as the most recent item on the his-
tory list, we can execute it with Up-Arrow and Returnor ! ! and Return.

By the way, history expansions such as ! ! are not recorded in the history list but their re-
sults are.
Many more features are available in the history expansion mechanism, but this subject is

already too arcane and our heads may explode if we continue. The HISTORY EXPAN-
SION section of the bash man page goes into all the gory details. Feel free to explore!

91

8 — Advanced Keyboard Tricks

script

In addition to the command history feature in bash, most Linux distributions in-
clude a program called script that can be used to record an entire shell session
and store it in a file. The basic syntax of the command is as follows:

script [file]
where file is the name of the file used for storing the recording. If no file is speci-

fied, the file typescript is used. See the script man page for a complete
list of the program’s options and features.

Summing Up

In this chapter we covered some of the keyboard tricks that the shell provides to help
hardcore typists reduce their workloads. As time goes by and we become more involved
with the command line, we can refer back to this chapter to pick up more of these tricks.
For now, consider them optional and potentially helpful.

Further Reading

e The Wikipedia has a good article on computer terminals:

http://en.wikipedia.org/wiki/Computer terminal

92

http://en.wikipedia.org/wiki/Computer_terminal

9 — Permissions

9 — Permissions

Operating systems in the Unix tradition differ from those in the MS-DOS tradition in that
they are not only multitasking systems, but also multi-user systems.

What exactly does this mean? It means that more than one person can be using the com-
puter at the same time. While a typical computer will likely have only one keyboard and
monitor, it can still be used by more than one user. For example, if a computer is attached
to a network or the Internet, remote users can log in via ssh (secure shell) and operate
the computer. In fact, remote users can execute graphical applications and have the
graphical output appear on a remote display.

The multi-user capability of Linux is not a recent "innovation," but rather a feature that is
deeply embedded into the design of the operating system. Considering the environment in
which Unix was created, this makes perfect sense. Years ago, before computers were
"personal,” they were large, expensive, and centralized. A typical university computer
system, for example, consisted of a large central computer located in one building and
terminals that were located throughout the campus, each connected to the large central
computer. The computer would support many users at the same time.

To make this practical, a method had to be devised to protect the users from each other.
After all, the actions of one user could not be allowed to crash the computer, nor could
one user interfere with the files belonging to another user.

In this chapter we will look at this essential part of system security and introduce the fol -
lowing commands:

e 1id - Display user identity

e chmod - Change a file's mode

e umask — Set the default file permissions

e SU — Run a shell as another user

e sudo — Execute a command as another user
e chown — Change a file's owner

e chgrp — Change a file's group ownership

93

9 — Permissions

e addgroup — Add a user or a group to the system
e usermod — Modify a user account

e passwd — Change a user's password

Users, Group Members, and Everybody Else

When we were exploring the system in Chapter 3, we may have encountered a problem
when trying to examine a file such as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not have permission to
read this file.

In the Unix security model, a user may own files and directories. When a user owns a file
or directory, the user has control over its access. Users can, in turn, belong to a group
consisting of one or more users who are given access to files and directories by their
owners. In addition to granting access to a group, an owner may also grant some set of
access rights to everybody, which are called others (sometimes referred to as the world).
To find information about our identity, we use the 1d command.

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let's look at the output. When user accounts are created, users are assigned a number
called a user ID (uid) which is then, for the sake of the humans, mapped to a username.
The user is assigned a primary group ID (gid) and may belong to additional groups. The
above example is from a Fedora system. On other systems, such as Ubuntu, the output
may look a little different:

[me@linuxbox ~]$ id

uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio), 30(dip), 44(v
ideo), 46 (plugdev), 108 (lpadmin), 114 (admin), 1000(me)

As we can see, the uid and gid numbers are different. This is simply because Fedora starts

94

Users, Group Members, and Everybody Else

its numbering of regular user accounts at 500, while Ubuntu starts at 1000. We can also
see that the Ubuntu user belongs to a lot more groups. This has to do with the way
Ubuntu manages privileges for system devices and services.

So where does this information come from? Like so many things in Linux, it comes from
a couple of text files. User accounts are defined in the /etc/passwd file and groups
are defined in the /etc/group file. When user accounts and groups are created, these
files are modified along with /etc/shadow which holds information about the user's
password. For each user account, the /etc/passwd file defines the user (login) name,
uid, gid, user’s real name, home directory, and login shell. If we examine the contents of
/etc/passwd and /etc/group, we notice that besides the regular user accounts,
there are accounts for the superuser (always uid 0) and various other system users.

In the next chapter, when we cover processes, we will see that some of these other
“users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group such as “users”,
modern Linux practice is to create a unique, single-member group with the same name as
the user. This makes certain types of permission assignment easier.

Reading, Writing, and Executing

Access rights to files and directories are defined in terms of read access, write access, and
execution access. If we look at the output of the 1S command, we can get some clue as to
how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -1 foo.txt
-rw-rw-r-- 1 me me 0 2016-03-06 14:52 foo.txt

The first 10 characters of the listing are the file attributes. The first of these characters is
the file type. Table 9-1 describes the file types we are most likely to see (there are other,
less common types too):

Table 9-1: File Types

Attribute File Type

- A regular file.

d A directory.

1 A symbolic link. Notice that with symbolic links, the remaining file

attributes are always “rwxrwxrwx” and are dummy values. The real

95

9 — Permissions

file attributes are those of the file the symbolic link points to.

c A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or
/dev/null.

b A block special file. This file type refers to a device that handles

data in blocks, such as a hard disk or DVD drive.

The remaining nine characters of the file attributes, called the file mode, represent the
read, write, and execute permissions for the file's owner, the file's group owner, and
everybody else.

User Group Other

rwx rwx rwx

Table 9-2 describes the effect the r, w, and X mode attributes have on files and directo-

ries:

Table 9-2: Permission Attributes

Attribute Files

r Allows a file to be opened and
read.

W Allows a file to be written to or

truncated, however this attribute
does not allow files to be
renamed or deleted. The ability
to delete or rename files is
determined by directory
attributes.

X Allows a file to be treated as a
program and executed. Program
files written in scripting
languages must also be set as
readable to be executed.

Directories

Allows a directory's contents to
be listed, but no file information
is available unless the execute
attribute is also set.

Allows files within a directory
to be created, deleted, and
renamed if the execute attribute
is also set.

Allows a directory to be entered
(i.e., cd directory)and
directory metadata (i.e, Ls -1
directory) to be accessed.
File operations such cp, rm,
and mvV require this access to the

96

Reading, Writing, and Executing

directory.

Table 9-3 provides some examples of file attribute settings:

Table 9-3: Permission Attribute Examples

File Attributes

-rW-r--r--

-rwXr-Xr-X

SrW-rw----

Trwxrwxrwx

drwxrwx- - -

drwxr-x---

Meaning

A regular file that is readable, writable, and executable by the
file's owner. No one else has any access.

A regular file that is readable and writable by the file's owner.
No one else has any access.

A regular file that is readable and writable by the file's owner.
Members of the file's owner group may read the file. The file is
readable by others.

A regular file that is readable, writable, and executable by the
file's owner. The file may be read and executed by everybody
else.

A regular file that is readable and writable by the file's owner
and members of the file's group owner only.

A symbolic link. All symbolic links have “dummy”
permissions. The real permissions are kept with the actual file
pointed to by the symbolic link.

A directory. The owner and the members of the owner group
may enter the directory and create, rename and remove files
within the directory.

A directory. The owner may enter the directory and create,
rename, and delete files within the directory. Members of the
owner group may enter the directory but cannot create, delete,
or rename files.

chmod — Change File Mode

To change the mode (permissions) of a file or directory, the chmod command is used. Be
aware that only the file’s owner or the superuser can change the mode of a file or direc-
tory. chmod supports two distinct ways of specifying mode changes: octal number repre-
sentation, or symbolic representation. We will cover octal number representation first.

97

9 — Permissions

What the Heck is Octal?

Octal (base 8), and its cousin, hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we (or
at least most of us) were born with 10 fingers, count using a base 10 number sys-
tem. Computers, on the other hand, were born with only one finger and thus do
all their counting in binary (base 2). Their number system has only two numerals,
0 and 1. So, in binary, counting looks like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011...
In octal, counting is done with the numerals zero through seven, like so:
0,1,2,3,4,5,6,7,10, 11, 12, 13, 14, 15, 16, 17, 20, 21...

Hexadecimal counting uses the numerals zero through nine plus the letters “A”
through “F”:

0,123,4,56,7,8,9,A,B,C,D,E, F 10, 11, 12, 13...

While we can see the sense in binary (since computers have only one finger),
what are octal and hexadecimal good for? The answer has to do with human con-
venience. Many times, small portions of data are represented on computers as bit
patterns. Take for example an RGB color. On most computer displays, each pixel
is composed of three color components: eight bits of red, eight bits of green, and
eight bits of blue. A lovely medium blue would be a 24 digit number:

010000110110111111001101

How would you like to read and write those kinds of numbers all day? I didn't
think so. Here's where another number system would help. Each digit in a hexa-
decimal number represents four digits in binary. In octal, each digit represents
three binary digits. So our 24 digit medium blue could be condensed to a six-digit
hexadecimal number:

436FCD

Since the digits in the hexadecimal number “line up” with the bits in the binary
number, we can see that the red component of our color is 43, the green 6F, and
the blue CD.

These days, hexadecimal notation (often referred to as “hex”) is more common
than octal, but as we will soon see, octal's ability to express three bits of binary
will be very useful...

With octal notation, we use octal numbers to set the pattern of desired permissions. Since
each digit in an octal number represents three binary digits, this maps nicely to the

98

Reading, Writing, and Executing

scheme used to store the file mode. Table 9-4 shows what we mean.

Table 9-4: File Modes in Binary and Octal

Octal Binary File Mode
0] 000 ---
1 001 --X
2 010 -W-
3 011 -WX
4 100 r--
5 101 r-x
6 110 rw-
7 111 rwx

By using three octal digits, we can set the file mode for the owner, group owner, and
world.

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ ls -1 foo.txt

-rw-rw-r-- 1 me me 0 2016-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt

[me@linuxbox ~]$ ls -1 foo.txt

“rwW------- 1 me me 0 2016-03-06 14:52 foo.txt

By passing the argument “600”, we were able to set the permissions of the owner to read
and write while removing all permissions from the group owner and others. Though re-
membering the octal to binary mapping may seem inconvenient, we will usually have
only to use a few common ones: 7 (rwx), 6 (rw-), 5 (r-x),4(r--),and 0 (---).

chmod also supports a symbolic notation for specifying file modes. Symbolic notation is
divided into three parts.

« Who the change will affect

« Which operation will be performed

« What permission will be set.

€611 €€) &6

To specify who is affected, a combination of the characters “u”, “g”, “0”, and “a” is used
as shown in Table 9-5.

99

9 — Permissions

Table 9-5: chmod Symbolic Notation

Symbol Meaning

u Short for “user” i.e. the file or directory’s owner.

g Group owner.

0 Short for others.

a Short for “all.” This is the combination of “u”, “g”, and “o0”.

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others
are to be removed.

({39 >N {1
r

Permissions are specified with the
examples of symbolic notation:

w”, and “x” characters. Table 9-6 provides some

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+X Add execute permission for the user, group, and others. This is

equivalent to a+X.

o-rw Remove the read and write permissions from anyone besides the
user and group owner.

go=rw Set the group owner and anyone besides the user to have read and
write permission. If either the group owner or others previously had
execute permission, it is removed.

u+x, go=rx Add execute permission for the user and set the permissions for the
group and others to read and execute. Multiple specifications may
be separated by commas.

Some people prefer to use octal notation, and some folks really like the symbolic. Sym-
bolic notation does offer the advantage of allowing us to set a single attribute without dis-
turbing any of the others.

Take a look at the chmod man page for more details and a list of options. A word of cau-
tion regarding the “--recursive” option: it acts on both files and directories, so it's not as

100

Reading, Writing, and Executing

useful as we would hope since we rarely want files and directories to have the same per-
missions.

Setting File Mode with the GUI

Now that we have seen how the permissions on files and directories are set, we can better
understand the permission dialogs in the GUI. In both Files (GNOME) and Dolphin
(KDE), right-clicking a file or directory icon will expose a properties dialog. Here is an
example from GNOME:

@ @ @ TLCL-17.10.pdF Properties

Basic | Permissions | OpenWith Document

Owner:

Access: Read and write v

Group: bshotts v

Access: Read and write v

Others

Access: Read-only v

Execute: [| Allow executing file as program

Help Close

Figure 2: GNOME file
permissions dialog

Here we can see the settings for the owner, group, and others.

umask — Set Default Permissions

The umask command controls the default permissions given to a file when it is created.
It uses octal notation to express a mask of bits to be removed from a file's mode at-
tributes. Let's take a look.

101

9 — Permissions

[me@linuxbox ~]$ rm -f foo.txt

[me@linuxbox ~]$ umask

0002

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ ls -1 foo.txt

-rw-rw-r-- 1 me me 0 2025-03-06 14:53 foo.txt

We first removed any old copy of f00.txt to make sure we were starting fresh. Next,
we ran the umask command without an argument to see the current value. It responded
with the value 0002 (the value 0022 is another common default value), which is the oc-
tal representation of our mask. We next create a new instance of the file foo.txt and
observe its permissions.

We can see that both the user and group get read and write permission, while everyone
else only gets read permission. The reason that world does not have write permission is
because of the value of the mask. Let's repeat our example, this time setting the mask our-
selves.

[me@linuxbox ~]$ rm foo.txt

[me@linuxbox ~]$ umask 0000

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ ls -1 foo.txt

-rw-rw-rw- 1 me me 0 2025-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now
world writable. To understand how this works, we have to look at octal numbers again. If
we change the mask to 0002, expand it into binary, and then compare it to the attributes
we can see what happens.

Original file mode --- rW- rw- rw-
Mask 000 000 OO0 010
Result --- FW- rw- r--

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed—in this case, the world write
permission. That's what the mask does. Everywhere a 1 appears in the binary value of the
mask, an attribute is unset. If we look at a mask value of @022, we can see what it does.

102

Reading, Writing, and Executing

Original file mode --- FW- rw- rw-
Mask 000 000 010 010
Result --- rwW- r-- r--

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done, re-
member to clean up.

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time we won't have to change the mask; the default provided by the distribu-
tion will be fine. In some high-security situations, however, we will want to control it.

Some Special Permissions

Though we usually see an octal permission mask expressed as a three-digit num-
ber, it is more technically correct to express it in four digits. Why? Because, in ad-
dition to read, write, and execute permission, there are some other, less used, per-
mission settings.

The first of these is the setuid bit (octal 4000). When applied to an executable file,
it sets the effective user ID from that of the real user (the user actually running the
program) to that of the program's owner. Most often this is given to a few pro-
grams owned by the superuser. When an ordinary user runs a program that is “se-
tuid root” , the program runs with the effective privileges of the superuser. This
allows the program to access files and directories that an ordinary user would nor-
mally be prohibited from accessing. Clearly, because this raises security concerns,
the number of setuid programs must be held to an absolute minimum.

The second less-used setting is the setgid bit (octal 2000), which, like the setuid
bit, changes the effective group ID from the real group ID of the real user to that
of the file owner. If the setgid bit is set on a directory, newly created files in the
directory will be given the group ownership of the directory rather the group own-
ership of the file's creator. This is useful in a shared directory when members of a
common group need access to all the files in the directory, regardless of the file
owner's primary group.

The third is called the sticky bit (octal 1000). This is a holdover from ancient
Unix, where it was possible to mark an executable file as “not swappable.” On

103

9 — Permissions

files, Linux ignores the sticky bit, but if applied to a directory, it prevents users
from deleting or renaming files unless the user is either the owner of the directory,
the owner of the file, or the superuser. This is often used to control access to a
shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these spe-
cial permissions. Here’s an example of assigning setuid to a program:

chmod u+s program

Next, here’s and example of assigning setgid to a directory:
chmod g+s dir

Finally, here’s an example of assigning the sticky bit to a directory:

chmod +t dir

When viewing the output from 1S, you can determine the special permissions.
Here are some examples. First, an example of a program that is setuid:
-rwWSr-Xxr-X

Here’s an example of a directory that has the setgid attribute:

drwxrwsr -x

Here’s an example of a directory with the sticky bit set:
drwxrwxrwt

Changing Identities

Sometimes we may find it necessary to take on the identity of another user. Often we
want to gain superuser privileges to carry out some administrative task, but it is also pos-
sible to “become” another regular user for such things as testing an account. There are
three ways to take on an alternate identity.

1. Log out and log back in as the alternate user.
2. Use the su command.
3. Use the sudo command.

We will skip the first technique since we know how to do it and it lacks the convenience
of the other two. From within our own shell session, the Su command allows us to as-
sume the identity of another user and either start a new shell session with that user's ID,
or to issue a single command as that user. The sudo command allows an administrator to
set up a configuration file called /etc/sudoers and define specific commands that

104

Changing Identities

particular users are permitted to execute under an assumed identity. The choice of which
command to use is largely determined by which Linux distribution you use. Your distri-
bution probably includes both commands, but its configuration will favor either one or
the other. We'll start with su. Though be aware that the use of su is falling out of favor in
modern Linux distributions.

su — Run a Shell with Substitute User and Group IDs

The su command is used to start a shell as another user. The command syntax looks like
this:

su [-[1]] [user]

If the “-1” option is included, the resulting shell session is a login shell for the specified
user. This means the user's environment is loaded and the working directory is changed to
the user's home directory. This is usually what we want. If the user is not specified, the
superuser is assumed. Notice that (strangely) the - 1 may be abbreviated as -, which is
how it is most often used. Assuming that the root account has a password set (which is
not the custom in modern distributions) we can start a shell for the superuser this way:

[me@linuxbox ~1$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is suc-
cessfully entered, a new shell prompt appears indicating that this shell has superuser priv-
ileges (the trailing # rather than a $), and the current working directory is now the home
directory for the superuser (normally /root). Once in the new shell, we can carry out
commands as the superuser. When finished, enter exit to return to the previous shell.

[root@linuxbox ~]# exit
[me@linuxbox ~]$%$

It is also possible to execute a single command rather than starting a new interactive com-
mand by using su this way.

su -c 'command'

105

9 — Permissions

Using this form, a single command line is passed to the new shell for execution. It is im-
portant to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell.

[me@linuxbox ~]$ su -c¢ 'ls -1 /root/*'
Password:
-rw------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total ©
[me@linuxbox ~]$%$

sudo — Execute a Command as Another User

The sudo command is like su in many ways but has some important additional capabili-
ties. The administrator can configure sudo to allow an ordinary user to execute com-
mands as a different user (usually the superuser) in a controlled way. In particular, a user
may be restricted to one or more specific commands and no others. Another important
difference is that the use of sudo does not require access to the superuser's password.
Authenticating using sudo, requires the user’s own password. Let's say, for example,
that sudo has been configured to allow us to run a fictitious backup program called
“backup_script”, which requires superuser privileges. With sudo it would be done like
this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not the superuser's) and
once the authentication is complete, the specified command is carried out. One important
difference between su and sudo is that sudo does not start a new shell, nor does it load
another user's environment. This means that commands do not need to be quoted any dif-
ferently than they would be without using sudo. Note that this behavior can be overrid-
den by specifying various options. Note, too, that Sudo can be used to start an interactive
superuser session (much like su -) by using the -1 option. See the sudo man page for
details.

To see what privileges are granted by sudo, use the - 1 option to list them:

106

Changing Identities

[me@linuxbox ~]$ sudo -1
User me may run the following commands on this host:
(ALL) ALL

Modern Linux Distributions and sudo

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating soft-
ware, editing system configuration files, and accessing devices. In the Windows
world, this is often done by giving users administrative privileges. This allows
users to perform these tasks. However, it also enables programs executed by the
user to have the same abilities. This is desirable in most cases, but it also permits
malware (malicious software) such as viruses to have free rein of the computer.

In the Unix world, there has always been a larger division between regular users
and administrators, owing to the multiuser heritage of Unix. The approach taken
in Unix is to grant superuser privileges only when needed. To do this, the su and
sudo commands are commonly used.

Years ago, most Linux distributions relied on su for this purpose. su didn't re-
quire the configuration that sudo required, and having a root account is tradi-
tional in Unix. This, however introduced a problem. Users were tempted to oper-
ate as root unnecessarily. In fact, some users operated their systems as the root
user exclusively, since it does away with all those annoying “permission denied”
messages. This is how you reduce the security of a Linux system to that of a Win-
dows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the ac-
count) and instead uses sudo to grant superuser privileges. The initial user ac-
count is granted full access to superuser privileges via sudo and may grant simi-
lar powers to subsequent user accounts. This method of granting privileges is now
the accepted standard is most modern distributions.

chown — Change File Owner and Group

The chown command is used to change the owner and group owner of a file or directory.
Superuser privileges are required to use this command. The syntax of chown looks like

this:

107

9 — Permissions

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending on the first ar-
gument of the command. Table 9-7 provides some examples.

Table 9-7: chown Argument Examples

Argument Results
bob Changes the ownership of the file from its current owner to user
bob.

bob:users Changes the ownership of the file from its current owner to user
bob and changes the file group owner to group users.

radmins Changes the group owner to the group admins. The file owner is
unchanged.
bob: Changes the file owner from the current owner to user bob and

changes the group owner to the login group of user bob.

Let's say we have two users; janet, who has access to superuser privileges and tony,
who does not. User janet wants to copy a file from her home directory to the home di-
rectory of user tony. Since user janet wants tony to be able to edit the file, janet
changes the ownership of the copied file from janet to tony.

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -1 ~tony/myfile.txt
-rw-r--r-- 1 root root root 2025-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -1 ~tony/myfile.txt
-rw-r--r-- 1 tony tony tony 2025-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home directory of user
tony. Next, janet changes the ownership of the file from root (a result of using
sudo) to tony. Using the trailing colon in the first argument, janet also changed the
group ownership of the file to the login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password. This
is because sudo, in most configurations, “trusts” us for several minutes until its timer

108

Changing Identities

runs out.

chgrp — Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem—setting up a shared direc-
tory. Let's revisit our friends janet and tony. They both have music collections and
want to set up a shared directory, where they will each store their music files as Ogg Vor-
bis or MP3. As before, user janet has access to superuser privileges via sudo.

A group needs to be created that will have both janet and tony as members. This is
done in two steps. First, using the groupadd command, we create the group followed
with the usermod command to add users to the group:

[janet@linuxbox ~]% sudo groupadd music
[janet@linuxbox ~]$ sudo usermod -a -G music janet
[janet@linuxbox ~]1% sudo usermod -a -G music tony

The options used with the usermod command are short for --append and --group and
they add the specified user to the corresponding group in the /etc/group file.

Next, janet creates the directory for the music files.

[janet@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since janet is manipulating files outside of her home directory, superuser privileges are
required. After the directory is created, it has the following ownerships and permissions:

[janet@linuxbox ~]$ s -1d /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2025-03-21 18:05 /usr/local/share/Music

As we can see, the directory is owned by root and has permission mode 755. To make

109

9 — Permissions

this directory shareable, janet needs to change the group ownership and the group per-
missions to allow writing.

[jJanet@linuxbox ~]% sudo chown :music /usr/local/share/Music
[janet@linuxbox ~]1% sudo chmod 2775 /usr/local/share/Music
[janet@linuxbox ~]$% ls -1ld /usr/local/share/Music

drwxrwsr-x 2 root music 4096 2025-03-21 18:05 /usr/local/share/Music

Using the chown command, janet sets the group owner of the directory to music
then uses chmod to set the directory permissions to 2755. This sets the setguid to
cause all files in the directory to inherit the same group ownership as the directory. We
did this by executing chmod 2755 but we could have done thing by using the symbolic
method with chmod g+s.

What does this all mean? It means that we now have a directory, /usr/local/
share/Music that is owned by root and allows read and write access to group mu-
sic. Group music has members janet and tony; thus, janet and tony can create
files in directory /usr/local/share/Music. Other users can list the contents of the
directory but cannot create files there.

But we still have a problem. The default umask on this system is 0022, which prevents
group members from writing files belonging to other members of the group. This would
not be a problem if the shared directory contained only files, but since this directory will
store music, and music is usually organized in a hierarchy of artists and albums, members
of the group will need the ability to create files and directories inside directories created
by other members. We need to change the umask used by janet and tony to 0002 in-
stead.

janet sets her umask to 0002, and creates a new test file and directory:

[janet@linuxbox ~]$ umask 0002

[jJanet@linuxbox ~]%$ > /usr/local/share/Music/test_file
[janet@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[janet@linuxbox ~]$ 1ls -1 /usr/local/share/Music
drwxrwsr-x 2 janet music 4096 2025-03-24 20:24 test_dir
-rw-rw-r-- 1 janet music 0 2025-03-24 20:22 test_file
[janet@linuxbox ~]$%

Both files and directories are now created with the correct permissions to allow all mem-
bers of the group music to create files and directories inside the Music directory.

The one remaining issue is umask. The necessary setting only lasts until the end of ses-

110

Exercising Our Privileges

sion and must be reset. In Chapter 11, we'll look at making the change to umask perma-
nent.

Changing Your Password

The last topic we'll cover in this chapter is setting passwords for ourselves (and for other
users if we have access to superuser privileges). To set or change a password, the
passwd command is used. The command syntax looks like this:

passwd [user]

To change our password, we just enter the passwd command. We will be prompted for
our old password and our new password.

[me@linuxbox ~]%$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This means it will
refuse to accept passwords that are too short, are too similar to previous passwords, are
dictionary words, or are too easily guessed.

[me@linuxbox ~]1$ passwd

(current) UNIX password:

New UNIX password:

BAD PASSWORD: is too similar to the old one
New UNIX password:

BAD PASSWORD: it is WAY too short

New UNIX password:

BAD PASSWORD: it is based on a dictionary word

If we have superuser privileges, you can specify a username as an argument to the
passwd command to set the password for another user. Other options are available to

the superuser to allow account locking, password expiration, and so on. See the passwd
man page for details.

The passwd, addgroup, and usermod commands are part of a suite of commands in
the shadow-utils package. Table 9-8 lists some of the commands contained in that
package:

111

9 — Permissions

Table 9-8: shadow-utils Commands

Command Description

lastlog Reports the most recent login of all users or of a given user.
useradd Create a new user or update default new user information.
userdel Delete a user account and related files.

usermod Modify a user account.

groupadd Create a new group.

groupdel Delete a group.

groupmod .Modify a group definition on the system.

We won’t be covering these commands in any detail as they fall a little outside the scope
of this book. For further information, consult each command’s man page.

Summing Up

In this chapter we saw how Unix-like systems such as Linux manage user permissions to
allow the read, write, and execution access to files and directories. The basic ideas of this
system of permissions date back to the early days of Unix and have stood up pretty well
to the test of time. But the native permissions mechanism in Unix-like systems lacks the
fine granularity of more modern systems.

Further Reading

e Wikipedia has a good article on malware:
http://en.wikipedia.org/wiki/Malware

112

http://en.wikipedia.org/wiki/Malware

10 — Processes

10 - Processes

Modern operating systems are usually multitasking, meaning they create the illusion of
doing more than one thing at once by rapidly switching from one executing program to
another. The Linux kernel manages this through the use of processes. Processes are how
Linux organizes the different programs waiting for their turn at the CPU.

Sometimes a computer will become sluggish or an application will stop responding. In
this chapter, we will look at some of the tools available at the command line that let us
examine what programs are doing and how to terminate processes that are misbehaving.

This chapter will introduce the following commands:
e s — Report a snapshot of current processes
e top — Display tasks
e jobs — List active jobs
e bg - Place a job in the background
e g —Place a job in the foreground
e Kkill- Send a signal to a process
e killall - Kill processes by name
e nice - Run a program with modified scheduling priority
e renice - Alter priority of running processes
e nohup - Run a command immune to hangups
e halt/poweroff/reboot - Halt, power-off, or reboot the system

e shutdown — Shutdown or reboot the system

How a Process Works

When a system starts up, the kernel initiates a few of its own activities as processes and
launches a program called init. init, in turn, starts Systemd which starts all the sys-
tem services. In older Linux distributions 1nit runs a series of shell scripts (located in

113

10 — Processes

/etc) called init scripts to perform a similar function. Many system services are imple-
mented as daemon programs, programs that just sit in the background and do their thing
without having any user interface. So, even if we are not logged in, the system is at least
a little busy performing routine stuff.

The fact that a program can launch other programs is expressed in the process scheme as
a parent process producing a child process.

The kernel maintains information about each process to help keep things organized. For
example, each process is assigned a number called a process ID (PID). PIDs are assigned
in ascending order, with init always getting PID 1. The kernel also keeps track of the
memory assigned to each process, as well as the processes' readiness to resume execu-
tion. Like files, processes also have owners and user IDs, effective user IDs, etc.

Viewing Processes

The most commonly used tool to view processes (there are several) is the pS command.
The ps program has a lot of options, but in its simplest form it is used like this:

[me@linuxbox ~]$ ps

PID TTY TIME CMD
5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes, process 5198 and process 10129, which are
bash and ps respectively. As we can see, by default, ps doesn't show us very much, just
the processes associated with the current terminal session. To see more, we need to add
some options, but before we do that, let's look at the other fields produced by ps. TTY is
short for “teletype,” and refers to the controlling terminal for the process. Unix is show-
ing its age here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

If we add an option, we can get a bigger picture of what the system is doing.

[me@linuxbox ~]$ ps x

PID TTY STAT TIME COMMAND

2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server -ac
2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde
15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 -pr

114

Viewing Processes

15774 ? Ss 0:02 /usr/bin/gpg-agent -s -daemon

15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running. ..

15797 ? S 0:00 dcopserver -nosid

and many more...

Adding the “x” option (note that there is no leading dash) tells ps to show all of our pro-
cesses regardless of what terminal (if any) they are controlled by. The presence of a “?” in
the TTY column indicates no controlling terminal. Using this option, we see a list of ev-
ery process that we own.

Since the system is running a lot of processes, ps produces a long list. It is often helpful
to pipe the output from ps into less for easier viewing. Some option combinations also
produce long lines of output, so maximizing the terminal emulator window may be a
good idea, too.

A new column titled STAT has been added to the output. STAT is short for “state” and re-
veals the current status of the process, as shown in Table 10-1.

Table 10-1: Process States

State Meaning
Running. This means that the process is running or ready to run.

Sleeping. The process is not running; rather, it is waiting for an
event, such as a keystroke or network packet.

D Uninterruptible sleep. The process is waiting for I/O such as a disk
drive.
T Stopped. The process has been instructed to stop. More on this later

in the chapter.

Z A defunct or “zombie” process. This is a child process that has
terminated but has not been cleaned up by its parent.

< A high-priority process. It's possible to grant more importance to a
process, giving it more time on the CPU. This property of a process
is called niceness. A process with high priority is said to be less nice
because it's taking more of the CPU's time, which leaves less for
everybody else.

N A low-priority process. A process with low priority (a “nice”
process) will get processor time only after other processes with
higher priority have been serviced.

115

10 — Processes

The process state may be followed by other characters. These indicate various exotic
process characteristics. See the pS man page for more detail.

Another popular set of options is “aux” (without a leading dash). This gives us even more
information.

[me@linuxbox ~]1%$ ps aux

USER PID %CPU %MEM VSzZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Maro5 0:31 init
root 2 0.0 0.0 0 0 ? S< Maro5 0:00 [kt]
root 3 0.0 0.0 (0] 0 ? S< Mar@e5 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mar@5 0:00 [ks]
root 5 0.0 0.0 0 0 ? S< Mar@5 0:06 [wa]
root 6 0.0 0.0 0 07 S< Mar@5 0:36 [ev]
root 7 0.0 0.0 0 07 S< Mar@5 0:00 [kh]

and many more. ..

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of psS can emulate the behavior of the ps program found in several different
Unix implementations. The most popular BSD options are shown in Table 10-2.

Table 10-2: Popular BSD Style ps Options

Option Function

X List our running processes.
ax List all running processes..

W Include full command names.

Verbose listing.

With the aux options, we get the additional columns shown in Table 10-3.

Table 10-3: BSD Style ps Column Headers

Header Meaning
USER User ID. This is the owner of the process.
%CPU CPU usage in percent.

116

Viewing Processes

%MEM Memory usage in percent.

VSz Virtual memory size.

RSS Resident set size. This is the amount of physical memory (RAM)
the process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date is
used.

TIME The amount of CPU time consumed by the process.

It’s also possible to produce a detailed snapshot of a single process by including a PID as
a command argument as shown in the example below.

[me@linuxbox ~]$ ps uw 44719
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
me 44719 0.0 0.0 13480 6492 pts/1 S 15:57 0:00 bash

Viewing Processes Dynamically with top

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the ps command is executed. To see a
more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

The top program displays a continuously updating (by default, every three seconds) dis-
play of the system processes listed in order of process activity. The name top comes from
the fact that the top program is used to see the “top” processes on the system. The top
display consists of two parts: a system summary at the top of the display, followed by a
table of processes sorted by CPU activity:

117

10 — Processes

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1692 840 R 1.3 0.3 0:00.14 top
6180 me 20 0@ 2700 1160 772 S 0.7 0.3 0:03.66 dbus-dae
6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
4955 root 20 O 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
2 root 15 -5 0 0 0SS 0.0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 0SS 0.0 0.0 0:00.00 migratio
4 root 15 -5 0 0 OS 0.0 0.0 0:00.72 ksoftirgq
5 root RT -5 0 0 0SS 0.0 0.0 0:00.04 watchdog
6 root 15 -5 (C] (C] 0OS 0.0 0.0 0:00.42 events/0
7 root 15 -5 0 0 S 0.0 0.0 0:00.06 khelper
41 root 15 -5 0 0 0S 0.0 0.0 0:01.08 kblockd/
67 root 15 -5 0 0 OS 0.0 0.0 0:00.00 kseriod
114 root 20 0 0 0 0SS 0.0 0.0 0:01.62 pdflush
116 root 15 -5 0 0 0S 0.0 0.0 0:02.44 kswapdoO

The system summary contains a lot of good stuff.

Table 10-4: top Information Fields

Row Field

1 top
14:59:20
up 6:30
2 users

load average:

Here's a rundown:

Meaning
The name of the program.
The current time of day.

This is called uptime. It is the amount of time
since the machine was last booted. In this
example, the system has been up for six-and-a-
half hours.

There are two users logged in.

Load average refers to the number of processes
that are waiting to run, that is, the number of
processes that are in a runnable state and are
sharing the CPU. Three values are shown, each

118

Viewing Processes

for a different period of time. The first is the
average for the last 60 seconds, the next the
previous 5 minutes, and finally the previous 15
minutes. Values less than 1.0 indicate that the
machine is not busy.

2 Tasks: This summarizes the number of processes and
their various process states.
3 Cpu(s): This row describes the character of the
activities that the CPU is performing.
0.7%us 0.7 percent of the CPU is being used for user
processes. This means processes outside the
kernel.
1.0%sy 1.0 percent of the CPU is being used for
system (kernel) processes.
0.0%ni 0.0 percent of the CPU is being used by “nice”
(low-priority) processes.
98.3%id 98.3 percent of the CPU is idle.
0.0%wa 0.0 percent of the CPU is waiting for I/O.
4 Mem: This shows how physical RAM is being used.
5 Swap: This shows how swap space (virtual memory)

is being used.

The top program accepts a number of keyboard commands. The two most interesting are
h, which displays the program's help screen, and g, which quits top.

Both major desktop environments provide graphical applications that display information
similar to top (in much the same way that Task Manager in Windows works), but top is
better than the graphical versions because it is faster and it consumes far fewer system re-
sources. After all, our system monitor program shouldn't be the source of the system
slowdown that we are trying to track.

Controlling Processes

Now that we can see and monitor processes, let's gain some control over them. For our
experiments, we're going to use a little program called x10ogo as our guinea pig. The
x1ogo program is a sample program supplied with the X Window System (the underly-
ing engine that makes the graphics on our display go though it’s going out of fashion in

119

10 — Processes

favor of Wayland), which simply displays a re-sizable window containing the X logo.
First, we'll get to know our test subject.

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear some-
where on the screen. On some systems, X L0go may print a warning message, but it may
be safely ignored.

Tip: If your system does not include the XxLogo program, try using gedit or
kwrite instead.

We can verify that X L0go0 is running by resizing its window. If the logo is redrawn in the
new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell is waiting for the
program to finish, just like all the other programs we have used so far. If we close the
x Logo window, the prompt returns.

Figure 3: The xlogo program

Interrupting a Process

Let's observe what happens when we run X L0go again. First, enter the X Logo command
and verify that the program is running. Next, return to the terminal window and press
Ctrl-c.

[me@linuxbox ~]$ xlogo

120

Controlling Processes

[me@linuxbox ~1$

In a terminal, pressing Ctr L-c, interrupts a program. This means we are politely asking
the program to terminate. After we pressed Ctr L-c, the XxLogo window closed and the
shell prompt returned.

Many (but not all) command-line programs can be interrupted by using this technique.

Putting a Process in the Background

Let's say we wanted to get the shell prompt back without terminating the x1ogo pro-
gram. We can do this by placing the program in the background. Think of the terminal as
having a foreground (with stuff visible on the surface like the shell prompt) and a back-
ground (with stuff hidden behind the surface). To launch a program so that it is immedi-
ately placed in the background, we follow the command with an ampersand (&) charac-
ter.

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$

After entering the command, the X Logo window appeared and the shell prompt returned,
but some funny numbers were printed too. This message is part of a shell feature called
job control. With this message, the shell is telling us that we have started job number 1
([1]) and that it has PID 28236. If we run pS, we can see our process.

[me@linuxbox ~]$ ps

PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

The shell's job control facility also gives us a way to list the jobs that have been launched
from our terminal. Using the jobs command, we can see this list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered 1, that it is running, and that the com-

121

10 — Processes

mand was X10ogo &.

Note that we can put multiple commands in the background by using this shortcut as
shown below.

me@linuxbox:~$ xlogo & gedit &
[1] 47211
[2] 47212

Returning a Process to the Foreground

A process in the background is immune from terminal keyboard input, including any at-
tempt to interrupt it with Ctr 1-c. To return a process to the foreground, use the fg
command in this way:

[me@linuxbox ~]$ jobs

[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1

xlogo

The fg command followed by a percent sign and the job number (called a jobspec) does
the trick. If we only have one background job, the jobspec is optional. To terminate
xlogo, press Ctrl-c.

Stopping (Pausing) a Process

Sometimes we'll want to stop a process without terminating it. This is often done to allow
a foreground process to be moved to the background. To stop a foreground process and
place it in the background, press Ctr 1-z. Let's try it. At the command prompt, type
xlogo, press the Enter key, and then press Ctr1-z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$

After stopping xLogo, we can verify that the program has stopped by attempting to re-
size the x1ogo window. We will see that it appears quite dead. We can either continue
the program's execution in the foreground, using the fg command, or resume the pro-
gram's execution in the background with the bg command:

122

Controlling Processes

[me@linuxbox ~]$ bg %1
[1]+ xLlogo &
[me@linuxbox ~]$%$

As with the g command, the jobspec is optional if there is only one job.

Moving a process from the foreground to the background is handy if we launch a graphi-
cal program from the command line, but forget to place it in the background by append-
ing the trailing &.

Why would we want to launch a graphical program from the command line? There are
two reasons.

« The program we want to run might not be listed on the window manager's menus
(such as x10go).

« By launching a program from the command line, we might be able to see error
messages that would otherwise be invisible if the program were launched graphi-
cally. Sometimes, a program will fail to start up when launched from the graphical
menu. By launching it from the command line instead, we may see an error mes-
sage that will reveal the problem. Also, some graphical programs have interesting
and useful command line options.

Changing Process Priority

As we saw in the output of the ps command (as well as top) there is a process attribute
called “niceness” which refers to the scheduling priority given to a process. In certain cir-
cumstances such as when video transcoding or performing CPU-based ray tracing for ex-
ample, we may want to give a process more priority (less niceness) or alternately if we
want a process to use less CPU time we could give it more niceness. Niceness can be ad-
justed with the nice and renice commands. It is important to remember that only the
superuser may increase the priority of a process and that regular users may only decrease
the priority of processes that they own.

The nice command launches a process with a specified niceness. Niceness adjustments
are expressed from -20 (the most favorable) to 19 (the least favorable) with a default of
value of zero (no adjustment). Let’s see how this works. Imagine we have a program
called cpu-hog that we want to run at a lower priority than it’s normal 20. We can
launch the program with nice as follows:

[me@linuxbox ~]$ nice -n 10 cpu-hog

Likewise if we have a program called must-run-fast that needs to be given more

123

10 — Processes

CPU priority, we (as the superuser) could do this:

[me@linuxbox ~]$ sudo nice -n -10 must-run-fast

It’s rarely necessary to run a command with increased priority and doing so runs the risk
of starving essential system processes of needed CPU time, so be careful.

The renice command adjusts the priority of a running process. For example, if we had
launched the cpu-hog program and wanted to increase its niceness after the fact, we
could do this:

[me@linuxbox ~]$ ps

PID TTY TIME CMD
379087 pts/9 00:00:00 bash
379215 pts/9 00:00:00 cpu-hog
379223 pts/9 00:00:00 ps
[me@linuxbox ~]%$ renice -n 19 379215

First, we run ps to determine the process id of the running cpu-hog program followed
by the renice command with the desired niceness level and the process id. The nice-
ness level of 19 (the maximum value) is useful as it makes the process only use CPU cy-
cles when nothing else is waiting.

Signals

The kill command is used to “kill” processes. This allows us to terminate programs
that need killing (that is, some kind of pausing or termination). Here's an example:

[me@linuxbox ~]$ xlogo &

[1] 28401
[me@linuxbox ~]$ kill 284061
[1]+ Terminated xlogo

We first launch x Logo in the background. The shell prints the jobspec and the PID of the
background process. Next, we use the ki1l command and specify the PID of the process

we want to terminate. We could have also specified the process using a jobspec (for ex-
ample, %1) instead of a PID.

While this is all very straightforward, there is more to it than that. The kill command
doesn't exactly “kill” processes: rather it sends them signals. Signals are one of several

124

Signals

ways that the operating system communicates with programs. We have already seen sig-
nals in action with the use of Ctr1-c and Ctr L-z. When the terminal receives one of
these keystrokes, it sends a signal to the program in the foreground. In the case of Ctr1-
C, a signal called INT (interrupt) is sent; with Ctr -z, a signal called TSTP (terminal
stop) is sent. Programs, in turn, “listen” for signals and may act upon them as they are re-
ceived. The fact that a program can listen and act upon signals allows a program to do
things such as save work in progress when it is sent a termination signal.

Sending Signals to Processes with kill

The ki1l command is used to send signals to programs. Its most common syntax looks
like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (terminate) signal is sent by
default. The kill command is most often used to send the following signals:

Table 10-5: Common Signals

Number Name Meaning

1 HUP Hangup. This is a vestige of the good old days
when terminals were attached to remote
computers with phone lines and modems. The
signal is used to indicate to programs that the
controlling terminal has “hung up.” The effect of
this signal can be demonstrated by closing a
terminal session. The foreground program
running on the terminal will be sent the signal and
will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and reread its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

It’s possible to make a process immune to the
HUP signal by launching it with the nohup

125

10 — Processes

2 INT

9 KILL
15 TERM
18 CONT
19 STOP
20 TSTP

Let's try out the ki1l command:

command which is discussed below.

Interrupt. This performs the same function as a
Ctr L-c sent from the terminal. It will usually
terminate a program.

Kill. This signal is special. Whereas programs
may choose to handle signals sent to them in
different ways, including ignoring them all
together, the KILL signal is never actually sent to
the target program. Rather, the kernel
immediately terminates the process. When a
process is terminated in this manner, it is given no
opportunity to “clean up” after itself or save its
work. For this reason, the KILL signal should be
used only as a last resort when other termination
signals fail.

Terminate. This is the default signal sent by the
kill command. If a program is still “alive”
enough to receive signals, it will terminate.

Continue. This will restore a process after a STOP
or TSTP signal. This signal is sent by the bg and
g commands.

Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is
not sent to the target process, and thus it cannot be
ignored.

Terminal stop. This is the signal sent by the
terminal when Ctr 1-z is pressed. Unlike the
STOP signal, the TSTP signal is received by the
program, but the program may choose to ignore it.

[me@linuxbox ~]$ xlogo &
[1] 13546

[me@linuxbox ~]$ kill -1 13546

[1]+ Hangup

xlogo

126

Signals

In this example, we start the X Logo program in the background and then send it a HUP
signal with ki11l. The xlogo program terminates, and the shell indicates that the back-
ground process has received a hangup signal. We may need to press the Enter key a
couple of times before the message appears. Note that signals may be specified either by
number or by name, including the name prefixed with the letters SIG.

[me@linuxbox ~]$ xlogo &

[1] 13601

[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]1$ xlogo &

[1] 13608

[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try the other signals. Remember, we can also use jobspecs
in place of PIDs.

Processes, like files, have owners, and you must be the owner of a process (or the supe-
ruser) to send it signals with k1 11.

In addition to the list of signals above, which are most often used with kil1l, there are
other signals frequently used by the system as listed in Table 10-5.

Table 10-6: Other Common Signals

Number Name Meaning
3 QUIT Quit.
11 SEGV Segmentation violation. This signal is sent if a

program makes illegal use of memory, that is, if it
tried to write somewhere it was not allowed to
write.

28 WINCH Window change. This is the signal sent by the
system when a window changes size. Some
programs , such as top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be displayed with the following command:

127

10 — Processes

[me@linuxbox ~1$ kill -1

Making a Process Hangup Proof

As we discussed, above many command line programs will respond to the HUP signal by
terminating when its controlling terminal “hangs up” (i.e. closes or disconnects). To pre-
vent this behavior, we can launch the program with the nohup command. Here’s an ex-
ample.

[me@linuxbox ~]$ xlogo

If we launch the X Logo program again then close our terminal window, the X Logo pro-
gram will terminate because it is sent a HUP signal when its controlling terminal is
closed. To prevent this we can launch X Logo with the nohup command like so:

[me@linuxbox ~]$ nohup xlogo

Now when we close the terminal window, X Logo will continue running.

Sending Signals to Multiple Processes with killall

It's also possible to send signals to multiple processes matching a specified program or
username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name. ..

To demonstrate, we will start a couple of instances of the X Logo program and then ter-
minate them.

[me@linuxbox ~]$ xlogo &

[1] 18801

[me@linuxbox ~]$ xlogo &

[2] 18802

[me@linuxbox ~]$ killall xlogo

[1]- Terminated xlogo
[2]+ Terminated xlogo

128

Signals

Remember, as with ki 11, we must have superuser privileges to send signals to processes
that do not belong to us.

Shutting Down the System

The process of shutting down the system involves the orderly termination of all the pro-
cesses on the system, as well as performing some vital housekeeping chores (such as
syncing all of the mounted file systems) before the system powers off. There are four
commands that can perform this function. They are halt, poweroff, reboot, and
shutdown. The first three are pretty self-explanatory and are generally used without any
command line options. Here’s an example:

[me@linuxbox ~]$ sudo reboot

The shutdown command is a bit more interesting. With it, we can specify which of the
actions to perform (halt, power down, or reboot) and provide a time delay to the shut-
down event. Most often it is used like this to halt the system:

[me@linuxbox ~]$ sudo shutdown -h now

or like this to reboot the system:

[me@linuxbox ~]$ sudo shutdown -r now

The delay can be specified in a variety of ways. See the shutdown man page for details.
Once the shutdown command is executed, a message is “broadcast” to all logged-in
users warning them of the impending event.

More Process-Related Commands

Since monitoring processes is an important system administration task, there are a lot of
commands for it. Table 10-6 lists some to play with:

129

10 — Processes

Table 10-7: Other Process Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing the
parent-child relationships between processes.

vmstat Outputs a snapshot of system resource usage including, memory,
swap, and disk I/O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. Here’s an
example: vmstat 5. Terminate the output with Ctr1-c.

x load A graphical program that draws a graph showing system load over
time.
tload Similar to the x Load program but draws the graph in the terminal.

Terminate the output with Ctr 1-c.

Summing Up

Most modern systems feature a mechanism for managing multiple processes. Linux pro-
vides a rich set of tools for this purpose. Given that Linux is the world's most deployed
server operating system, this makes a lot of sense. However, unlike some other systems,
Linux relies primarily on command line tools for process management. Though there are
graphical process tools for Linux, the command line tools are greatly preferred because of
their speed and light footprint. While the GUI tools may look pretty, they often create a
lot of system load themselves, which somewhat defeats the purpose.

130

10 — Processes

132

Part 2 — Configuration and the Environment

Part 2 — Configuration and the
Environment

133

11 — The Environment

11 - The Environment

As we discussed earlier, the shell maintains a body of information during our shell ses-
sion called the environment. Programs use data stored in the environment to determine
facts about the system's configuration. While most programs use configuration files to
store program settings, some programs also look for values stored in the environment to
adjust their behavior. Knowing this, we can use the environment to customize our shell
experience.

In this chapter, we will work with the following commands:
e printenv — Print part or all of the environment
e set — Set shell options
e export — Export environment to subsequently executed programs
e alias — Create an alias for a command

e Source — Execute commands from a file in the current shell

What is Stored in the Environment?

The shell stores two basic types of data in the environment; though, with bash, the
types are, at first glance, largely indistinguishable. They are environment variables and
shell variables. Shell variables are bits of data placed there by current instance of bash,
and environment variables are everything else. In addition to variables, the shell stores
some programmatic data, namely aliases and shell functions. We covered aliases in Chap-
ter 5, “Working with Commands.” and we will cover shell functions (which are related to
shell scripting) in Part 4.

Examining The Environment

To see what is stored in the environment, we can use either the set builtin in bash or
the printenv program. The set command will show both the shell and environment
variables, while printenv will only display the latter. Since the list of environment
contents will be fairly long, it is best to pipe the output of either command into less.

134

What is Stored in the Environment?

[me@linuxbox ~]$ printenv | lessDoing so, we should get something
that looks like this:

USER=me

PAGER=T1ess

LSCOLORS=Gxfxcxdxbxegedabagacad
XDG_CONFIG_DIRS=/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg
PATH=/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games:/usr/local/games

DESKTOP_SESSION=ubuntu

QT_IM_MODULE=ibus

QT_QPA_PLATFORMTHEME=appmenu-qt5

JOB=dbus

PWD=/home/me

GNOME_KEYRING_PID=1850

LANG=en_US.UTF-8

GDM_LANG=en_US
MANDATORY_PATH=/usr/share/gconf/ubuntu.mandatory.path
MASTER_HOST=1inuxbox

IM_CONFIG_PHASE=1

COMPIZ_CONFIG_PROFILE=ubuntu

GDMSESSION=ubuntu

SESSIONTYPE=gnome-session

XDG_SEAT=seat0

HOME=/home/me

SHLVL=2

LANGUAGE=en_US

GNOME_DESKTOP_SESSION_ID=this-is-deprecated

LESS=-R

LOGNAME=me

COMPIZ_BIN_PATH=/usr/bin/

LC_CTYPE=en_US.UTF-8
XDG_DATA_DIRS=/usr/share/ubuntu:/usr/share/gnome: /usr/local/share/:/
usr/share/

QT4_IM_MODULE=xim
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-IwaesmWaTO
LESSOPEN=| /usr/bin/lesspipe %s

INSTANCE=

What we see is a list of environment variables and their values. For example, we see a
variable called USER, which contains the value me. The printenv command can also
list the value of a specific variable.

135

11 — The Environment

[me@linuxbox ~]$ printenv USER
me

The set command, when used without options or arguments, will display both the shell
and environment variables, as well as any defined shell functions. Unlike printeny, its
output is courteously sorted in alphabetical order.

[me@linuxbox ~]$ set | less

It is also possible to view the contents of a variable using the echo command, like this:

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is aliases. To
see them, enter the alias command without arguments.

[me@linuxbox ~]$ alias

alias 1.='1ls -d .* --color=tty'

alias l1='1ls -1 --color=tty'

alias ls='1ls --color=tty'

alias vi='vim'

alias which="alias | /usr/bin/which --tty-only --read-alias --show-
dot --show-tilde'

Some Interesting Variables

The environment contains quite a few variables, and though the environment will differ
from the one presented here, we will likely see the variables listed in Table 11-1 in our
environment.

Table 11-1: Environment Variables

Variable Contents

DISPLAY The name of the display if we are running a graphical environment.
Usually this is “:0”, meaning the first display generated by the X
Server.

136

What is Stored in the Environment?

EDITOR The name of the program to be used for text editing.

SHELL The name of the user’s default shell program.

HOME The pathname of our home directory.

LANG Defines the character set and collation order of our human
language.

OLDPWD The previous working directory.

PAGER The name of the program to be used for paging output. This is often
setto /usr/bin/less.

PATH A colon-separated list of directories that are searched when we enter
the name of a executable program.

PS1 This stands for “prompt string 1.” This defines the contents of the
shell prompt. As we will see in Chapter 13, this can be extensively
customized.

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many

terminal protocols; this variable sets the protocol to be used with
our terminal emulator.

TZ Specifies our time zone. Unix-like systems maintain the computer’s
internal clock in Coordinated Universal Time (UTC) and then
display the local time by applying an offset specified by this
variable.

USER Our username.

Don't worry if some of these values are missing. They vary by distribution.

How Is The Environment Established?

When we log on to the system, the bash program starts, and reads a series of configura-
tion scripts called startup files, which define the default environment shared by all users.
This is followed by more startup files in our home directory that define our personal envi-
ronment. The exact sequence depends on the type of shell session being started. There are
two kinds.

« Alogin shell session A login shell session is one in which we are prompted for
our username and password. This happens when we when we log into a graphical
environment, for example. It is also done when we start a virtual console session.

137

11 — The Environment

A non-login shell session A non-login shell session typically occurs when we
launch a terminal session in the GUI with our terminal emulator.

Login shells read one or more startup files as shown in Table 11-2.

Table 11-2: Startup Files for Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/ .bash_profile A user's personal startup file. This can be used to extend
or override settings in the global configuration script.

~/ .bash_login If ~/.bash_profile is not found, bash attempts to
read this script.

~/.profile If neither ~/ .bash_profile nor~/.bash_login

is found, bash attempts to read this file. This is the
default in Debian-based distributions, such as Ubuntu.

Non-login shell sessions read the startup files listed in Table 11-3.

Table 11-3: Startup Files for Non-Login Shell Sessions

File Contents
/etc/bash.bashrc A global configuration script that applies to all users.
~/ .bashrc A user's personal startup file. It can be used to extend or

override settings in the global configuration script.

In addition to reading the startup files in Table 11-3, non-login shells inherit the environ-
ment variables from their parent process, usually a login shell.

Take a look and see which of these startup files are installed. Remember—since most of
the filenames listed above start with a period (meaning that they are hidden), we will
need to use the “-a” option when using 1s.

The ~/ .bashrc file is probably the most important startup file from the ordinary user’s
point of view, since it is almost always read. Non-login shells read it by default and most
startup files for login shells are written in such a way as to read the ~/ . bashrc file as
well.

138

How Is The Environment Established?

What's in a Startup File?

If we take a look inside a typical .bash_profile (taken from a CentOS 6 system), it
looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH : $HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are there
for human readability. The first interesting thing occurs on the fourth line, with the fol-
lowing code:

if [-f ~/.bashrc]; then
. ~/.bashrc
fi

This is called an if compound command, which we will cover fully when we get to shell
scripting in Part 4, but for now, here is a translation:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of . bashrc. The
next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we enter them on the
command line? For example, when we enter 1s, the shell does not search the entire com-
puter to find /bin/1s (the full pathname of the 1s command); rather, it searches a list
of directories that are contained in the PATH variable.

The PATH variable is often (but not always, depending on the distribution) set by the /
etc/profile startup file with this code:

139

11 — The Environment

PATH=$PATH : $SHOME/b1in

PATH is modified to add the directory $HOME/b1in to the end of the list. This is an ex-
ample of parameter expansion, which we touched on in Chapter 7. “Seeing the World As
the Shell Sees It.” To demonstrate how this works, try the following:

[me@linuxbox ~]$ foo="This is some "
[me@linuxbox ~]$ echo $foo

This is some

[me@linuxbox ~]$ foo=$foo"text."
[me@linuxbox ~]$ echo $foo

This is some text.

Using this technique, we can append text to the end of a variable's contents.

By adding the string $HOME/b1in to the end of the PATH variable's contents, the direc-
tory $HOME/bin is added to the list of directories searched when a command is entered.
This means that when we want to create a directory within our home directory for storing
our own private programs, the shell is ready to accommodate us. All we have to do is call
it bin, and we’re ready to go.

Note: Many distributions provide this PATH setting by default. Debian based dis-
tributions, such as Ubuntu, test for the existence of the ~/bin directory at login
and dynamically add it to the PATH variable if the directory is found.

Lastly, we have:

export PATH

The export command tells the shell to make the contents of PATH available to child

processes of this shell. In a sense, it converts a shell variable into an environment vari-
able.

Exploring How Child Processes Inherit Their Environments

This last point merits some elaboration. Shell variables are local to the current instance of
the shell and are not copied to any children the shell launches. Let’s demonstrate that.

First, we’ll set a shell variable in our current shell:

140

How Is The Environment Established?

[me@linuxbox ~]$ foo="bar"

Next, we’ll launch another copy of the shell:

[me@linuxbox ~]$ bash
[me@linuxbox ~]$

Now it looks like nothing happened, but we are in fact running another instance of the
shell. We can show this by looking at the results of the ps command:

[me@linuxbox ~]$ ps

PID TTY TIME CMD
1011638 pts/9 00:00:00 bash
1011650 pts/9 00:00:00 bash
1011662 pts/9 00:00:00 ps

Here we see that we are running two copies of bash. Since we didn’t put the new
instance into the background when we launched it, it is now the foreground task and the
original instance is waiting for this new shell to finish. Now let’s try and view the value
of the variable 00 that we set a moment ago:

[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$

No result indicates the 00 variable is empty. The reason for this is we didn’t give it a
value in this instance of the shell. Shell variables are not copied and given to a child
process when the child process is created. Environment variables, on the other hand, are
copied to become the environment of the child process.

To demonstrate another fun characteristic of processes and their environments, let’s
define 00 in this instance of the shell:

[me@linuxbox ~]$ foo="barbar"

Next, we’ll exit this bash instance and return to the parent instance which has been
patiently waiting for the child process to terminate before proceeding as it does with any
other program we didn’t put in the background.

141

11 — The Environment

[me@linuxbox ~]$ exit
[me@linuxbox ~]$%$

We’ll run ps again to see that we have returned to the first instance.

[me@linuxbox ~]1$ ps

PID TTY TIME CMD
1011638 pts/9 00:00:00 bash
1014900 pts/9 00:00:00 ps

Now let’s look at the value of foo in this instance.

[me@linuxbox ~]$ echo $foo
bar
[me@linuxbox ~]$%$

We see that it still contains the value we gave it, not the new value we set in the child
instance. This shows an important rule regarding child processes: a child process cannot
alter the environment of its parent. When a child process terminates, it takes its
environment with it. This fact will become important when we start writing shell scripts.

Launching a Program with a Temporary Environment

Another handy trick the shell provides is the ability to execute a command and give it a
temporary environment variable. Sometimes we want to run a program and give it a
special environment value. A good example is the man command which looks for an
environment variable named MANWIDTH that tells man how wide to format its output.
For example, to have man format its output a maximum of 75 characters wide (a handy
setting for easy reading) we can do this:

[me@linuxbox ~]$ MANWIDTH=75 man ls

This outputs the man page for the 1S command nicely formatted to a comfortable width.
By the way, this is good thing to alias:

[me@linuxbox ~]$ alias man=’'MANWIDTH=75 man’

Now whenever we use the man command it will always limit line length to 75 characters.

142

Modifying the Environment

Modifying the Environment

Since we know where the startup files are and what they contain, we can modify them to
customize our environment.

Which Files Should We Modify?

As a general rule, to add directories to your PATH or define additional environment vari-
ables, place those changes in .bash_profile (or the equivalent, according to your
distribution; for example, Ubuntu uses .profile). For everything else, place the
changes in . bashrc.

Note: Unless you are the system administrator and need to change the defaults
for all users of the system, restrict your modifications to the files in your home
directory. It is certainly possible to change the files in /etc such as profile,
and in many cases it would be sensible to do so, but for now, let's play it safe.

Text Editors

To edit (i.e., modify) the shell's startup files, as well as most of the other configuration
files on the system, we use a program called a text editor. A text editor is a program that
is, in some ways, like a word processor in that it allows us to edit the words on the screen
with a moving cursor. It differs from a word processor by only supporting pure text and
often contains features designed for writing programs. Text editors are the central tool
used by software developers to write code and by system administrators to manage the
configuration files that control the system.

A lot of different text editors are available for Linux; most systems have several installed.
Why so many different ones? Because programmers like writing them and since pro-
grammers use them extensively, they write editors to express their own desires as to how
they should work.

Text editors fall into two basic categories: graphical and text-based. GNOME and KDE
both include some popular graphical editors. GNOME ships with an editor called gedit,
which is usually called “Text Editor” in the GNOME menu. KDE usually ships with
three, which are (in order of increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones we'll often encounter are nano, vi,
and emacs. The nano editor is a simple, easy-to-use editor designed as a replacement
for the pico editor supplied with the PINE email suite. The v1 editor (which on most
Linux systems is replaced by a program called vim, which is short for “vi improved”) is
the traditional editor for Unix-like systems. It will be the subject of our next chapter. The

143

11 — The Environment

emacs editor was originally written by Richard Stallman. It is a gigantic, all-purpose,
does-everything programming environment. While readily available, it is seldom installed
on most Linux systems by default.

Using a Text Editor

Text editors are invoked from the command line by typing the name of the editor fol-
lowed by the name of the file we want to edit. If the file does not already exist, the editor
will assume that we want to create a new file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named “some_file”, if it
exists.

Graphical text editors are pretty self-explanatory, so we won't cover them here. Instead,
we will concentrate on our first text-based text editor, nano. Let's fire up nano and edit
the .bashrc file. But before we do that, let's practice some “safe computing.” When-
ever we edit an important configuration file, it is always a good idea to create a backup
copy of the file first. This protects us in case we mess up the file while editing. To create
a backup of the . bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn't matter what we call the backup file; just pick an understandable name. The ex-
tensions “.bak”, “.sav”, “.0ld”, and “.orig” are all popular ways of indicating a backup
file. Oh, and remember that cp will overwrite existing files silently.

Now that we have a backup file, we'll start the editor.

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions

144

Modifying the Environment

if [-f /etc/bashrc]; then
/etc/bashrc
fi

User specific aliases and functions

[Read 8 lines]
Get Helpfy writeoutlJ§ Read Fil}§ Prev Paglf§ cut Text[§§ Cur Pos
Exit Justify Where Is[§Y Next Pag[f uncut Tefjj To Spell

Note: If your system does not have nano installed, you may use a graphical edi-
tor instead.

The screen consists of a header at the top, the text of the file being edited in the middle,
and a menu of commands at the bottom. Since nano was designed to replace the text edi-
tor supplied with an email client, it is rather short on editing features.

The first command we should learn in any text editor is how to exit the program. In the
case of nano, we press Ctr L-X to exit. This is indicated in the menu at the bottom of
the screen. The notation AX means Ctr L-Xx. This is a common notation for control char-
acters used by many programs.

The second command we need to know is how to save our work. With nano it's Ctr1-
0. With this knowledge, we're ready to do some editing. Using the down arrow key and/
or the PageDown key, move the cursor to the end of the file, and then add the following
lines to the . bashrc file:

umask 0002

export HISTCONTROL=ignoredups
export HISTSIZE=1000

alias 1.='ls -d .* --color=auto'
alias 11='1ls -1 --color=auto'

145

11 — The Environment

Note: Your distribution may already include some of these, but duplicates won't
hurt anything.

Table 11-4 details the meaning of our additions:

Table 11-4: Additions to Our . bashrc

Line Meaning

umask 0002 Sets the umask to solve the
problem with the shared
directories we discussed in
Chapter 9, “Permissions.”

export HISTCONTROL=ignoredups Causes the shell's history
recording feature to ignore a
command if the same command
was just recorded.

export HISTSIZE=1000 Increases the size of the command
history from the usual default of
500 lines to 1,000 lines.

alias 1.='ls -d .* --color=auto' Creates a new command called
1., which displays all directory
entries that begin with a dot.

alias 1l='ls -1 --color=auto' Creates a new command called
11, which displays a long-format
directory listing.

As we can see, many of our additions are not intuitively obvious, so it would be a good
idea to add some comments to our .bashrc file to help explain things to the humans.
Using the editor, change our additions to look like this:

146

Modifying the Environment

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines

export HISTCONTROL=ignoredups

export HISTSIZE=1000

Add some helpful aliases
alias 1l.='1ls -d .* --color=auto'
alias 11='1ls -1 --color=auto'

Ah, much better! With our changes complete, press Ctr1-o0 to save our modified
.bashrc file, and press Ctr1-x to exit nano.

Why Comments Are Important

Whenever you modify configuration files it's a good idea to add some comments
to document your changes. Sure, you'll probably remember what you changed to-
morrow, but what about six months from now? Do yourself a favor and add some
comments. While you're at it, it’s not a bad idea to keep a log of what changes
you make.

Shell scripts and bash startup files use a “#” symbol to begin a comment. Other
configuration files may use other symbols. Most configuration files will have
comments. Use them as a guide.

You will often see lines in configuration files that are commented out to prevent
them from being used by the affected program. This is done to give the reader
suggestions for possible configuration choices or examples of correct configura-
tion syntax. For example, the . bashrc file of Ubuntu 18.04 contains these lines:

some more 1ls aliases
#alias 11='1s -1'
#alias la='ls -A'
#alias 1='1ls -CF'

The last three lines are valid alias definitions that have been commented out. If
you remove the leading “#” symbols from these three lines, a technique called un-
commenting, you will activate the aliases. Conversely, if you add a “#” symbol to

147

11 — The Environment

the beginning of a line, you can deactivate a configuration line while preserving
the information it contains.

Activating Our Changes

The changes we have made to our . bashrc will not take effect until we close our termi-
nal session and start a new one because the . bashrc file is only read at the beginning of
a session. However, we can force bash to reread the modified .bashrc file with the
following command:

[me@linuxbox ~]$ source ~/.bashrc

After doing this, we should be able to see the effect of our changes. Try one of the new
aliases.

[me@linuxbox ~]$ 11

A Little More about Source

The source command (which can be abbreviated as .) is a shell builtin that
reads a file directly into the current shell just as if its contents had been entered at
the keyboard. Yes, all those strange looking things we have seen in the shell
startup files are simply things that shell understands and can act upon. Many older
text-based operating systems (DOS, CP/M, etc.) functioned mainly as simple pro-
gram launchers. Unix style shells can do that of course, as we have seen, but they
can also do so much more...

Summing Up

In this chapter, we learned an essential skill—editing configuration files with a text edi-
tor. Moving forward, as we read man pages for commands, take note of the environment
variables that commands support. There may be a gem or two. In later chapters, we will
learn about shell functions, a powerful feature that you can also include in the bash
startup files to add to your arsenal of custom commands.

148

Further Reading

Further Reading

e The INVOCATION section of the bash man page covers the bash startup files
in gory detail.

149

12 — A Gentle Introduction to vi(m)

12 - A Gentle Introduction to vi(m)

There is an old joke about a visitor to New York City asking a passerby for directions to
the city's famous classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?
Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished pianist, is not some-
thing that we pick up in an afternoon. It takes years of practice. In this chapter, we will
introduce the vi (pronounced “vee eye”) text editor, one of the core programs in the
Unix tradition. Vi is somewhat notorious for its unique user interface, but when we see a
master sit down at the keyboard and begin to “play,” we will indeed be witness to some
great art. We won't become masters in this chapter, but when we are done, we will know
how to play “chopsticks” in vi.

Why We Should Learn vi

In this modern age of graphical editors and easy-to-use text-based editors such as nano,
why should we learn vi? There are three good reasons.

e V1 is almost always available. This can be a lifesaver if we have a system with no
graphical interface, such as a remote server or a local system with a broken GUI
configuration. nano, while increasingly popular, is still not universal. POSIX, a
standard for program compatibility on Unix systems, requires that Vi be present.

e Vi is lightweight and fast. For many tasks, it's easier to bring up v1i than it is to
find the graphical text editor in the menus and wait for its multiple megabytes to
load. In addition, vi is designed for typing speed. As we will see, a skilled vi
user never has to lift his or her fingers from the keyboard while editing.

e We don't want other Linux and Unix users to think we are cowards.

Okay, maybe two good reasons.

150

A Little Background

A Little Background

The first version of vi was written in 1976 by Bill Joy, a University of California at
Berkeley student who later went on to co-found Sun Microsystems. Vi derives its name
from the word “visual,” because it was intended to allow editing on a video terminal with
a moving cursor. Previous to visual editors, there were line editors that operated on a sin-
gle line of text at a time. To specify a change, we tell a line editor to go to a particular line
and describe what change to make, such as adding or deleting text. With the advent of
video terminals (rather than printer-based terminals like teletypes), visual editing became
possible. vi actually incorporates a powerful line editor called eX, and we can use line
editing commands while using v1i.

Most Linux distributions don't include real vi; rather, they ship with an enhanced re-
placement called vim (which is short for “vi improved”) written by Bram Moolenaar.
vim is a substantial improvement over traditional Unix vi and is often symbolically
linked (or aliased) to the name vi on Linux systems. In the discussions that follow, we
will assume that we have a program called v1i that is really vim.

Starting and Stopping vi

To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

A screen like this should appear:

= VIM - Vi Improved

= version 8.0.707
= by Bram Moolenaar et al.
= Vim is open source and freely distributable

= Sponsor Vim development!
= type :help sponsor<Enter> for information

= type :q<Enter> to exit
= type :help<Enter> or <F1> for on-1line help
= type :help version8<Enter> for version info

151

12 — A Gentle Introduction to vi(m)

= Running in Vi compatible mode
= type :set nocp<Enter> for Vim defaults
= type :help cp-default<Enter> for info on this

Just as we did with nano earlier, the first thing to learn is how to exit. To exit, we enter
the following command (note that the colon character is part of the command):

The shell prompt should return. If, for some reason, vi will not quit (usually because we
made a change to a file that has not yet been saved), we can tell vi that we really mean it
by adding an exclamation point to the command.

q!

Tip: If you get “lost” in Vi, try pressing the ESc key twice to find your way
again.

Compatibility Mode

In the example startup screen above, we see the text “Running in Vi compatible
mode.” This means that vim will run in a mode that is closer to the normal be-
havior of vi rather than the enhanced behavior of vim. For the purposes of this
chapter, we will want to run vim with its enhanced behavior. To do this, you have
a few options. Try running vim instead of vi. If that works, consider adding
alias vi='vim' to your .bashrc file. Alternatively, use this command to
add a line to your vim configuration file:

echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distributions
install a minimal version of vim (i.e., vim-tiny) by default that supports only a

152

Starting and Stopping vi

limited set of vim features. While performing the lessons that follow, you may
encounter missing features. If this is the case, install the full version of vim.

Editing Modes

Let's start V1 again, this time passing to it the name of a nonexistent file. This is how we
can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

If all goes well, we should get a screen like this:

"foo.txt" [New File]

The leading tilde characters (~) indicate that no text exists on that line. This shows that
we have an empty file. Do not type anything yet!

153

12 — A Gentle Introduction to vi(m)

The second most important thing to learn about vi (after learning how to exit) is that vi
is a modal editor. When V1 starts, it begins in normal mode. In this mode, almost every
key is a command, so if we were to start typing, Vi would basically go crazy and make a
big mess.

Entering Insert Mode

To add some text to our file, we must first enter insert mode. To do this, we press the 1
key. Afterward, we should see the following at the bottom of the screen if vim is running
in its usual enhanced mode (this will not appear in Vi compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumps over the lazy dog.

To exit insert mode and return to normal mode, press the ESC key.

Saving Our Work

To save the change we just made to our file, we must enter an command mode. This is
done by pressing the : key while in normal mode. After doing this, a colon character
should appear at the bottom of the screen.

To write our modified file, we follow the colon with a w and then press Enter.

The file will be written to the hard drive, and we should get a confirmation message at the
bottom of the screen, like this:

"foo.txt" [New] 1L, 45C written

154

Editing Modes

Note: While vim calls the three primary editing modes, normal, insert, and com-
mand. Real v1 (and its documentation) calls these modes command, insert, and
ex, respectively. Many online v1i resources will refer to them that way, and yes, it
can be confusing.

Moving the Cursor Around

While in normal mode, v1i offers a large number of movement commands, some of
which it shares with Lless. Table 12-1 lists a subset.

Table 12-1: Cursor Movement Keys

Key Moves The Cursor

1 or right arrow Right one character.

h or left arrow Left one character.

j or down arrow Down one line.

K or up arrow Up one line.

O (zero) To the beginning of the current line.

A To the first non-whitespace character on the current
line.

$ To the end of the current line.

To the beginning of the next word or punctuation

character.

W To the beginning of the next word, ignoring
punctuation characters.

b To the beginning of the previous word or punctuation
character.

B To the beginning of the previous word, ignoring
punctuation characters.

Ctrl-f or Page Down Down one page.

Ctrl-borPage Up Up one page.

numberG To line number. For example, 1G moves to the first

line of the file.

155

12 — A Gentle Introduction to vi(m)

Key Moves The Cursor
G To the last line of the file.

Why are the h, j, k, and 1 keys used for cursor movement? When vi was originally
written, not all video terminals had arrow keys, and skilled typists could use regular key-
board keys to move the cursor without ever having to lift their fingers from the keyboard.

Many commands in Vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes V1 to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text, and
moving text around by cutting and pasting. V1, of course, supports all of these operations
in its own unique way. Vi also provides a limited form of undo. If we press the “u” key
while in normal mode, vi will undo the last change that you made. This will come in
handy as we try some of the basic editing commands.

Appending Text

V1 has several different ways of entering insert mode. We have already used the i com-
mand to insert text.

Let's go back to our foo. txt file for a moment.

The quick brown fox jumps over the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line. vi
provides a command to append text, the sensibly named a command. If we move the cur-
sor to the end of the line and type a, the cursor will move past the end of the line and vi
will enter insert mode. This will allow us to add some more text.

The quick brown fox jumps over the lazy dog. It was cool.

Remember to press the ESC key to exit insert mode.

156

Basic Editing

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to the end of the current line and start appending. It's the A command. Let's try it
and add some more lines to our file.

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.
Now we type A and add the following lines of text:

The quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the ESc key to exit insert mode.

As we can see, the “A” command is more useful as it moves the cursor to the end of the
line before starting insert mode.

Opening a Line

Another way we can insert text is by “opening” a line. This inserts a blank line between

two existing lines and enters insert mode. This has two variants as described in Table 12-
2.

Table 12-2: Line Opening Keys

Command Opens
o] The line below the current line
0 The line above the current line

We can demonstrate this as follows: place the cursor on “Line 3” then type 0.

The quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line and we entered insert mode. Exit insert mode

157

12 — A Gentle Introduction to vi(m)

by pressing the Esc key. Press the u key to undo our change.

Press the O key to open the line above the cursor:

The quick brown fox jumps over the lazy dog. It was cool.
Line 2

Line 3
Line 4
Line 5

Exit insert mode by pressing the ESC key and undo our change by pressing u.

Deleting Text

As we might expect, Vi offers a variety of ways to delete text, all of which contain one
of two keystrokes. First, the X command will delete a character at the cursor location. X
may be preceded by a number specifying how many characters are to be deleted. The d
command is more general purpose. Like X, it may be preceded by a number specifying
the number of times the deletion is to be performed. In addition, d is always followed by

a movement command that controls the size of the deletion. Table 12-3 provides some ex-
amples:

Table 12-3: Text Deletion Commands

Command Deletes

X The current character

3X The current character and the next two characters

dd The current line

5dd The current line and the next four lines

dw From the current cursor position to the beginning of
the next word

ds$ From the current cursor location to the end of the
current line

do From the current cursor location to the beginning of
the line

dn From the current cursor location to the first non-

whitespace character in the line

158

Basic Editing

Command Deletes
dG From the current line to the end of the file
d20G From the current line to the twentieth line of the file

Place the cursor on the word It on the first line of our text. Press the X key repeatedly
until the rest of the sentence is deleted. Next, press the u key repeatedly until the deletion
is undone.

Note: Real vi supports only a single level of undo. vim supports multiple lev-
els.

Let's try the deletion again, this time using the d command. Again, move the cursor to the
word It and type dW to delete the word.

The quick brown fox jumps over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Type d$ to delete from the cursor position to the end of the line.

The quick brown fox jumps over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Press dG to delete from the current line to the end of the file.

159

12 — A Gentle Introduction to vi(m)

Press u three times to undo the deletion.

Cutting, Copying, and Pasting Text

The d command not only deletes text, it also “cuts” text. Each time we use the d com-
mand, the deletion is copied into a paste buffer (think clipboard) that we can later recall
with the p command to paste the contents of the buffer after the cursor or with the P com-
mand to paste the contents before the cursor.

The y command is used to “yank” (copy) text in much the same way the d command is
used to cut text. Table 12-4 provides some examples of combining the ¥ command with
various movement commands:

Table 12- 4: Yanking Commands

Command Copies

Yy The current line

Syy The current line and the next four lines

yw From the current cursor position to the beginning of
the next word

y$ From the current cursor location to the end of the
current line

yo From the current cursor location to the beginning of
the line

yA From the current cursor location to the first non-
whitespace character in the line

VG From the current line to the end of the file

y20G From the current line to the twentieth line of the file

Let's try some copy-and-paste. Place the cursor on the first line of the text and type yy to
copy the current line. Next, move the cursor to the last line (G) and type p to paste the
line below the current line.

The quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3
Line 4

160

Basic Editing

Line 5
The quick brown fox jumps over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line.

The quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3
Line 4
The quick brown fox jumps over the lazy dog. It was cool.
Line 5

Try some of the other y commands in the Table 12-4 and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

V1 is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one be-
low it. Because of this, vi provides a specific command, J (not to be confused with j,
which is for cursor movement), to join lines together.

If we place the cursor on Line 3 and type the J command, here's what happens:

The quick brown fox jumps over the lazy dog. It was cool.
Line 2

Line 3 Line 4

Line 5

Search-and-Replace

V1 has the ability to move the cursor to locations based on searches. It can do this either

on a single line or over an entire file. It can also perform text replacements with or with-
out confirmation from the user.

Searching Within a Line

The f command searches a line and moves the cursor to the next instance of a specified

161

12 — A Gentle Introduction to vi(m)

character. For example, the command fa would move the cursor to the next occurrence
of the character a within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching the Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.
This works the same way as we learned earlier in the less program. When you type the
/ command, a / will appear at the bottom of the screen. Next, type the word or phrase to
be searched for, followed by the Enter key. The cursor will move to the next location
containing the search string. A search may be repeated using the previous search string
with the n command. Here's an example:

The quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type followed by the Enter key.

/Line

The cursor will move to line 2. Next, type n and the cursor will move to line 3. Repeating
the n command will move the cursor down the file until it runs out of matches. While we
have so far used only words and phrases for our search patterns, vi allows the use of
regular expressions, a powerful method of expressing complex text patterns. We will
cover regular expressions fully in chapter 19, “Regular Expressions.”

Global Search-and-Replace

v1 uses command mode to perform search-and-replace operations (called substitution in
v1) over a range of lines or the entire file. To change the word Line to Line for the en-
tire file, we would enter the following command:

:%s/Line/line/g

Let's break down this command into separate items and see what each one does (see Ta-

162

Search-and-Replace

ble 12-5).

Table 12- 5:An Example of Global Search-and-Replace Syntax

Item Meaning
The colon character enters command mode.

% This specifies the range of lines for the operation. % is a
shortcut meaning from the first line to the last line. Alternately,
the range could have been specified 1, 5 (since our file is five
lines long) or 1, $, which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is
performed only on the current line.

S This specifies the operation. In this case, it’s substitution
(search-and-replace).

/Line/line/ This specifies the search pattern and the replacement text.

g This means “global” in the sense that the search-and-replace is

performed on every instance of the search string in the line. If
omitted, only the first instance of the search string on each line
is replaced.

After executing our search-and-replace command, our file looks like this:

The quick brown fox jumps over the lazy dog. It was cool.
line 2
line 3
line 4
line 5

We can also specify a substitution command with user confirmation. This is done by
adding a c to the end of the command. Here’s an example:

:%s/line/Line/gc

This command will change our file back to its previous form; however, before each sub-
stitution, V1 stops and asks us to confirm the substitution with this message:

163

12 — A Gentle Introduction to vi(m)

replace with Line (y/n/a/q/l/AE/NY)?

Each of the characters within the parentheses is a possible choice, as described in Table
12-6.

Table 12-6: Replace Confirmation Keys

Key Action

Yy Perform the substitution.

n Skip this instance of the pattern.

a Perform the substitution on this and all subsequent instances
of the pattern.

g or Esc Quit substituting.

1 Perform this substitution and then quit. This is short for
“last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. This is useful for
viewing the context of the proposed substitution.

If you type Yy, the substitution will be performed, n will cause V1 to skip this instance and
move on to the next one.

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line.

vi filel file2 file3...

Let's exit our existing vi session and create a new file for editing. Type :w(q to exit Vi,
saving our modified text. Next, we'll create an additional file in our home directory that
we can play with. We'll create the file by capturing some output from the 1S command.

[me@linuxbox ~]$ ls -1 /usr/bin > 1ls-output.txt

Let's edit our old file and our new one with vi.

164

Editing Multiple Files

[me@linuxbox ~]$ vi foo.txt ls-output.txt

vi will start, and we will see the first file on the screen.

fihe quick brown fox jumps over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Switching Between Files

To switch from one file to the next, use this ex command:

:bn

To move back to the previous file use the following:

:bp

While we can move from one file to another, vi enforces a policy that prevents us from
switching files if the current file has unsaved changes. To force v1i to switch files and
abandon your changes, add an exclamation point (!) to the command.

In addition to the switching method described above, vim (and some versions of v1i)
provides some command mode commands that make multiple files easier to manage. We
can view a list of files being edited with the :buffers command. Doing so will display
a list of the files at the bottom of the display.

:buffers
1 %a "foo.txt" line 1
2 "ls-output.txt" line ©

Press ENTER or type command to continue

To switch to another buffer (file), type : buffer followed by the number of the buffer
we want to edit. For example, to switch from buffer 1 containing the file foo.txt to
buffer 2 containing the file Ls-output.txt we would type this:

165

12 — A Gentle Introduction to vi(m)

:buffer 2

Our screen now displays the second file. Another way we can change buffers is to use the
:bn (short for buffer next) and :bp (short for buffer previous) commands mentioned
earlier.

Opening Additional Files for Editing

It's also possible to add files to our current editing session. The command mode com-
mand : e (short for “edit”) followed by a filename will open an additional file. Let's end
our current editing session and return to the command line.

Start V1 again with just one file.

[me@linuxbox ~]$ vi foo.txt

To add our second file, enter the following:

:e ls-output.txt

It should appear on the screen. The first file is still present as we can verify.

:buffers
1 # "foo.txt" line 1
2 %a "ls-output.txt" line ©

Press ENTER or type command to continue

Copying Content from One File into Another

Often while editing multiple files, we will want to copy a portion of one file into another
file that we are editing. This is easily done using the usual yank and paste commands we
used earlier. We can demonstrate as follows. First, using our two files, switch to buffer 1
(foo. txt) by entering this:

:buffer 1

That should give us this:

166

Editing Multiple Files

Line 2
Line 3
Line 4
Line 5

fihe quick brown fox jumps over the lazy dog. It was cool.

Next, move the cursor to the first line, and type Yy to yank (copy) the line.

Switch to the second buffer by entering the following:

:buffer 2

The screen will now contain some file listings like this (only a portion is shown here):

ﬁotal 343700

-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root

root
root
root
root
root
root

31316
8240
111276
25368
11532
7292

2017-12-05
2017-12-09
2018-01-31
2016-10-06
2017-05-04
2017-05-04

08:
13:
13:
20:
17:
17:

58
39
36
16
43
43

[
411toppm

azp

a52dec
aafire
aainfo

Move the cursor to the first line and paste the line we copied from the preceding file by

typing the p command.

total 343700

-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root

root
root
root
root
root
root

ghe quick brown fox jumps over the

31316
8240
111276
25368
11532
7292

lazy dog. It was

2017-12-05
2017-12-09
2018-01-31
2016-10-06
2017-05-04
2017-05-04

08:
13:
13:
20:
17:
17:

58
39
36
16
43
43

cool.

[
411toppm
azp
ab2dec
aafire
aainfo

Inserting an Entire File into Another

It's also possible to insert an entire file into one that we are editing. To see this in action,

let's end our V1 session and start a new one with just a single file.

167

12 — A Gentle Introduction to vi(m)

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again.

[@otal 343700

-rwxr-xr-x 1 root root 31316 2017-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2017-12-09 13:39 41ltoppm
-rwxr-xr-x 1 root root 111276 2018-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2016-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2017-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2017-05-04 17:43 aainfo

Move the cursor to the third line, and then enter the following command mode command:

:r foo.txt

The :r command (short for “read”) inserts the specified file below the cursor position.
Our screen should now look like this:

Line 2
Line 3
Line 4
Line 5
-rWXr-Xr-X
-rWXF -Xr-X
-rWXr-Xr-x
-rWXFr-Xr-X

total 343700
-rwXxr-xr-x 1 root root
-rwxr-xr-x 1 root root
fhe quick brown fox jumps over the

PR R R

root
root
root
root

root
root
root
root

31316
8240

111276
25368
11532

7292

2017-12-05 08:58
2017-12-09 13:39
lazy dog. It was

2018-01-31 13:36
2016-10-06 20:16
2017-05-04 17:43
2017-05-04 17:43

[
411toppm

cool.

azp

a52dec
aafire
aainfo

Saving Our Work

Like everything else in v1i, there are several different ways to save our edited files. We
have already covered the :w command, but there are some others we may also find help-

ful.

In normal mode, typing ZZ will save the current file and exit vi. Likewise, the command

168

Saving Our Work

mode command :w(will combine the :w and : g commands into one that will both save
the file and exit.

The :w command may also specify an optional filename. This acts like “Save As...” For
example, if we were editing T00.txt and wanted to save an alternate version called
fool. txt, we would enter the following:

:w fool.txt

Note: While this command saves the file under a new name, it does not change
the name of the file we are editing. As we continue to edit, we will still be editing
foo. txt, not fool. txt.

Bash Does vi Too.

Back in chapter 8 “Advanced Keyboard Tricks” we looked at the various ways we could
edit the contents of the command line. The particular editing commands that bash uses
are not arbitrary. They are inspired by the emacs text editor. This is the default in bash,
but bash also supports vi-style command line editing too. This feature is easily activated
with the following command:

[me@linuxbox ~]$ set -o vi

Once this done, we can use many of the vi-style editing commands we have learned.
Let’s try it. At the command prompt type the following example text:

[me@linuxbox ~]$ the quick brown fox jumps over the lazy dog

We can move the cursor with the arrow keys as before and we can type characters in the
normal way. It behaves this way is because when we start a new command line, the editor
is in insert mode and behaves just as vim does. To get to the cool stuff, we have to switch
to normal mode. We exit insert mode by pressing the ESC key. All the movement com-
mands, yank, delete, and paste work just as if we editing a one-line text file in vim. To
return to insert mode we use the appropriate normal mode command such as i or A.

Setting bash to use vi-style command line editing is a good way to reinforce our vi key-
board skills and it has the added benefit of reducing the number of editing commands we

169

12 — A Gentle Introduction to vi(m)

have to remember. Give it a try. To make it permanent, we can add the set -0 vi
command to our . bashrc file.

To return to the emacs-style editing mode, enter this command:

[me@linuxbox ~]$ set -o emacs

Note: There are many online tutorials available for this feature, but be aware that
most will use the traditional vi mode names command, insert and ex rather than
vim’s normal, insert, and command.

Summing Up

With this basic set of skills, we can now perform most of the text editing needed to main-
tain a typical Linux system. Learning to use vim on a regular basis will pay off in the
long run. Since vi-style editors are so deeply embedded in Unix culture, we will see many
other programs that have been influenced by its design. less is a good example of this
influence.

Further Reading

Even with all that we have covered in this chapter, we have barely scratched the surface
of what vim can do. Here are a couple of on-line resources you can use to continue your
journey towards V1 mastery:

e Vim, with Vigor — A follow up to this tutorial on LinuxCommand.org that brings
the reader up to an intermediate level of skill. You can find it at:
https://linuxcommand.org/Ic3_adv_vimvigor.php

e Learning The vi Editor — A Wikibook from Wikipedia that offers a concise guide
to Vi and several of its work-a-likes including vim. It's available at:
http://en.wikibooks.org/wiki/Vi

e The Vim Book - The vim project has a 570-page book that covers (almost) all of
the features in vim. You can download it with an FTP client at this URL:
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL..pdf.

e A Wikipedia article on Bill Joy, the creator of vi:
http://en.wikipedia.org/wiki/Bill Joy

e A Wikipedia article on Bram Moolenaar, the author of vim:
http://en.wikipedia.org/wiki/Bram Moolenaar

170

http://en.wikipedia.org/wiki/Bram_Moolenaar
http://en.wikipedia.org/wiki/Bill_Joy
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
http://en.wikibooks.org/wiki/Vi
https://linuxcommand.org/lc3_adv_vimvigor.php

Further Reading

171

13 — Customizing the Prompt

13 - Customizing the Prompt

In this chapter, we will look at a seemingly trivial detail—our shell prompt. This exami-
nation will reveal some of the inner workings of the shell and the terminal emulator pro-
gram.

Like so many things in Linux, the shell prompt is highly configurable, and while we have
pretty much taken it for granted, the prompt is a really useful device once we learn how
to control it.

Anatomy of a Prompt
Our default prompt looks something like this:

[me@linuxbox ~1$

Notice that it contains our username, our hostname, and our current working directory,
but how did it get that way? Very simply, it turns out. The prompt is defined by an envi-
ronment variable named PS1 (short for “prompt string 1”). We can view the contents of
PS1 with the echo command.

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don't worry if your results are not the same as the example above. Every
Linux distribution defines the prompt string a little differently, some quite exoti-
cally.

From the results, we can see that PS1 contains a few of the characters we see in our
prompt such as the brackets, the at-sign, and the dollar sign, but the rest are a mystery.
The astute among us will recognize these as backslash-escaped special characters like
those we saw in Chapter 7, “Seeing the World as the Shell Sees It.” Table 13-1 provides a

172

Anatomy of a Prompt

partial list of the characters that the bash treats specially in the prompt string.

Table 13-1: Escape Codes Used in Shell Prompts

Sequence
\a

\d

\h
\H
\J

\1
\n
\r
\s
\t
\T
\@
\A
\u
\v
\V
\w
\W
\!

\#
\$

N

Value Displayed
ASCII bell. This makes the computer beep when it is encountered.

Current date in day, month, date format. For example, “Mon May
26.”

Hostname of the local machine minus the trailing domain name.
Full hostname.

Number of jobs running in the current shell session.
Name of the current terminal device.

A newline character.

A carriage return.

Name of the shell program.

Current time in 24-hour hours:minutes:seconds format.
Current time in 12-hour format.

Current time in 12-hour AM/PM format.

Current time in 24-hour hours:minutes format.
Username of the current user.

Version number of the shell.

Version and release numbers of the shell.

Name of the current working directory.

Last part of the current working directory name.
History number of the current command.

Number of commands entered during this shell session.

This displays a “$” character unless we have superuser privileges.
In that case, it displays a “#” instead.

Signals the start of a series of one or more non-printing characters.
This is used to embed non-printing control characters that
manipulate the terminal emulator in some way, such as moving the
cursor or changing text colors.

173

13 — Customizing the Prompt

Sequence Value Displayed

\] Signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs

With this list of special characters, we can change the prompt to see the effect. First, we'll
back up the existing prompt string so we can restore it later. To do this, we will copy the
existing string into another shell variable that we create ourselves.

[me@linuxbox ~]$ psl_old="$PS1"

We create a new variable called ps1_o1ld and assign the value of PS1 to it. We can ver-
ify that the string has been copied by using the echo command.

[me@linuxbox ~]$ echo $psi_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal session by simply re-
versing the process.

[me@linuxbox ~]$ PS1="$psl1_old"

Now that we are ready to proceed, let's see what happens if we have an empty prompt
string.

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt string at all! The
prompt is still there, but displays nothing, just as we asked it to do. Since this is kind of
disconcerting to look at, we'll replace it with a minimal prompt.

PS1="\$ "

That's better. At least now we can see what we are doing. Notice the trailing space within
the double quotes. This provides the space between the dollar sign and the cursor when
the prompt is displayed.

174

Trying Some Alternative Prompt Designs

Let's add a bell to our prompt.

$ PS1="\[\a\]\$ "

Now we should hear a beep each time the prompt is displayed, though some systems dis-
able this “feature.” This could get annoying, but it might be useful if we needed notifica-
tion when an especially long-running command has been executed. Note that we included
the \[and \] sequences. Since the ASCII bell (\a) does not “print,” that is, it does not
move the cursor, we need to tell bash so it can correctly determine the length of the
prompt.

Next, let's try to make an informative prompt with some hostname and time-of-day infor-
mation.

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track of when we
perform certain tasks. Finally, we'll make a new prompt that is similar to our original.

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try the other sequences listed in the table above and see whether you can come up with a
brilliant new prompt.

Adding Color

Most terminal emulator programs respond to certain non-printing character sequences to
control such things as character attributes (such as color, bold text, and the dreaded blink-
ing text) and cursor position. We'll cover cursor position in a little bit, but first we'll look
at color.

Terminal Confusion

Back in ancient times, when terminals were hooked to remote computers, there
were many competing brands of terminals and they all worked differently. They

175

13 — Customizing the Prompt

had different keyboards, and they all had different ways of interpreting control in-
formation. Unix and Unix-like systems have two rather complex subsystems to
deal with the babel of terminal control (called termcap and terminfo). If you
look in the deepest recesses of your terminal emulator settings, you may find a
setting for the type of terminal emulation.

In an effort to make terminals speak some sort of common language, the Ameri-
can National Standards Institute (ANSI) developed a standard set of character se-
quences to control video terminals. Old-time DOS users will remember the AN -
SI.SYS file that was used to enable interpretation of these codes.

Character color is controlled by sending the terminal emulator an ANSI escape code em-
bedded in the stream of characters to be displayed. The control code does not “print out”
on the display; rather, it is interpreted by the terminal as an instruction. As we saw in the
table above, the \ [and \] sequences are used to encapsulate non-printing characters. An
ANSI escape code begins with an octal 033 (the code generated by the Esc key), fol-
lowed by an optional character attribute, followed by an instruction. For example, the
code to set the text color to normal (attribute = 0), black text is as follows:

\033[0;30m

Table 13-2 lists the available text colors. Notice that the colors are divided into two
groups, differentiated by the application of the bold character attribute (1), which creates
the appearance of “light” colors.

Table 13- 2: Escape Sequences Used to Set Text Colors

Sequence Text Color Sequence Text Color
\033[0;30m Black \033[1;30m Dark gray
\033[0;31m Red \033[1;31m Light red
\033[0;32m Green \033[1;32m Light green
\033[0;33m Brown \0@33[1;33m Yellow
\033[0; 34m Blue \033[1;34m Light blue
\033[0;35m Purple \033[1;35m Light purple
\033[0;36m Cyan \033[1;36m Light cyan
\033[0;37m Light gray \O@33[1;37m White

176

Adding Color

Let's try to make a red prompt. We'll insert the escape code at the beginning.

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

That works, but notice that all the text that we type after the prompt will also display in
red. To fix this, we will add another escape code to the end of the prompt that tells the ter-
minal emulator to return to the previous color.

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[Om\] "
<me@linuxbox ~>$%$

That's better!

It's also possible to set the text background color using the codes listed Table 13-3. The
background colors do not support the bold attribute.

Table 13-3: Escape Sequences Used to Set Background Color

Sequence Background Color Sequence Background Color
\033[0;40m Black \033[0;44m Blue

\033[0;41m Red \033[0;45m Purple
\033[0;42m Green \033[0;46m Cyan

\033[0;43m Brown \033[0;47m Light gray

We can create a prompt with a red background by applying a simple change to the first
escape code.

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[Om\] "

Try the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may be given
underscore (4), blinking (5), and inverse (7) attributes. In the interests of good
taste, many terminal emulators refuse to honor the blinking attribute, however.

177

13 — Customizing the Prompt

Moving the Cursor

Escape codes can be used to position the cursor. This is commonly used to provide a
clock or some other kind of information at a different location on the screen, such as in an
upper corner each time the prompt is drawn. Table 13-4 lists the escape codes that posi-
tion the cursor.

Table 13-4: Cursor Movement Escape Sequences

Escape Code Action

\033[L;cH Move the cursor to line I and column ¢

\033[nA Move the cursor up n lines

\033[nB Move the cursor down n lines

\0@33[nC Move the cursor forward n characters

\033[nD Move the cursor backward n characters

\033[2J Clear the screen and move the cursor to the upper-left corner (line
0, column 0)

\033[K Clear from the cursor position to the end of the current line

\033[s Store the current cursor position

\033[u Recall the stored cursor position

Using the codes in Table 13-4, we'll construct a prompt that draws a red bar at the top of
the screen containing a clock (rendered in yellow text) each time the prompt is displayed.
The code for the prompt is this formidable-looking string:

PS1="\[\033[s\033[0;0H\033[0; 41m\033[K\033[1;33m\t\033[0m\033[u\]
<\u@\h \W>\$ "

Table 13-5 outlines what each part of the string does.

Table 13-5: Breakdown of Complex Prompt String

Sequence Action

\[Begin a non-printing character sequence. The purpose of this is
to allow bash to properly calculate the size of the visible
prompt. Without an accurate calculation, command line editing
features cannot position the cursor correctly.

178

Moving the Cursor

\033[s

\033[0;0H

\033[0;41m
\033[K

\033[1;33m
\t

\033[6m
\033[u

\]

<\u@\h \W>\$

Store the cursor position. This is needed to return to the prompt
location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
recognize this code.

Move the cursor to the upper-left corner, which is line 0,
column 0.

Set the background color to red.

Clear from the current cursor location (the top-left corner) to
the end of the line. Since the background color is now red, the
line is cleared to that color, creating our bar. Note that clearing
to the end of the line does not change the cursor position, which
remains in the upper-left corner.

Set the text color to yellow.

Display the current time. While this is a “printing” element, we
still include it in the non-printing portion of the prompt since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

Turn off color. This affects both the text and the background.
Restore the cursor position saved earlier.
End the non-printing characters sequence.

Prompt string.

Saving the Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0; 0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]

<\u@\h \W>\$ "

export PS1

Summing Up

Believe it or not, there is much more that can be done with prompts involving shell func-

179

13 — Customizing the Prompt

tions and scripts that we haven't covered here, but this is a good start. Not everyone will
care enough to change the prompt, since the default prompt is usually satisfactory. But for
those of us who like to tinker, the shell provides the opportunity for many hours of casual

fun.

Further Reading

e The Bash Prompt HOWTO from the Linux Documentation Project provides a
pretty complete discussion of what the shell prompt can be made to do. It is avail-

able at:
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/

e Wikipedia has a good article on the ANSI Escape Codes:
http://en.wikipedia.org/wiki/ANSI escape code

180

http://en.wikipedia.org/wiki/ANSI_escape_code
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/
http://tldp.org/

Part 3 — Common Tasks and Essential Tools

Part 3 — Common Tasks and Essential
Tools

181

14 — Package Management

14 - Package Management

If we spend any time in the Linux community, we hear many opinions as to which of the
many Linux distributions is “best.” Often, these discussions get really silly, focusing on
such things as the prettiness of the desktop background (some people won't use Ubuntu
because of its default color scheme!) and other trivial matters.

The most important determinant of distribution quality is the packaging system and the
vitality of the distribution's support community. As we spend more time with Linux, we
see that its software landscape is extremely dynamic. Things are constantly changing.
Most of the top-tier Linux distributions release new versions every six months and many
individual program updates every day. To keep up with this blizzard of software, we need
good tools for package management.

Package management is a method of installing and maintaining software on the system.
Today, most people can satisfy all of their software needs by installing packages from
their Linux distributor. This contrasts with the early days of Linux, when one had to
download and compile source code to install software. There isn’t anything wrong with
compiling source code; in fact, having access to source code is the great wonder of
Linux. It gives us (and everybody else) the ability to examine and improve the system.
It's just that having a precompiled package is faster and easier to deal with.

In this chapter, we will look at some of the command line tools used for package manage-
ment. While all the major distributions provide powerful and sophisticated graphical pro-
grams for maintaining the system, it is important to learn about the command line pro-
grams, too. They can perform many tasks that are difficult (or impossible) to do with their
graphical counterparts.

Packaging Systems

Different distributions use different packaging systems, and as a general rule, a package
intended for one distribution is not compatible with another distribution. Most distribu-
tions fall into one of two camps of packaging technologies: the Debian .deb camp and the
Red Hat .rpm camp. There are some important exceptions such as Gentoo, Slackware,
and Arch, but most others use one of these two basic systems as shown in Table 14-1.

182

Packaging Systems

Table 14-1: Major Packaging System Families

Packaging System Distributions (Partial Listing)
Debian Style (.deb) Debian, Ubuntu, Linux Mint, Raspberry Pi OS
Red Hat Style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, OpenSUSE

How a Package System Works

The method of software distribution found in the proprietary software industry usually
entails buying a piece of installation media such as an “install disk” or visiting a vendor's
web site and downloading a product and then running an “installation wizard” to install a
new application on the system.

Linux doesn't work that way. Virtually all software for a Linux system will be found on
the Internet. Most of it will be provided by the distribution vendor in the form of package
files, and the rest will be available in source code form that can be installed manually.
We'll talk about how to install software by compiling source code in chapter 23, “Compil-
ing Programs.”

Package Files

The basic unit of software in a packaging system is the package file. A package file is a
compressed collection of files that comprise the software package. A package may consist
of numerous programs and data files that support the programs. In addition to the files to
be installed, the package file also includes metadata about the package, such as a text de-
scription of the package and its contents. Additionally, many packages contain pre- and
post-installation scripts that perform configuration tasks before and after the package in-
stallation.

Package files are created by a person known as a package maintainer, often (but not al-
ways) an employee of the distribution vendor. The package maintainer gets the software
in source code form from the upstream provider (the author of the program), compiles it,
and creates the package metadata and any necessary installation scripts. Often, the pack-
age maintainer will apply modifications to the original source code to improve the pro-
gram's integration with the other parts of the Linux distribution.

Repositories

While some software projects choose to perform their own packaging and distribution,
most packages today are created by the distribution vendors and interested third parties.
Packages are made available to the users of a distribution in central repositories that may
contain many thousands of packages, each specially built and maintained for the distribu-
tion.

183

14 — Package Management

A distribution may maintain several different repositories for different stages of the soft-
ware development life cycle. For example, there will usually be a “testing” repository
that contains packages that have just been built and are intended for use by brave souls
who are looking for bugs before the packages are released for general distribution. A dis-
tribution will often have a “development” repository where work-in-progress packages
destined for inclusion in the distribution's next major release are kept.

A distribution may also have related third-party repositories. These are often needed to
supply software that, for legal reasons such as patents or DRM anti-circumvention issues,
cannot be included with the distribution. Perhaps the best known case is that of encrypted
DVD support, which is not legal in the United States. The third-party repositories operate
in countries where software patents and anti-circumvention laws do not apply. These
repositories are usually wholly independent of the distribution they support, and to use
them, one must know about them and manually include them in the configuration files for
the package management system.

Dependencies

Programs are seldom “standalone”; rather they rely on the presence of other software
components to get their work done. Common activities, such as input/output for example,
are handled by routines shared by many programs. These routines are stored in what are
called shared libraries, which provide essential services to more than one program. If a
package requires a shared resource such as a shared library, it is said to have a depen-
dency. Modern package management systems all provide some method of dependency
resolution to ensure that when a package is installed, all of its dependencies are installed,
too.

High and Low-level Package Tools

Package management systems usually consist of two types of tools.
- Low-level tools which handle tasks such as installing and removing package files
- High-level tools that perform metadata searching and dependency resolution

In this chapter, we will look at the tools supplied with Debian-style systems (such as
Ubuntu and many others) and those used by Red Hat products. While all Red Hat-style
distributions rely on the same low-level program (rpm), they use different high-level
tools. For our discussion, we will cover the high-level program dnf, used by Red Hat
Enterprise Linux, CentOS, and Fedora. Other Red Hat-style distributions provide high-
level tools with comparable features (see Table 14-2).

Table 14- 2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools

184

How a Package System Works

Debian style dpkg apt, apt-get,
aptitude
Fedora, Red Hat rpm dnf, yum

Enterprise Linux, CentOS

Common Package Management Tasks

Many operations can be performed with the command line package management tools.
We will look at the most common. Be aware that the low-level tools also support the cre-
ation of package files, an activity outside the scope of this book.

In the discussion below, the term package_name refers to the actual name of a package
rather than the term package_f1ile, which is the name of the file that contains the
package. Also, before any package operations can be performed, the package repository
needs to be queried so that the local copy of its database can be synchronized. Red Hat’s
dnf program does this automatically and updates the local database if too much time has
elapsed since the last update. On the other hand, Debian’s apt program must be run with
the update command to explicitly update the local database. This needs to be done ev-
ery so often. In the examples below, the apt update command is done before any op-
erations, but in real life this only needs to be done every few hours to stay safe.

Since operations that involve installing or removing software on a system-wise basis is an
administrative task, superuser privileges are required regardless of the package manage-
ment tool.

Finding a Package in a Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description (see Table 14-3).

Table 14-3: Package Search Commands

Style Command(s)
Debian apt update; apt search search_string
Red Hat dnf search search_string

For example, to search a dnf repository for the emacs text editor, we can use this com-
mand:

dnf search emacs

185

14 — Package Management

Installing a Package from a Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution (see Table 14-4).

Table 14-4: Package Installation Commands

Style Command(s)
Debian apt update; apt install package_name
Red Hat dnf install package_name

For example, to install the emacs text editor from an apt repository on a Debian system,
we can use this command:

apt update; apt install emacs

Installing a Package from a Package File

If a package file has been downloaded from a source other than a repository, it can be in-
stalled directly (though without dependency resolution) using a low-level tool (see Table
14-5).

Table 14-5: Low-Level Package Installation Commands

Style Command(s)
Debian dpkg -1 package_file
Red Hat rpm -i package_file

For example, if the emacs-22.1-7.fc7-1386.rpm package file had been down-
loaded from a non-repository site, it would be installed this way:

rpm -i emacs-22.1-7.fc7-1i386.rpm

Note: Because this technique uses the low-level rpm program to perform the in-
stallation, no dependency resolution is performed. If rpm discovers a missing de-

186

Common Package Management Tasks

pendency, rpm will exit with an error.

Removing a Package

Packages can be uninstalled using either the high-level or low-level tools. The high-level
tools are shown in Table 14-6.

Table 14-6: Package Removal Commands

Style Command(s)
Debian apt remove package_name
Red Hat dnf erase package_name

For example, to uninstall the emacs package from a Debian-style system, we can use this
command:

apt remove emacs

Updating Packages from a Repository

The most common package management task is keeping the system up-to-date with the
latest versions of packages. The high-level tools can perform this vital task in a single
step (see Table 14-7).

Table 14-7: Package Update Commands

Style Command(s)
Debian apt update; apt upgrade
Red Hat dnf update

For example, to apply all available updates to the installed packages on a Debian-style
system, we can use this command:

apt update; apt upgrade

187

14 — Package Management

Upgrading a Package from a Package File

If an updated version of a package has been downloaded from a non-repository source, it
can be installed, replacing the previous version (see Table 14-8).

Table 14-8: Low-Level Package Upgrade Commands

Style Command(s)
Debian dpkg -1 package_file
Red Hat rpm -U package_file

For example, to update an existing installation of emacs to the version contained in the
package file emacs-22.1-7.fc7-1386.rpm on a Red Hat system, we can use this
command:

rpm -U emacs-22.1-7.fc7-1386.rpm

Note: dpkg does not have a specific option for upgrading a package versus in-
stalling one as rpm does.

Listing Installed Packages

Table 14-9 lists the commands we can use to display a list of all the packages installed on
the system.

Table 14-9: Package Listing Commands

Style Command(s)
Debian dpkg -1
Red Hat rpm -ga

Determining Whether a Package is Installed

Table 14-10 list the low-level tools we can use to display whether a specified package is
installed.

188

Common Package Management Tasks

Table 14-10: Package Status Commands

Style Command(s)
Debian dpkg -s package_name
Red Hat rpm -gq package_name

For example, to determine whether the emacs package is installed on a Debian style sys-
tem, we can use this command:

dpkg --status emacs

Displaying Information About an Installed Package

If the name of an installed package is known, we can use the commands in Table 14-11 to
display a description of the package.

Table 14-11: Package Information Commands

Style Command(s)
Debian apt show package_name
Red Hat dnf info package_name

For example, to see a description of the emacs package on a Debian-style system, we can
use this command:

apt-cache show emacs

Finding Which Package Installed a File

To determine what package is responsible for the installation of a particular file, we can
use the commands in Table 14-12.

Table 14-12: Package File Identification Commands

Style Command(s)
Debian dpkg -S file_name

189

14 — Package Management

Red Hat rpm -qf file_name

For example, to see what package installed the /usr/bin/vim file on a Red Hat sys-
tem, we can use the following:

rpm -qf /usr/bin/vim

Distribution-Independent Package Formats

Over the last several years distribution vendors have come out with universal
package formats that are not tied to a particular Linux distribution. These include
Snaps (developed and promoted by Canonical), Flatpaks (pioneered by Red Hat,
but now widely available) and AppImages. Though they each work a little differ-
ently, their goal is to have an application and all of its dependencies bundled to-
gether and installed in a single piece. This is not an entirely new idea. In the early
days of Linux (think the late 1990s) the was a technique called static linking
which combined an application and its required libraries into a single large binary.

There are some benefits to this packaging approach. First among them is reducing
the effort needed to distribute an application. Rather than tailoring the application
to work with the libraries and other support files included a distribution's base
system, the application is built once and can be installed on any system. Some of
these formats also run the application in a containerized sandbox to provide addi-
tional security.

But there are some serious downsides too. Applications packaged this way are
large. Sometimes really large. This has two effects. First, they require a lot of disk
space to store. Second, their large size can make them very slow to load. This
may not be much of an issue on modern ultra-fast hardware, but on older ma-
chines it’s a real problem. The next technical problem has to do with distribution
integration. Since these applications bring all of their stuff with them, they don’t
take advantage of the underlying distribution's facilities. Sometimes the con-
tainerized application cannot access system resources needed of optimal perfor-
mance.

Then there are the philosophical issues. Perhaps the biggest beneficiary of these
all-in-one application packages are proprietary software vendors. They can build
a Linux version once and every distribution can use it. No need to custom tailor
their application for different distros.

190

Common Package Management Tasks

Users were not crying out for these packaging formats and they do little to en-
hance the open source community, thus until such time the various performance
issues are resolved use of these formats is not recommended.

Summing Up

In the chapters that follow, we will explore many different programs covering a wide
range of application areas. While most of these programs are commonly installed by de-
fault, we may need to install additional packages if the necessary programs are not pro-
vided. With our newfound knowledge (and appreciation) of package management, we
should have no problem installing and managing the programs we need.

The Linux Software Installation Myth

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of pack-
aging schemes used by different distributions is a hindrance. Well, it is a hin-
drance, but only to proprietary software vendors that want to distribute binary-
only versions of their secret software.

The Linux software ecosystem is based on the idea of open source code. If a pro-
gram developer releases source code for a program, it is likely that a person asso-
ciated with a distribution will package the program and include it in their reposi-
tory. This method ensures that the program is well integrated into the distribution,
and the user is given the convenience of “one-stop shopping” for software, rather
than having to search for each program's website. Recently, major proprietary
platform vendors have begun building application stores that mimic this idea.

Device drivers are handled in much the same way, except that instead of being
separate items in a distribution's repository, they become part of the Linux kernel.
Generally speaking, there is no such thing as a “driver disk” in Linux. Either the
kernel supports a device or it doesn't, and the Linux kernel supports a lot of de-
vices. Many more, in fact, than Windows does. Of course, this is of no consola-
tion if the particular device you need is not supported. When that happens, you
need to look at the cause. A lack of driver support is usually caused by one of
three things:

191

14 — Package Management

1. The device is too new. Since many hardware vendors don't actively support
Linux development, it falls upon a member of the Linux community to write the
kernel driver code. This takes time.

2. The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds its own kernels, and since kernels are very config-
urable (which is what makes it possible to run Linux on everything from wrist-
watches to mainframes) they may have overlooked a particular device. By locat-
ing and downloading the source code for the driver, it is possible for you (yes,
you) to compile and install the driver yourself. This process is not overly difficult,
but it is rather involved. We'll talk about compiling software in a later chapter.

3. The hardware vendor is hiding something. It has neither released source
code for a Linux driver, nor has it released the technical documentation for some-
body to create one for them. This means the hardware vendor is trying to keep the
programming interfaces to the device a secret. Since we don't want secret devices
in our computers, it is best that you avoid such products.

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

e The Debian GNU/Linux FAQ chapter on package management provides an over-
view of package management on Debian systems :

https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html

e The home page for the RPM project:
http://www.rpm.org

e For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

e A good article comparing Snap, Flatpak, and AppImage formats: https://
www.baeldung.com/linux/snaps-flatpak-appimage

192

https://www.baeldung.com/linux/snaps-flatpak-appimage
https://www.baeldung.com/linux/snaps-flatpak-appimage
http://en.wikipedia.org/wiki/Metadata
http://www.rpm.org/
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html

15 — Storage Media

15 - Storage Media

In previous chapters we looked at manipulating data at the file level. In this chapter, we
will consider data at the device level. Linux has amazing capabilities for handling storage
devices, whether physical storage, such as hard disks, network storage, or virtual storage
devices such as RAID (Redundant Array of Independent Disks) and LVM (Logical Vol-
ume Manager).

However, since this is not a book about system administration, we will not try to cover
this entire topic in depth. What we will try to do is introduce some of the concepts and
key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive, a USB hard disk
drive, and a CD-RW disc (for systems equipped with a CD-ROM burner).

We will look at the following commands:
e mount — Mount a file system
e umount — Unmount a file system
e parted - Partition manipulation program
e mkfs — Create a file system
e Tfsck — Check and repair a file system
e dd - Convert and copy a file
e genisoimage — Create an ISO 9660 image file
e wodim — Write data to optical storage media

e sha256sum - Compute and check SHA256 checksums

Mounting and Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely
easy for desktop users. For the most part, we attach a device to our system and it “just
works.” In the old days (say, 2004), this stuff had to be done manually. On non-desktop
systems (i.e., servers) this is still a largely manual procedure since servers often have ex-

193

15 — Storage Media

treme storage needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to the file system tree.
This process, called mounting, allows the device to interact with the operating system. As
we recall from Chapter 2, Unix-like operating systems, such as Linux, maintain a single
file system tree with devices attached at various points. This contrasts with other operat-
ing systems such as MS-DOS and Windows that maintain separate file system trees for
each device (for example C: \, D: \, etc.).

A file named /etc/fstab (short for “file system table”) lists the devices (typically
hard disk partitions) that are to be mounted at boot time. Here is an example /etc/
fstab file from an early Fedora system:

LABEL=/12 / ext4 defaults 11
LABEL=/home /home ext4 defaults 12
LABEL=/boot /boot ext4 defaults 12
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 O
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 00
LABEL=SWAP-sda3 swap swap defaults 00

Most of the file systems listed in this example file are virtual and not applicable to our
discussion. For our purposes, the interesting ones are the first three:

LABEL=/12 / ext4 defaults 11
LABEL=/home /home ext4 defaults 12
LABEL=/boot /boot ext4 defaults 12

These are the hard disk partitions. Each line of the file consists of six fields, as described
in Table 15-1.

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of a
device file associated with the physical device, such as
/dev/sdal (the first partition of the first detected
hard disk). But with today's computers, which have
many devices that are hot pluggable (like USB drives),
many modern Linux distributions associate a device

194

Mounting and Unmounting Storage Devices

2 Mount point

3 File system type
4 Options

5 Frequency

6 Order

with a text label instead. This label (which is added to
the storage media when it is formatted) can be either a
simple text label or a randomly generated UUID
(Universally Unique Identifier). This label is read by
the operating system when the device is attached to the
system. That way, no matter which device file is
assigned to the actual physical device, it can still be
correctly identified.

The directory where the device is attached to the file
system tree.

Linux allows many types of file systems to be
mounted. Most Linux systems use a native Linux file
system called Fourth Extended File System (ext4),
but many others are supported including FAT16
(msdos), FAT32 (vfat), NTFS (ntfs), CD-ROM
(1s09660), etc.

File systems can be mounted with various options. It is
possible, for example, to mount file systems as read-
only or to prevent any programs from being executed
from them (a useful security feature for removable
media).

A single number that specifies if and when a file
system is to be backed up with the dump command.

A single number that specifies in what order file
systems should be checked with the fsck command.
More about that later in this chapter.

Viewing a List of Mounted File Systems

The mount command is used to mount file systems. Entering the command without ar-
guments will display a list of the file systems currently mounted:

[me@linuxbox ~]$ mount

/dev/sda2 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)

195

15 — Storage Media

/dev/sda5 on /home type ext4 (rw)

/dev/sdal on /boot type ext4 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

fusectl on /sys/fs/fuse/connections type fusectl (rw)

/dev/sdd1l on /media/disk type vfat (rw,nosuid, nodev,noatime,
uhelper=hal, uid=500, utf8, shortname=1lower)

twind:/musicbox on /misc/musicbox type nfs4 (rw,addr=192.168.1.4)

Hint: Ubuntu users will find this listing cluttered with “loop” devices created by
snap packages installed on the system. To view a cleaner listing try this com-
mand instead: mount | grep -v snap

The format of the listing is as follows: device on mount_point type file_system_type (op-
tions). For example, the first line shows that device /dev/sda2 is mounted as the root
file system, is of type ext4, and is both readable and writable (the option “rw”). This list-
ing also has two interesting entries at the bottom of the list. The next-to-last entry shows a
2GB SD memory card in a card reader mounted at /media/disk, and the last entry is a
network drive mounted at /misc/musicbox.

For our first experiment, we will work with a 4 GB flash drive. First, let's look at a
Ubuntu 22.04 system before the drive is inserted:

[me@linuxbox ~]$ mount | grep /dev/sd

/dev/sda2 on / type ext4 (rw,relatime, errors=remount-ro)

/dev/sdal on /boot/efi type vfat (rw,relatime, fmask=0077,dmask=0077,
codepage=437,iocharset=1s08859-1, shortname=mixed, errors=remount-ro)
/dev/sdbl on /home type ext4 (rw,relatime)

We piped the output through grep to only list the /dev/sd* devices in the list for clar-
ity. We can see that this system has two hard disks, /dev/sda and /dev/sdb. There
are two partitions on /dev/sda. They are /dev/sdal and /dev/sda2 while /
dev/sdb has a single partition, /dev/sdbl.

Like many modern Linux distributions, this system will attempt to automatically mount
the flash drive after insertion. After we insert the drive, we see the following:

[me@linuxbox ~]$ mount | grep /dev/sd

196

Mounting and Unmounting Storage Devices

dev/sda2 on / type ext4 (rw,relatime,errors=remount-ro)

/dev/sdal on /boot/efi type vfat

(rw, relatime, fmask=0077, dmask=0077, codepage=437, iocharset=1s08859-

1, shortname=mixed, errors=remount-ro)

/dev/sdbl on /home type ext4 (rw,relatime)

/dev/sdc on /media/me/C911-C314 type vfat (rw,nosuid, nodev,relatime,
uid=1000, gid=1000, fmask=0022, dmask=0022, codepage=437, iocharset=1s0885
9-1, shortname=mixed, showexec, utf8, flush, errors=remount-ro)

After we insert the drive, we see the same listing as before with one additional entry. At
the end of the listing we see that the flash drive (which is device /dev/sdc on this sys-
tem) has been mounted on /media/me/C911-C314, and is type vfat (also known as
FAT32, a Windows compatible file system). For the purposes of our experiment, we're in-
terested in the name of the device. When you conduct this experiment yourself, the de-
vice name will most likely be different.

Warning: In the examples that follow, it is vitally important that you pay close
attention to the actual device names in use on your system and do not use the
names used in this text!

Now that we have the device name of the flash drive, let's unmount the drive and remount
it at another location in the file system tree. To do this, we become the superuser (using
the command appropriate for our system) and unmount the drive with the umount (no-
tice the spelling) command.

[me@linuxbox ~]$ sudo -i
[sudo] password for me:
[root@linuxbox ~]# umount /dev/sdc

The next step is to create a new mount point for the disk. A mount point is simply a direc-
tory somewhere on the file system tree. There’s nothing special about it. It doesn't even
have to be an empty directory, though if you mount a device on a non-empty directory,
you will not be able to see the directory's previous contents until you unmount the device.
For our purposes, we will create a new directory.

[root@linuxbox ~]# mkdir /mnt/flash

Finally, we mount the flash drive at the new mount point. The -t option is used to spec-
ify the file system type.

197

15 — Storage Media

[root@linuxbox ~]# mount -t vfat /dev/sdc /mnt/flash

Afterward, we can examine the contents of the flash drive via the new mount point.

[root@linuxbox ~]# cd /mnt/flash
[root@linuxbox cdrom]# 1s

Notice what happens when we try to unmount the drive.

[root@linuxbox cdrom]# umount /dev/sdc
umount: /mnt/flash: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to the mount
point for the flash drive, which causes the device to be busy. We can easily remedy the is-
sue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/sdc

Now the device unmounts successfully.

Why Unmounting Is Important

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called buffers. Computer systems are de-
signed to go as fast as possible. One of the impediments to system speed is slow
devices. Printers are a good example. Even the fastest printer is extremely slow
by computer standards. A computer would be very slow indeed if it had to stop
and wait for a printer to finish printing a page. In the early days of PCs (before
multi-tasking), this was a real problem. If you were working on a spreadsheet or
text document, the computer would stop and become unavailable every time you
printed. The computer would send the data to the printer as fast as the printer
could accept it, but it was very slow since printers don't print very fast. This prob-
lem was solved by the advent of the printer buffer, a device containing some
RAM memory that would sit between the computer and the printer. With the

198

Mounting and Unmounting Storage Devices

printer buffer in place, the computer would send the printer output to the buffer,
and it would quickly be stored in the fast RAM so the computer could go back to
work without waiting. Meanwhile, the printer buffer would slowly spool the data
to the printer from the buffer's memory at the speed at which the printer could ac-
cept it.

This idea of buffering is used extensively in computers to make them faster. Don't
let the need to occasionally read or write data to or from slow devices impede the
speed of the system. Operating systems store data that has been read from and is
to be written to storage devices in memory for as long as possible before actually
having to interact with the slower device. On a Linux system, for example, you
will notice that the system seems to fill up memory the longer it is used. This does
not mean Linux is “using” all the memory; it means that Linux is taking advan-
tage of all the available memory to do as much buffering as it can.

This buffering allows writing to storage devices to be done very quickly because
writing to the physical device is being deferred to a future time. In the meantime,
the data destined for the device is piling up in memory. From time to time, the op-
erating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device so that it
can be safely removed. If the device is removed without unmounting it first, the
possibility exists that not all the data destined for the device has been transferred.
In some cases, this data may include vital directory updates, which will lead to
file system corruption, one of the worst things that can happen on a computer.

Determining Device Names

It's sometimes difficult to determine the name of a device. In the old days, it wasn't very
hard. A device was always in the same place and it didn't change. Unix-like systems like
it that way. When Unix was developed, “changing a disk drive” involved using a forklift
to remove a washing machine-sized device from the computer room. In recent years, the
typical desktop hardware configuration has become quite dynamic, and Linux has
evolved to become more flexible than its ancestors.

In the examples above we took advantage of the modern Linux desktop's ability to “au-
tomagically” mount the device and then determine the name after the fact. But what if we
are managing a server or some other environment where this does not occur? How can
we figure it out?

First, let's look at how the system names devices. If we list the contents of the /dev di-
rectory (where all devices live), we can see that there are lots and lots of devices.

199

15 — Storage Media

[me@linuxbox ~]$ 1ls /dev

The contents of this listing reveal some patterns of device naming. Table 15-2 outlines a
few of these patterns.

Table 15-2: Linux Storage Device Names

Pattern Device
/dev/fd* Floppy disk drives.
/dev/hd* IDE (PATA) disks on older systems. Motherboards on these

systems contain two IDE connectors or channels, each with a
cable with two attachment points for drives. The first drive on
the cable is called the master device, and the second is called the
slave device. The device names are ordered such that
/dev/hda refers to the master device on the first channel,
/dev/hdb is the slave device on the first channel; /dev/hdc
is the master device on the second channel, and so on. A trailing
digit indicates the partition number on the device. For

example, /dev/hdal refers to the first partition on the first hard
drive on the system, while /dev/hda refers to the entire drive.

/dev/1p* Printers.

/dev/sd* SCSI disks. On modern Linux systems, the kernel treats all disk-
like devices (including PATA/SATA hard disks, flash drives, and
USB mass storage devices such as portable music players and
digital cameras) as SCSI disks. The rest of the naming system is
similar to the older /dev/hd* naming scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners).

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and /
dev/floppy, which point to the actual device files, provided as a convenience.

If we are working on a system that does not automatically mount removable devices, we
can use the following technique to determine how the removable device is named when it
is attached. First, start a real-time view of the /var/log/messages or /var/log/
syslog file (you may require superuser privileges for this).

[me@linuxbox ~]$ sudo tail -f /var/log/syslog

200

Mounting and Unmounting Storage Devices

On modern systemd-based systems use this command to follow the systemd journal:

[me@linuxbox ~]$ sudo journalctl -f

The last few lines of the listing will be displayed and then will pause. Next, plug in the
removable device. In this example, we will unmount and remove our flash drive and then
reinsert it. Almost immediately, the kernel will notice the device and probe it.

Jul 25 13:15:07 ratel mtp-probe[21318]: checking bus 3, device 8:
"/sys/devices/pcif000:00/0000:00:14.0/ush3/3-6"

Jul 25 13:15:07 ratel mtp-probe[21318]: bus: 3, device: 8 was not an
MTP device

Jul 25 13:15:07 ratel mtp-probe[21321]: checking bus 3, device 8:
"/sys/devices/pcif000:00/0000:00:14.0/usb3/3-6"

Jul 25 13:15:07 ratel mtp-probe[21321]: bus: 3, device: 8 was not an
MTP device

Jul 25 13:15:08 ratel kernel: scsi 6:0:0:0: Direct-Access General
UDisk 5.00 PQ: O ANSI: 2

Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: Attached scsi generic sg3
type 0

Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] 7864320 512-byte
logical blocks: (4.03 GB/3.75 GiB)

Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] Write Protect is off
Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] Mode Sense: Ob 00 00
08

Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] No Caching mode page
found

Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] Assuming drive cache:
write through

Jul 25 13:15:08 ratel kernel: sdc:
Jul 25 13:15:08 ratel kernel: sd 6:0:0:
removable disk

o

[sdc] Attached SCSI

After the display pauses again, press Ctr 1-c to get the prompt back. The interesting
parts of the output are the repeated references to [sdc], which matches our expectation

of a SCSI disk device name. Knowing this, these two lines become particularly illumi-
nating:

Jul 25 13:15:08 ratel kernel: sdc:
Jul 25 13:15:08 ratel kernel: sd 6:0:0:0: [sdc] Attached SCSI

201

15 — Storage Media

removable disk removable disk

Tip: Using the tail

There is a another way we can determine a device name (there’s always more than one
way to do things in Linux!). We can use the 1sb 1k command. This command lists all of
the block devices attached to the system regardless if they are mounted or not.

Assuming we have unmounted and removed our flash drive, we can look at the list of at-

tached block devices:

-f /var/log/syslog or journalctl
nique is a great way to watch what the system is doing in near real-time.

[me@linuxbox ~]$ lsblk

NAME MAJ:MIN RM SIZE RO
sda 8:0 0 111.8G O
I-sda1 8:1 @ 976M ©
|

Lsda3 8:3 0 14.9G 0O
sdb 8:16 0 931.5G O
F-sdb1 8:17 @ 922.26 ©
L-sdb2 8:18 (0] 9.3G 0
sro 11:0 1 1024M O

TYPE MOUNTPOINTS
disk
part /boot/efi
/
part [SWAP]
disk
part /home
part
rom

Next, we’ll reinsert the flash drive and run 1sb 1k again:

[me@linuxbox ~]$ lsblk

NAME MAJ:MIN RM SIZE RO
sda 8:0 0 111.86 ©
I-sda1 8:1 @ 976M 0O
|

l_sda3 8:3 0 14.96 ©
sdb 8:16 0 931.56 0
F-sdb1 8:17 0 922.2G ©
lLsdb2 8:18 © 9.3G 0
sdc 8:32 1 3.8 O
sro 11:0 1 1024M 0

TYPE MOUNTPOINTS
disk
part /boot/efi
/
part [SWAP]
disk
part /home
part
disk
rom

We now see a new device (sdc) has been added to the list. The device name will remain
the same as long as it remains physically attached to the computer and the computer is

202

Mounting and Unmounting Storage Devices

not rebooted.

With our device name in hand, we can mount the flash drive.

[me@linuxbox ~]$ sudo mount /dev/sdc /mnt/flash

[me@linuxbox ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs 1624184 2144 1622040 1% /run
/dev/sda2 98430196 45133696 48250332 49% /

tmpfs 8120908 0 8120908 0% /dev/shm
tmpfs 5120 4 5116 1% /run/lock
/dev/sdal 997456 6220 991236 1% /boot/efi
/dev/sdb1 950690656 585574576 316749944 65% /home

tmpfs 1624180 80 1624100 1% /run/user/120
tmpfs 1624180 192 1623988 1% /run/user/1000
/dev/sdc 3924444 4 3924440 1% /mnt/flash

Creating New File Systems

Let's say that we have an external USB hard disk with a single FAT32 file system and
would like to split the drive into two partitions, a Linux-native file system (ext4) and a
second one formatted as NTFS for use with a Windows system. This involves two steps.

1. Create a new partition layout.

2. Create new, empty file systems on the drive.

Warning! In the following exercise, we are going to format an external hard
drive. Use a drive that contains nothing you care about because it will be erased!
Again, make absolutely sure you are specifying the correct device name for
your system, not the one shown in the text. Failure to heed this warning
could result in you formatting (i.e., erasing) the wrong drive!

Manipulating Partitions with parted

parted is one of a host of programs (both command line and graphical) that allow us to
interact directly with disk-like devices (such as hard disk drives and flash drives) at a
very low level. We’ll attach the drive and use 1sb 1k to get its name:

203

15 — Storage Media

[me@linuxbox ~]$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 111.8G 0O disk

-sda1 8:1 ® 976M 0 part /boot/efi

| /

Lsda3 8:3 @ 14.9G 0O part [SWAP]

sdb 8:16 0@ 931.5G 0O disk

-sdb1 8:17 0 922.2G 0 part /home
Lsdb2 8:18 © 9.3G 0 part

sdd 8:32 0@ 232.9G 0 disk

Lsddl1 8:33 0 232.96 0 part /media/me/USB_DISK
Ssro 11:0 1 1024M O rom

As we can see, the external USB hard disk is attached and it is named /dev/sdd and it
contains one partition named /dev/sdd1.

With parted, we can edit, delete, and create partitions on the device. To work with our
hard drive, we must first unmount it (if needed) and then invoke the parted program as
follows:

[me@linuxbox ~]$ sudo umount /dev/sddi
[me@linuxbox ~]$ sudo parted /dev/sdd

Notice that we must specify the device in terms of the entire device, not by partition num-
ber. After the program starts up, we will see the following prompt:

GNU Parted 3.4

Using /dev/sdd

Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

Entering “help” will display a list of available commands.

(parted) help
align-check TYPE N check partition N for
TYPE(min|opt) alignment
help [COMMAND] print general help, or
help on COMMAND
mklabel, mktable LABEL-TYPE create a new disklabel

204

Creating New File Systems

mkpart PART-TYPE [FS-TYPE] START END
name NUMBER NAME

print [devices|free|list,all|NUMBER]

quit
rescue START END

resizepart NUMBER END
rm NUMBER

select DEVICE
disk_set FLAG STATE
disk_toggle [FLAG]

set NUMBER FLAG STATE
toggle [NUMBER [FLAG]]

unit UNIT

version

(partition table)

make a partition

name partition NUMBER as
NAME

display the partition
table, available devices,
free space, all found
partitions, or a
particular partition

exit program

rescue a lost partition
near START and END

resize partition NUMBER
delete partition NUMBER
choose the device to edit
change the FLAG on
selected device

toggle the state of FLAG
on selected device

change the FLAG on
partition NUMBER

toggle the state of FLAG
on partition NUMBER

set the default unit to
UNIT

display the version number
and copyright information
of GNU Parted

The first thing we want to do is examine the existing partition layout. We do this by en-
tering the “print” command to print the partition table for the device.

(parted) print
Model: WDC WD25 OOBEVT-0OAGRTO (scsi)
Disk /dev/sdd: 250GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Number Start End Size Type

1 1049kB 250GB 250GB primary

File system
fat32

Flags
lba

205

15 — Storage Media

We can see that our disk has 250 GB of space in a single FAT32 partition.

To create our new partitions, we must first delete the current partition. This is easily done
with the rm command.

(parted) rm 1

(parted) print

Model: WDC WD25 O@OBEVT-OOAQRTO (scsi)
Disk /dev/sdd: 250GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags

We specify the partition number we want to remove then look at the partition table again
to see that the partition is gone.

Next, we’ll create our new partitions. We do this with the mkpart command.

(parted) mkpart

Partition type? primary/extended? primary
File system type? [ext2]? ext4

Start? 1

End? 120000

When creating a partition on this disk (which has a MBR, master boot record style parti-
tion table) we specify either a primary or extended partition followed by the start and end
of the partition in the default one megabyte increments. Using an end value of 120,000
MB consumes roughly half of the available space on the drive.

Next, we’ll create the second partition using the same technique.

(parted) mkpart

Partition type? primary/extended? primary
File system type? [ext2]? ntfs

Start? 120001

End? 240000

Finally, we look at the partition table to see our results.

206

Creating New File Systems

(parted) print

Model: WDC WD25 OOBEVT-0OAGRTO (scsi)
Disk /dev/sdd: 250GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 120GB 120GB primary ext4 lba

2 120GB 240GB 120GB primary ntfs lba

Now that our partitioning is complete, we can exit the par ted program.

(parted) quit

If we run Lsblk again we can see our drive and its two partitions.

[me@linuxbox ~]$ lsblk
NAME MAJ :MIN RM SIZE RO TYPE MOUNTPOINTS

sda 8:0 0@ 111.8G 0 disk

I-sda1 8:1 @ 976M 0O part /boot/efi
| /
L-sda3 8:3 @ 14.9G 0O part [SWAP]
sdb 8:16 0 931.5G 0 disk

I-sdb1 8:17 0 922.2G 0 part /home
Lsdb2 8:18 © 9.3G 0 part

sdd 8:48 0@ 232.9G 0 disk

I-sdd1 8:49 @ 111.8G6 0 part

Lsdd2 8:50 0 111.8G 0 part

sro 11:0 1 1024M 0O rom

Creating a New File System with mkfs

With our partition editing done, it’s time to create (i.e., format) the new file systems on
our drive. To do this, we will use mkfs (short for “make file system”), which can create
file systems in a variety of formats. To create the ext4 file system on the drive, we use the
- t option to specify the ext4 file system type, followed by a descriptive volume label,
and the name of the device containing the partition we want to format.

207

15 — Storage Media

[me@linuxbox ~]$ sudo mkfs -t ext4 -L EXT4 Disk /dev/sdd1
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 29296640 4k blocks and 7331840 inodes
Filesystem UUID: 3365d135-d8d9-4b93-a57a-ec3567c8548a
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
2654208, 4096000, 7962624, 11239424, 20480000, 23887872

Allocating group tables: done

Writing inode tables: done

Creating journal (131072 blocks): done

Writing superblocks and filesystem accounting information: done

Next, we’ll do the NTFS partition.

[me@linuxbox ~]$ sudo mkfs -t ntfs --quick -L NTFS_Disk /dev/sdd2
Cluster size has been automatically set to 4096 bytes.

Creating NTFS volume structures.

mkntfs completed successfully. Have a nice day.

Again we specify a file system type, a descriptive volume label, and a device. We include
the - -quick option to skip the bad block checking because that takes a long time to
perform.

Note that different file system types support different options. For details, see the mkfs
man page.

With our work completed, let’s unplug the drive and reattach it to cause the system to au-
tomatically mount the drive. Running 1sb 1k once again reveals the results.

[me@linuxbox ~]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

sda 8:0 0 111.8G 0 disk

-sda1 8:1 ® 976M 0 part /boot/efi

| /

Lsda3 8:3 @ 14.96 0O part [SWAP]

sdb 8:16 0 931.5G 0O disk

-sdb1 8:17 0 922.2G 0 part /home

Lsdb2 8:18 © 9.3G 0 part

sdd 8:48 0 232.9G 0 disk

[-sdd1 8:49 0 111.8G 0O part /media/me/EXT4_Disk

208

Creating New File Systems

L-sdd2 8:50 0 111.8G 0O part /media/me/NTFS_Disk
sro 11:0 1 1024M 0O rom

As we can see, the volume labels are used to create the mount points names in the /me-
dia directory where removable storage devices are automatically mounted.

Testing and Repairing File Systems

In our earlier discussion of the /etc/fstab file, we saw some mysterious digits at the
end of each line. Each time the system boots, it routinely checks the integrity of the file
systems before mounting them. This is done by the fsck program (short for “file system
check”). The last number in each fstab entry specifies the order in which the devices
are to be checked. In our previous example, we see that the root file system is checked
first, followed by the home and boot file systems. Devices with a zero as the last digit

are not routinely checked.

In addition to checking the integrity of file systems, fsck can also repair corrupt file sys-
tems with varying degrees of success, depending on the amount of damage. On Unix-like
file systems, recovered portions of files are placed in the lost+found directory, lo-
cated in the root of each file system.

To check our EXT4_D1isk partition (which should be unmounted first), we could do the
following:

[me@linuxbox ~]$ sudo umount /dev/sddi

[me@linuxbox ~]$ sudo fsck /dev/sdd1i

fsck from util-linux 2.37.2

e2fsck 1.46.5 (30-Dec-2021)

EXT4_Disk: clean, 11/7331840 files, 606693/29296640 blocks

These days, file system corruption is quite rare unless there is a hardware problem, such
as a failing disk drive. On most systems, file system corruption detected at boot time will
cause the system to stop and direct you to run fsck before continuing.

209

15 — Storage Media

What the fsck?

In Unix culture, the word fsck is often used in place of a popular word with which
it shares three letters. This is especially appropriate, given that you will probably
be uttering the aforementioned word if you find yourself in a situation where you
are forced to run fsck.

Moving Data Directly to and from Devices

While we usually think of data on our computers as being organized into files, it is also
possible to think of the data in “raw” form. If we look at a disk drive, for example, we see
that it consists of a large number of “blocks” of data that the operating system sees as di-
rectories and files. However, if we could treat a disk drive as simply a large collection of
data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Warning! The dd command is very powerful. Though its name derives from
“data definition,” it is sometimes called “destroy disk” because users often
mistype either the if or of specification. Always double-check your input
and output specifications before pressing enter!

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are as-
signed to devices /dev/sdb and /dev/sdc respectively, we could copy everything on
the first drive to the second drive with the following:

[me@linuxbox ~]$ sudo dd if=/dev/sdb of=/dev/sdc

Alternately, if only the first device were attached to the computer, we could copy its con-
tents to an ordinary file for later restoration or copying.

210

Moving Data Directly to and from Devices

[me@linuxbox ~]% sudo dd if=/dev/sdb of=flash_drive.img

Creating CD-ROM Images

Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two steps.
1. Constructing an ISO image file that is the exact file system image of the CD-ROM
2. Writing the image file onto the CD-ROM media

Creating an Image Copy of a CD-ROM

If we want to make an ISO image of an existing CD-ROM, we can use dd to read all the
data blocks off the CD-ROM and copy them to a local file. Say we had an Ubuntu CD
and we wanted to make an ISO file that we could later use to make more copies. After in-
serting the CD and determining its device name (we’ll assume /dev/cdrom), we can
make the ISO file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well but will not work for audio CDs, as they do
not use a file system for storage. For audio CDs, look at the cdrdao command.

Creating an Image From a Collection of Files

To create an ISO image file containing the contents of a directory, we use the
genisoimage program. To do this, we first create a directory containing all the files
we want to include in the image, and then execute the genisoimage command to cre-
ate the image file. For example, if we had created a directory called ~/cd-rom-files
and filled it with files for our CD-ROM, we could create an image file named cd-
rom. iso with the following command:

genisoimage -0 cd-rom.iso -R -J ~/cd-rom-files

The -R option adds metadata for the Rock Ridge extensions, which allows the use of long
filenames and POSIX-style file permissions. Likewise, the -J option enables the Joliet
extensions, which permit long filenames for Windows.

211

15 — Storage Media

A Program by Any Other Name...

If you look at online tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called cdr -
tools authored by Jorg Schilling. In the summer of 2006, Mr. Schilling made a
license change to a portion of the cdrtools package, which, in the opinion of
many in the Linux community, created a license incompatibility with the GNU
GPL. As a result, a fork of the cdrtools project was started that now includes re-
placement programs for cdrecord and mkisofs named wodim and
genisoimage, respectively.

Writing CD-ROM Images

After we have an ISO image file, we can burn it onto our optical media. Most of the com-
mands we will discuss below can be applied to both recordable CD-ROM and DVD me-
dia.

Mounting an ISO Image Directly

There is a trick that we can use to mount an ISO image while it is still on our hard disk
and treat it as though it were already on optical media. By adding the “-o loop” option to
mount (along with the required “-t is09660” file system type), we can mount the image
file as though it were a device and attach it to the file system tree.

mkdir /mnt/iso_image
mount -t is09660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image and then
mounted the image file image .1s0 at that mount point. After the image is mounted, it
can be treated just as though it were a real CD-ROM or DVD. Remember to unmount the
image when it is no longer needed.

Blanking a Rewritable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal

212

Writing CD-ROM Images

(and fastest) is the “fast” type.

wodim dev=/dev/cdrw blank=fast

Writing an Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file.

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a large set of options.
Two common ones are “-v” for verbose output, and “-dao”, which writes the disc in disc-
at-once mode. This mode should be used if we are preparing a disc for commercial repro-
duction. The default mode for wodim is track-at-once, which is useful for recording mu-
sic tracks.

Verifying Data

While we’re on the subject of ISO files, let’s look at how to verify the integrity of files
we download. Often when we download a large file such as a new Linux installation im-
age, we will want to make sure that image file we downloaded is complete and not cor-
rupted. One tool we can use for this is sha256sum, a modern replacement for an earlier
program called md5sum.

There are two common ways this can be done. Let’s try them out. Say we want to down-
load an installition image of Linux Mint 22. We go to the Linux Mint website and get the
linuxmint-22-cinnamon-64bit.iso file. While we are there we also download
a checksum file called sha256sum. txt. When we look at its contents we see the fol-
lowing:

[me@linuxbox ~]$ cat sha256sum.txt
7a04b54830004e945cledabedb6ec8c57ff4b249de4b331bd021a849694F29b8f *1in
uxmint-22-cinnamon-64bit.iso
78a2438346¢cfe69a1779b0ac3fc05499f8dc7202959d597dd724a07475bc6930 *1in
uxmint-22-mate-64bit.iso
55e917b99206187564029476Tf421b98f5a8a0b6e54c49ff6a4cb39dcfeb4bd80 *1in
uxmint-22-xfce-64bit.iso

213

15 — Storage Media

Three lines of data with a long strings of hexadecimal numbers and the names of files
available for downloading including the ISO file we downloaded. The strings of hex dig-
its are checksums, a precise mathematical representation of the ISO files. These numbers
are special in that if the downloaded ISO file is altered by even one bit from the original
file, the checksum will be significantly different. We’ll test the ISO file to see if the
checksums match.

[me@linuxbox ~]$ sha256sum -b linuxmint-22-cinnamon-64bit.iso
7a04b54830004e945cledabed6ec8c57ff4b249de4b331bd021a849694F29b8f *1in
uxmint-22-cinnamon-64bit.iso

The -b option tells sha256sum that we are looking at a binary file rather than text. As
we can see, the checksum matches the one we saw in sha256sum. txt. However look-
ing at the checksum this way is a little tedious. Another way we can check the file is to
have sha256sum process the sha256sum. txt file to compare its checksums against
ones it generates from the files on the list. We can do this by running the sha256sum
program this way:

[me@linuxbox ~]$ sha256sum -c --ignore-missing sha256sum.txt
linuxmint-22-cinnamon-64bit.iso: OK

The -c option (short for “check”) invokes this mode while the --ignore-missing
option tells sha256sum not to complain that the files we didn’t download, lin-
uxmint-22-mate-64bit.iso and linuxmint-22-xfce-64bit.iso aren’t
present.

Summing Up

In this chapter we looked at the basic storage management tasks. There are, of course,
many more. Linux supports a vast array of storage devices and file system schemes. It
also offers many features for interoperability with other systems.

Further Reading

Take a look at the man pages of the commands we have covered. Some of them support
huge numbers of options and operations. Also, look for on-line tutorials for adding hard
drives to a Linux system (there are many) and working with optical media.

« The Arch Wiki has a good article about partitioning: https://wiki.archlinux.org/ti-
tle/Partitioning

214

https://wiki.archlinux.org/title/Partitioning
https://wiki.archlinux.org/title/Partitioning

Further Reading

The full GNU Parted User Manual is available at: https://www.gnu.org/software/
parted/manual/parted.html

A Wikipedia article about checksums: https://en.wikipedia.org/wiki/Checksum

The Wikipedia entry for everybody’s favorite, SCSI: https://en.wikipedia.org/
wiki/SCSI

215

https://en.wikipedia.org/wiki/SCSI
https://en.wikipedia.org/wiki/SCSI
https://en.wikipedia.org/wiki/Checksum
https://www.gnu.org/software/parted/manual/parted.html
https://www.gnu.org/software/parted/manual/parted.html

16 — Networking

16 — Networking

When it comes to networking, there is probably nothing that cannot be done with Linux.
Linux is used to build all sorts of networking systems and appliances, including firewalls,
routers, name servers, network-attached storage (NAS) boxes and on and on.

Just as the subject of networking is vast, so are the number of commands that can be used
to configure and control it. We will focus our attention on just a few of the most fre-
quently used ones. The commands chosen for examination include those used to monitor
networks and those used to transfer files. In addition, we are going to explore the ssh
program that is used to perform remote logins. This chapter will cover the following
commands:

e ping - Send an ICMP ECHO_REQUEST to network hosts
e traceroute — Print the route packets trace to a network host
e 1ip — Show / manipulate routing, devices, policy routing and tunnels

e netstat — Print network connections, routing tables, interface statistics, mas-
querade connections, and multicast memberships

e Ttp —Internet file transfer program

e curl - Transfer a URL

e wget — Non-interactive network downloader

e Ssh —OpenSSH SSH client (remote login program)

We’re going to assume a little background in networking. In this, the Internet age, every-
one using a computer needs a basic understanding of networking concepts. To make full
use of this chapter we should be familiar with the following terms:

e Internet protocol (IP) address
e Host and domain name
e Uniform resource identifier (URI)

Please see the “Further Reading” section below for some useful articles regarding these
terms.

216

16 — Networking

Note: Some of the commands we will cover may (depending on your distribu-
tion) require the installation of additional packages from your distribution’s
repositories, and some may require superuser privileges to execute.

Examining and Monitoring a Network

Even if you’re not the system administrator, it’s often helpful to examine the performance
and operation of a network.

ping
The most basic network command is ping. The ping command sends a special network

packet called an ICMP ECHO_REQUEST to a specified host. Most network devices re-
ceiving this packet will reply to it, allowing the network connection to be verified.

Note: It is possible to configure most network devices (including Linux hosts) to
ignore these packets. This is usually done for security reasons, to partially ob-
scure a host from a potential attacker. It is also common for firewalls to be con-
figured to block ICMP traffic.

For example, to see whether we can reach linuxcommand.org (one of our favorite
sites ;-), we can use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval (default is one sec-
ond) until it is interrupted.

[me@linuxbox ~]$ ping linuxcommand.org

PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seqg=1
tt1=43 time=107 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2
tt1=43 time=108 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3
tt1=43 time=106 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4
tt1=43 time=106 ms

217

16 — Networking

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5
tt1=43 time=105 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6
tt1=43 time=107 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by pressing Ctrl-c, ping
prints performance statistics. A properly performing network will exhibit O percent packet
loss. A successful “ping” will indicate that the elements of the network (its interface
cards, cabling, routing, and gateways) are in generally good working order.

traceroute

The traceroute program (some systems use the similar tracepath program in-
stead) lists all the “hops™” network traffic takes to get from the local system to a specified
host. For example, to see the route taken to reach slashdot.org, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte
packets

1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
2***

3 ge-4-13-ur0l.rockville.md.bad.comcast.net (68.87.130.9) 14.622
ms 14.885 ms 15.169 ms

4 po-30-ur@2.rockville.md.bad.comcast.net (68.87.129.154) 17.634
ms 17.626 ms 17.899 ms

5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992
ms 15.983 ms 16.256 ms

6 po-30-ar@l.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835
ms 14.233 ms 14.405 ms

7 po-10-ar@2.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154
ms 13.600 ms 18.867 ms

8 te-0-3-0-1-cr@l.philadelphia.pa.ibone.comcast.net (68.86.90.77)
21.951 ms 21.073 ms 21.557 ms

218

Examining and Monitoring a Network

9 po0s-0-8-0-0-crOl.newyork.ny.ibone.comcast.net (68.86.85.10)
22.917 ms 21.884 ms 22.126 ms

10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms
11 cril1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms
Cr2-pos-0-0-3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cri-
pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 19.634 ms

12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms
42.843 ms cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242)
43.115 ms

13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net
(204.70.195.122) 44.215 ms 41.833 ms 45.658 ms

14 csril-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms
43.372 ms 47.041 ms

15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to slashdot.org re-
quires traversing 16 routers. For routers that provided identifying information, we see
their hostnames, IP addresses, and performance data, which includes three samples of
round-trip time from the local system to the router. For routers that do not provide identi-
fying information (because of router configuration, network congestion, firewalls, etc.),
we see asterisks as in the line for hop number 2. In cases where routing information is
blocked, we can sometimes overcome this by adding either the -T or -I option to the

traceroute command.

ip

The ip program is a multi-purpose network configuration tool that makes use of the full
range of networking features available in modern Linux kernels. It replaces the earlier
and now deprecated ifconfig program. The ip program is used to examine various
network settings and statistics. Through the use of its many options, we can look at a va-
riety of features in our network setup. With 1p, we can examine a system's network inter-

faces and routing table. First, the interfaces:

[me@linuxbox ~]$ ip address show
1: lo: <LOOPBACK, UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN
group default gqlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_1ft forever
inet6 ::1/128 scope host noprefixroute

219

16 — Networking

valid_1ft forever preferred_1ft forever
2: enpls0: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 gdisc mq state
UP group default gqlen 1000
link/ether 00:26:6c:26:67:bf brd ff:ff:ff:ff:ff:ff
inet 192.168.1.223/24 brd 192.168.50.255 scope global dynamic
noprefixroute enpls0
valid_1ft 82366sec preferred_lft 82366sec
inet6 fe80::226:6cff:fe26:67bf/64 scope link noprefixroute
valid_1ft forever preferred_1ft forever
3: wlp2s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq
state DOWN group default glen 1000
link/ether 06:8a:59:f4:f6:d3 brd ff:ff:ff:ff:ff:ff permaddr
24:ec:99:46:aa:1le

In the example above, we see that our test system has three network interfaces. The first,
called 1o, is the loopback interface, a virtual interface that the system uses to “talk to it-
self”, the second, called enp1s0, is an Ethernet interface (en = Ethernet), and the third
called wlp2s0 is a wireless interface (Wl = wireless)..

When performing casual network diagnostics, the important things to look for are the
presence of the phrase state UP in the first line for the interface, indicating that it is en-
abled, and the presence of a valid IP address in the inet field on the third line. For sys-
tems using Dynamic Host Configuration Protocol (DHCP), a valid IP address in this field
will verify that the DHCP is working.

Next, the routing table:

[me@linuxbox ~]$ ip route show

default via 192.168.1.1 dev enpls@ proto dhcp src 192.168.50.223
metric 100

169.254.0.0/16 dev enpls® scope link metric 1000

192.168.1.0/24 dev enpls® proto kernel scope link src 192.168.1.223
metric 100

In this simple example, we see a typical routing table for a client machine on a local area
network (LAN) behind a firewall/router. IP addresses that end in zero refer to networks
rather than individual hosts, so this destination means any host on the LAN can be
reached directly. We see two networks listed: 169.254.0.0 and 192.168.1.0.
Now, the 192.168.1.0 network is our LAN, but what is 169.254.0.07? Well, that’s
a piece of network trickery called Automatic Private [P Addressing (APIPA). It is used to
automatically assign an IP address when a DHCP server is unavailable.

220

Examining and Monitoring a Network

The first line contains the destination default. This means send any traffic destined for
a network that is not otherwise listed in the table to this address. In our example, we see
that the default gateway is defined as a router with the address of 192.168.1.1, (a typ-
ical address for a home router) which presumably knows what to do with the destination
traffic.

The 1p command is a complicated program with many options and commands. The com-
mand syntax consists of:

ip [-options] object [command]

In the previous examples we used the objects address and route with the command
show. As a convenience, ip allows object names to be shortened to a single character
and since the default command is show, we can shorten the commands to ip a and ip
r and get identical results.

Transporting Files Over a Network

What good is a network unless we can move files across it? There are many programs
that move data over networks. We will cover two of them now and several more in later
sections.

ftp

One of the true “classic” programs, ftp gets its name from the protocol it uses, the File
Transfer Protocol. FTP was once the most widely used method of downloading files over
the Internet. Some web browsers still support it, and we may see URIs starting with the
protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used to communi-
cate with FTP servers, machines that contain files that can be uploaded and downloaded
over a network.

FTP (in its original form) is not secure because it sends account names and passwords in
cleartext. This means they are not encrypted and anyone sniffing the network can see
them. Because of this, almost all FTP done over the Internet is done by anonymous FTP
servers. An anonymous server allows anyone to log in using the login name “anony-
mous” and a meaningless password.

In the example below, we show an imaginary session with the ftp program downloading
an Ubuntu ISO image located in the /pub/cd_images/Ubuntu-24. 04 directory of
the anonymous FTP server fileserver:

221

16 — Networking

[me@linuxbox ~]$ ftp fileserver

Connected to fileserver.localdomain.

220 (vsFTPd 2.0.1)

Name (fileserver:me): anonymous

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/cd_images/Ubuntu-24.04

250 Directory successfully changed.

ftp> 1s

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rw-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-
24.04-desktop-amd64.1iso

226 Directory send OK.

ftp> lcd Desktop

Local directory now /home/me/Desktop

ftp> get ubuntu-24.04-desktop-amd64.iso

local: ubuntu-24.04-desktop-amd64.iso remote: ubuntu-24.04-desktop-
amd64.1iso

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for ubuntu-24.04-desktop-
amd64.iso (733079552 bytes).

226 File send OK.

733079552 bytes received in 68.56 secs (10441.5 kB/s)

ftp> bye

Table 16-1 provides an explanation of the commands entered during this session.

Table 16-1: Examples of Interactive ftp Commands

Command Meaning

ftp fileserver Invoke the ftp program and have it
connect to the FTP server
fileserver.

anonymous Login name. After the login prompt, a

password prompt will appear. Some
servers will accept a blank password;
others will require a password in the
form of an email address. In that case,

222

Transporting Files Over a Network

cd pub/cd_images/Ubuntu-24.04

1s

lcd Desktop

get ubuntu-24.04-desktop-
amd64.iso

bye

try something like
user@example.com.

Change to the directory on the remote
system containing the desired file.
Note that on most anonymous FTP
servers, the files for public
downloading are found somewhere
under the pub directory.

List the directory on the remote
system.

Change the directory on the local
system to ~/Desktop. In the
example, the T tp program was
invoked when the working directory
was ~. This command changes the
working directory to ~/Desktop.

Tell the remote system to transfer the
file ubuntu-24.04-desktop-
amd64 . iso to the local system.
Since the working directory on the
local system was changed to
~/Desktop, the file will be
downloaded there.

Log off the remote server and end the
ftp program session. The commands
quit and exit may also be used.

Typing help at the ftp> prompt will display a list of the supported commands. Using
ftp on a server where sufficient permissions have been granted, it is possible to perform
many ordinary file management tasks. It’s clumsy, but it does work.

Lftp —ABetter ftp

ftp is not the only command-line FTP client. In fact, there are many. One of the better
(and more popular) ones is Lftp by Alexander Lukyanov. It works much like the tradi-
tional ftp program but has many additional convenience features including multiple-
protocol support (including HTTP), automatic retry on failed downloads, background
processes, tab completion of path names, and many more.

223

16 — Networking

curl - Transfer a URL

Another popular file transfer program is cur L. Its most basic usage works like this:

[me@linuxbox ~]$ curl https://linuxcommand.org

We specify a URL and cur L downloads the first page of the URL and outputs it to stan-
dard output. Multiple URLSs can be specified.

cur 1 supports most network protocols including HTTP, HTTPS, FTP, IMAP, POP3,
SFTP, SMB, and others. Table 16-2 lists a few of the many options that cur 1 supports.

Table 16-2: Common curl options

Option Description

-0, --output file Send output to the specified file
rather than standard output.

-0, --remote-name Like -0 but name local file the same
as the name of the remote file.

-s, --silent Suppress the progress meter and
eITor messages.

-u, --proxy-user Specify a user name/password

user:password combination.

-v, --verbose Display verbose messages as it
executes.

The cur 1 man page covers all the gruesome details.

wget - Non-interactive network downloader

Another command-line program for file downloading is wget. It is useful for download-
ing content from both web and FTP sites. Single files, multiple files, and even entire sites
can be downloaded. To download the first page of Linuxcommand.org we could do
this:

[me@linuxbox ~]%$ wget http://linuxcommand.org/index.php
--11:02:51-- http://1linuxcommand.org/index.php
=> “index.php'

224

Transporting Files Over a Network

Resolving linuxcommand.org... 66.35.250.210

Connecting to linuxcommand.org|66.35.250.210|:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: unspecified [text/html]

[<=>] 3,120 --.--K/s

11:02:51 (161.75 MB/s) - “index.php' saved [3120]

The program's many options allow wget to recursively download, download files in the
background (allowing you to log off but continue downloading), and complete the down-
load of a partially downloaded file. These features are well documented in its better-than-
average man page.

Secure Communication with Remote Hosts

For many years, Unix-like operating systems have had the ability to be administered re-
motely via a network. In the early days, before the general adoption of the Internet, there
were a couple of popular programs used to log in to remote hosts. These were the
rlogin and telnet programs. These programs, however, suffer from the same fatal
flaw that the ftp program does; they transmit all their communications (including login
names and passwords) in cleartext. This makes them wholly inappropriate for use in the
Internet age.

ssh

To address this problem, a new protocol called Secure Shell (SSH) was developed. SSH
solves the two basic problems of secure communication with a remote host.

1. It authenticates that the remote host is who it says it is (thus preventing so-called
man-in-the-middle attacks).

2. It encrypts all of the communications between the local and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listening for incoming
connections, by default, on port 22, while an SSH client is used on the local system to
communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH from the
OpenBSD project. Some distributions include both the client and the server packages by
default, while others only supply the client. To enable a system to receive remote connec-
tions, it must have the OpOpenSSH-server package installed, configured and running,
and (if the system either is running or is behind a firewall) it must allow incoming net-
work connections on TCP port 22.

225

16 — Networking

Tip: If you don’t have a remote system to connect to but want to try these exam-
ples, make sure the OpenSSH-server package is installed on your system and
use Localhost as the name of the remote host. That way, your machine will
create network connections with itself.

The SSH client program used to connect to remote SSH servers is called, appropriately
enough, ssh. To connect to a remote host named remote-sys, we would use the ssh

client program like so:

[me@linuxbox ~]$ ssh remote-sys

The authenticity of host 'remote-sys (192.168.1.4)' can't be
established.

RSA key fingerprint 1is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.

Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indicating that the au-
thenticity of the remote host cannot be established. This is because the client program has
never seen this remote host before. To accept the credentials of the remote host, enter
“yes” when prompted. Once the connection is established, the user is prompted for a
password:

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list
of known hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt from the remote
system.

Last login: Sat Aug 30 13:00:48 2024
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit command at the remote
shell prompt, thereby closing the remote connection. At this point, the local shell session
resumes, and the local shell prompt reappears.

It is also possible to connect to remote systems using a different username. For example,
if the local user “me” had an account named “bob” on a remote system, user me could log

in to the account bob on the remote system as follows:

226

Secure Communication with Remote Hosts

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:

Last login: Sat Aug 30 13:03:21 2024
[bob@remote-sys ~1$

As stated earlier, ssh verifies the authenticity of the remote host. If the remote host does
not successfully authenticate, the following message appears:

[me@linuxbox ~]$ ssh remote-sys
0000eEeEEEEEEEEECECCCCACEEACAACACCEAEACECCEEAEAECACAEAEAEAAEA
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
0000eEEEEEEEEEEECECECCEAEACAACCAEAEAEACACEAEAEAEAECEAEAECEAAEA
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
SHA256:9uh0XHzPz0A]jIs0ZDanNYfv7ksUO4Mjy5pR4AKUTSKKA.
Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this
message.
Offending ECDSA key in /home/me/.ssh/known_hosts:42

remove with:

ssh-keygen -f "/home/me/.ssh/known_hosts" -R "remote-sys"
Host key for remote-sys has changed and you have requested strict
checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be at-
tempting a man-in-the-middle attack. This is rare, since everybody knows that ssh alerts
the user to this. The more likely culprit is that the remote system has been changed some-
how; for example, its operating system or SSH server has been reinstalled. In the interests
of security and safety, however, the first possibility should not be dismissed out of hand.
Always check with the administrator of the remote system when this message occurs.

After it has been determined that the message is because of a benign cause, it is safe to
correct the problem on the client side. This is done by using the suggestion provided by
the warning message:

ssh-keygen -f "/home/me/.ssh/known_hosts" -R "remote-sys"

227

16 — Networking

Failing that, we can use a text editor (vim perhaps) to remove the obsolete key from the
~/ .ssh/known_hosts file. In the example message above, we see this:

offending key in /home/me/.ssh/known_hosts:42

This means that the 42nd line of the known_hosts file contains the offending key.
Delete this line from the file, and the ssh program will be able to accept new authentica-
tion credentials from the remote system.

Besides opening a shell session on a remote system, Ssh allows us to execute a single
command on a remote system. For example, to execute the free command on a remote
host named remote-sys and have the results displayed on the local system, use this:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
total used free shared buffers cached

Mem: 775536 507184 268352 0] 110068 154596
-/+ buffers/cache: 242520 533016

Swap: 1572856 0 1572856
[me@linuxbox ~]$%$

It’s possible to use this technique in more interesting ways, such as the following exam-
ple in which we perform an Is on the remote system and redirect the output to a file on
the local system:

[me@linuxbox ~]%$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$%$

Notice the use of the single quotes in the command above. This is done because we do
not want the pathname expansion performed on the local machine; rather, we want it to
be performed on the remote system. Likewise, if we had wanted the output redirected to a
file on the remote machine, we could have placed the redirection operator and the file-
name within the single quotes.

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

228

Secure Communication with Remote Hosts

Tunneling with SSH

Part of what happens when you establish a connection with a remote host via SSH
is that an encrypted tunnel is created between the local and remote systems. Nor-
mally, this tunnel is used to allow commands typed at the local system to be trans-
mitted safely to the remote system and for the results to be transmitted safely
back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort of virtual
private network (VPN) between the local and remote systems.

Perhaps the most common use of this feature is to allow X Window system traffic
to be transmitted. On a system still running an X server (rather than a modern sys-
tem using Wayland), it is possible to launch and run an X client program (a graph-
ical application) on a remote system and have its display appear on the local sys-
tem. It’s easy to do; here’s an example. Let’s say we are sitting at a Linux system
called 1inuxbox that is running an X server, and we want to run the xload
program on a remote system named remote-sys to see the program’s graphical
output on our local system. We could do this:

[me@linuxbox ~]% ssh -X remote-sys
me@remote-sys's password:

Last login: Mon Sep 08 13:23:11 2016
[me@remote-sys ~]$ xload

After the x Load command is executed on the remote system, its window appears
on the local system. On some systems, you may need to use the “-Y” option
rather than the “-X” option to do this.

scp and sftp

The OpenSSH package also includes two programs that can make use of an SSH-en-
crypted tunnel to copy files across the network. The first, SCp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host, fol-
lowed by a colon character. For example, if we wanted to copy a document named doc -
ument. txt from our home directory on the remote system, remote-sys, to the cur-
rent working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:

229

16 — Networking

document. txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$%$

As with ssh, you may apply a username to the beginning of the remote host’s name if
the desired remote host account name does not match that of the local system.

[me@linuxbox ~]$ scp bob@remote-sys:document.txt

The second SSH file-copying program is sftp which, as its name implies, is a secure re-
placement for the ftp program. sftp works much like the original ftp program that
we used earlier; however, instead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. STtp has an important advantage over conventional ftp in that it does
not require an FTP server to be running on the remote host. It requires only the SSH
server. This means that any remote machine that can connect with the SSH client can also
be used as an FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys

Connecting to remote-sys...

me@remote-sys's password:

sftp> 1s

ubuntu-8.04-desktop-i386.1iso

sftp> lcd Desktop

sftp> get ubuntu-8.04-desktop-i386.iso

Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-1i386.1is0

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

Tip: The SFTP protocol is supported by many of the graphical file managers
found in Linux distributions. Using either GNOME or KDE, we can enter a URI
beginning with sftp:// into the location bar and operate on files stored on a
remote system running an SSH server.

230

Secure Communication with Remote Hosts

An SSH Client for Windows?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done; what do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The most
popular one is probably PuTTY by Simon Tatham and his team. The PuTTY pro-
gram displays a terminal window and allows a Windows user to open an SSH (or
telnet) session on a remote host. The program also provides analogs for the scp

and sftp programs.
PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/

Summing Up

In this chapter, we surveyed a few of the networking tools found on most Linux systems.
Since Linux is so widely used in servers and networking appliances, there are many more
that can be added by installing additional software. But even with the basic set of tools, it
is possible to perform many useful network-related tasks.

Further Reading

e For a broad (albeit dated) look at network administration, the Linux Documenta-
tion Project provides the Linux Network Administrator’s Guide:

http://tldp.org/LLDP/nag?2/index.html

e Wikipedia contains many good networking articles. Here are some of the basics:
http://en.wikipedia.org/wiki/Internet protocol address

http://en.wikipedia.org/wiki/Host name
http://en.wikipedia.org/wiki/Uniform Resource Identifier

e The cur 1 home page has an excellent tutorial showing many examples of things
that cur 1 can do: https://curl.se/docs/tutorial.html

e Want an explanation of the how and why of Automatic Private IP Addressing
(APIPA)? Try this: https://www.33rdsquare.com/what-does-169-254-0-0-mean/

231

https://www.33rdsquare.com/what-does-169-254-0-0-mean/
https://curl.se/docs/tutorial.html
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Internet_protocol_address
http://en.wikipedia.org/wiki/Internet_protocol_address
http://tldp.org/LDP/nag2/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

17 — Searching for Files

17 - Searching for Files

As we have wandered around our Linux system, one thing has become abundantly clear:
a typical Linux system has a lot of files! This begs the question, “How do we find
things?” We already know that the Linux file system is well organized according to con-
ventions passed down from one generation of Unix-like systems to the next, but the sheer
number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a system.
e locate - Find files by name
e Tind - Search for files in a directory hierarchy

We will also look at a command that is often used with file-search commands to process
the resulting list of files.

e Xargs — Build and execute command lines from standard input
In addition, we will introduce a couple of commands to assist us in our explorations.
e touch — Change file times

e stat — Display file or file system status

locate - Find Files the Easy Way

The locate program performs a rapid database search of pathnames, and then outputs
every name that matches a given substring. Say, for example, we want to find all the pro-
grams with names that begin with zip. Since we are looking for programs, we can as-
sume that the name of the directory containing the programs would end with bin/.
Therefore, we could try to use Locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain the string
bin/zip.

232

locate — Find Files the Easy Way

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, we can combine Locate with other tools such
as grep to design more interesting searches.

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and there are several vari-
ants in common use. The two most common ones found in modern Linux distributions
are plocate and mlocate, though they are usually accessed by a symbolic link named
locate. The different versions of Locate have overlapping options sets. Some ver-
sions include regular expression matching (which we’ll cover in Chapter 19, “Regular
Expressions”) and wildcard support. Check the man page for locate to determine
which version of locate is installed.

233

17 — Searching for Files

Where Does the locate Database Come From?

You may notice that, on some distributions, Locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb. Usu-
ally, it is run periodically as a cron job, that is, a task performed at regular inter-
vals by the cron daemon. Most systems equipped with Llocate run updatedb
once a day. Since the database is not updated continuously, you will notice that
very recent files do not show up when using Locate. To overcome this, it’s pos-
sible to run the updatedb program manually by becoming the superuser and
running updatedb at the prompt.

find - Find Files the Hard Way

While the Locate program can find a file based solely on its name, the find program
searches a given directory (and its subdirectories) for files based on a variety of at-
tributes. We’re going to spend a lot of time with find because it has a lot of interesting
features that we will see again and again when we start to cover programming concepts in
later chapters.

In its simplest use, find is given one or more names of directories to search. For exam-
ple, to produce a listing of our home directory we can use this:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the list is sent to stan-
dard output, we can pipe the list into other programs. Let’s use wWC to count the number of
files.

[me@linuxbox ~]$ find ~ | we -1
47068

Wow, we’ve been busy! The beauty of find is that it can be used to identify files that
meet specific criteria. It does this through the (slightly strange) application of options,
tests, and actions. We’ll look at the tests first.

234

find — Find Files the Hard Way

Tests

Let’s say we want a list of directories from our search. To do this, we could add the fol -
lowing test:

[me@linuxbox ~]$ find ~ -type d | wc -1
1695

Adding the test -type d limited the search to directories. Conversely, we could have
limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -1
38737

Table 17-1 lists the common file type tests supported by find.

Table 17-1: find File Types

File Type Description

b Block special device file

C Character special device file
d Directory

f Regular file

1 Symbolic link

We can also search by file size and filename by adding some additional tests. Let’s look
for all the regular files that match the wildcard pattern * . JPG and are larger than one
megabyte.

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -1
840

In this example, we add the - name test followed by the wildcard pattern. Notice how we
enclose it in quotes to prevent pathname expansion by the shell. Next, we add the -size
test followed by the string “+1M”. The leading plus sign indicates that we are looking for
files larger than the specified number. A leading minus sign would change the meaning of

235

17 — Searching for Files

the string to be smaller than the specified number. Using no sign means, “match the value
exactly.” The trailing letter M indicates that the unit of measurement is megabytes. Table
17-2 lists the characters that can be used to specify units.

Table 17-2: find Size Units

Character Unit

512-byte blocks. This is the default if no unit is specified.
Bytes.

2-byte words.

Kilobytes (units of 1024 bytes).

Megabytes (units of 1048576 bytes).

Gigabytes (units of 1073741824 bytes).

O X2 X = O T

find supports a large number of tests. Table 17-3 provides a rundown of the common
ones. Note that in cases where a numeric argument is required, the same + and - notation
discussed above can be applied.

Table 17-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify less than n
minutes ago, use - N, and to specify more than n minutes
ago, use +n.

-chewer file Match files or directories whose contents or attributes were
last modified more recently than those of 1 le.

-ctime n Match files or directories whose contents or attributes (such
as ownership or permissions) were last modified n*24
hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group. group may
be expressed either as a group name or as a numeric group
ID.

-iname pattern Like the -name test but case-insensitive.

236

find — Find Files the Hard Way

-inum n

-mmin n

-mtime n

-name pattern

-newer file

-nouser

-nogroup

-perm mode

-samefile name

-size n
-type c

-user name

Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

Match files or directories whose contents were last
modified n minutes ago.

Match files or directories whose contents were last
modified n*24 hours ago.

Match files and directories with the specified wildcard
pattern.

Match files and directories whose contents were modified
more recently than the specified 1 le. This is useful when
writing shell scripts that perform file backups. Each time
you make a backup, update a file (such as a log) and then
use find to determine which files have changed since the

last update.

Match file and directories that do not belong to a valid user.
This can be used to find files belonging to deleted accounts
or to detect activity by attackers.

Match files and directories that do not belong to a valid
group.

Match files or directories that have permissions set to the
specified mode. mode can be expressed by either octal or
symbolic notation.

Similar to the - inum test. Match files that share the same
inode number as file name.

Match files of size n.
Match files of type c.

Match files or directories belonging to user name. The user
may be expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators

Even with all the tests that find provides, we may still need a better way to describe the
logical relationships between the tests. For example, what if we needed to determine

237

17 — Searching for Files

whether all the files and subdirectories in a directory had secure permissions? We would
look for all the files with permissions that are not 0600 and the directories with permis-
sions that are not 0700. Fortunately, find provides a way to combine tests using logical
operators to create more complex logical relationships. To express the aforementioned
test, we could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d
-hot -perm 0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the operators are not that
complicated once you get to know them. Table 17-4 describes the logical operators used
with find.

Table 17-4: find Logical Operators

Operator Description

-and Match if the tests on both sides of the operator are true.
This can be shortened to -a. Note that when no operator is
present, -and is implied by default.

-or Match if a test on either side of the operator is true. This
can be shortened to -o0.

-not Match if the test following the operator is false. This can be
abbreviated with an exclamation point (!).

() Groups tests and operators together to form larger
expressions. This is used to control the precedence of the
logical evaluations. By default, find evaluates from left to
right. It is often necessary to override the default evaluation
order to obtain the desired result. Even if not needed, it is
helpful sometimes to include the grouping characters to
improve the readability of the command. Note that since
the parentheses have special meaning to the shell, they
must be quoted when using them on the command line to
allow them to be passed as arguments to find. Usually the
backslash character is used to escape them. It is also
important that the (and) characters be surrounded with
spaces to separate them from other words in the command.
For example, find ~ \(-type f \)

238

find — Find Files the Hard Way

With this list of operators in hand, let’s deconstruct our find command. When viewed

from the uppermost level, we see that our tests are arranged as two groupings separated
by an - Or operator.

(expression 1) -or (expression 2)

This makes sense, since we are searching for files with a certain set of permissions and
for directories with a different set. If we are looking for both files and directories, why do
we use -0r instead of -and? As find scans through the files and directories, each one
is evaluated to see whether it matches the specified tests. We want to know whether it is
either a file with bad permissions or a directory with bad permissions. It can’t be both at
the same time. So if we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do that? Actually, we
don’t. What we will test for is “not good permissions” since we know what “good per-
missions” are. In the case of files, we define good as 0600 and for directories, we define
it as 0700. The expression that will test files for “not good” permissions is as follows:

-type f -and -not -perm 0600
For directories it is as follows:
-type d -and -not -perm 0700

As noted in the Table 17-4 above, the -and operator can be safely removed since it is
implied by default. So if we put this all back together, we get our final command.

find ~ (-type f -not -perm 0600) -or (-type d -not -perm
0700)

However, since the parentheses have special meaning to the shell, we must escape them
to prevent the shell from trying to interpret them. Preceding each one with a backslash
character does the trick.

There is another feature of logical operators that is important to understand. Let’s say that
we have two expressions separated by a logical operator.

exprl -operator expr2

In all cases, expr1 will always be performed; however, the operator will determine
whether expr2 is performed. Table 17-5 outlines how it works.

Table 17-5: find AND/OR Logic

Results of expri1 Operator expr2is...

True -and Always performed

239

17 — Searching for Files

False -and Never performed
True -or Never performed
False -or Always performed

Why does this happen? It’s done to improve performance. Take -and, for example. We
know that the expression exprl -and expr2 cannot be true if the result of expri is
false, so there is no point in performing expr2. Likewise, if we have the expression
exprl -or expr2 and the result of expri is true, there is no point in performing
expr2, as we already know that the expression exprl -or expr2 is true.

OK, so it helps it go faster. Why is this important? It’s important because we can rely on
this behavior to control how actions are performed, as we will soon see.

Predefined Actions

Let’s get some work done! Having a list of results from our find command is useful, but
what we really want to do is act on the items on the list. Fortunately, find allows actions
to be performed based on the search results. There are a set of predefined actions and sev-

eral ways to apply user-defined actions. First, let’s look at a few of the predefined actions
listed in Table 17-6.

Table 17-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-1s Perform the equivalent of 1s -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is
specified.

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page for full details.

In the first example, we did this:

find ~

240

find — Find Files the Hard Way

This produced a list of every file and subdirectory contained within our home directory. It
produced a list because the -print action is implied if no other action is specified.
Thus, our command could also be expressed as follows:

find ~ -print

We can use Tind to delete files that meet certain criteria. For example, to delete files that
have the file extension .bak (which is often used to designate backup files), we could
use this command:

find ~ -type f -name '*.bak' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in . bak. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution
when using the -delete action. Always test the command first by substituting
the -print action for -de lete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions. Con-
sider the following command:

find ~ -type f -name '*.bak' -print

As we have seen, this command will look for every regular file (- type f) whose name
ends with .bak (-name '*.bak') and will output the relative pathname of each
matching file to standard output (-print). However, the reason the command performs
the way it does is determined by the logical relationships between each of the tests and
actions. Remember, there is, by default, an implied -and relationship between each test
and action. We could also express the command this way to make the logical relation-
ships easier to see:

find ~ -type f -and -name '*.bak' -and -print

With our command fully expressed, let’s look at how the logical operators affect its exe-
cution:

241

17 — Searching for Files

Test/Action Is Performed Only If...

-print -type fand -name '*.bak' aretrue

-name ‘*.bak’ -type fistrue

-type f Is always performed, since it is the first test/action in an -

and relationship.

Since the logical relationship between the tests and actions determines which of them are
performed, we can see that the order of the tests and actions is important. For instance, if
we were to reorder the tests and actions so that the -print action was the first one, the
command would behave much differently.

find ~ -print -and -type f -and -name '*.bak'

This version of the command will print each file (the -print action always evaluates to
true) and then test for file type and the specified file extension.

User-Defined Actions

In addition to the predefined actions, we can also invoke arbitrary commands. The tradi-
tional way of doing this is with the -exec action. This action works like this:

-exec command {} ;

Here command is the name of a command, {} is a symbolic representation of the current
pathname, and the semicolon is a required delimiter indicating the end of the command.
Here’s an example of using -exec to act like the - de Llete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning to the shell, they
must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using the -0k action
in place of -exec, the user is prompted before execution of each specified command.

find ~ -type f -name 'foo*' -ok 1s -1 '{}' ';'
< 1ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo

242

find — Find Files the Hard Way

< 1ls ... /home/me/foo.txt > ? y
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string f00 and execute
the command 1S - 1 each time one is found. Using the -0k action prompts the user be-
fore the 1s command is executed.

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

1s -1 filel
1ls -1 fileZ2

we may prefer to execute them this way:
ls -1 file1l file2

This causes the command to be executed only one time rather than multiple times. There
are two ways we can do this: the traditional way, using the external command xargs and
the alternate way, using a new feature in find itself. We’ll talk about the alternate way
first.

By changing the trailing semicolon character to a plus sign, we activate the ability of
find to combine the results of the search into an argument list for a single execution of
the desired command. Going back to our example, this will execute 1s each time a
matching file is found:

find ~ -type f -name 'foo*' -exec ls -1 '{}' ';'
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

By changing the command to the following:

find ~ -type f -name 'foo*' -exec 1ls -1 '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

243

17 — Searching for Files

we get the same results, but the system has to execute the 1S command only once.

Xargs

The xargs command performs an interesting function. It accepts input from standard in-
put and converts it into an argument list for a specified command. With our example, we
would use it like this:

find ~ -type f -name 'foo*' -print | xargs ls -1
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs, which, in turn, con-
structs an argument list for the 1s command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long
for the shell to accept. When a command line exceeds the maximum length sup-
ported by the system, Xargs executes the specified command with the maxi-
mum number of arguments possible and then repeats this process until standard
input is exhausted. To see the maximum size of the command line, execute
xargs with the - -show- limits option.

Dealing with Funny Filenames

Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the result-
ing command will interpret each space-separated word as a separate argument. To
overcome this, find and xargs allow the optional use of a null character as an
argument separator. A null character is defined in ASCII as the character repre-
sented by the number zero (as opposed to, for example, the space character, which
is defined in ASCII as the character represented by the number 32). The find
command provides the action -print®, which produces null-separated output,
and the xargs command has the --null (or -0) option, which accepts null
separated input. Here’s an example:

244

find — Find Files the Hard Way

find ~ -iname '*.jpg' -print® | xargs --null 1ls -1

Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

A Return to the Playground

It’s time to put find to some (almost) practical use. We’ll create a playground and try
some of what we have learned.

First, let’s create a playground with lots of subdirectories and files.

[me@linuxbox ~]$ mkdir -p playground/dir-{601..160}
[me@linuxbox ~]$ touch playground/dir-{e01..100}/file-{A..Z}

Marvel at the power of the command line! With these two lines, we created a playground
directory containing 100 subdirectories each containing 26 empty files. Try that with the
GUI!

The method we employed to accomplish this magic involved a familiar command
(mkdir), an exotic shell expansion (braces), and a new command, touch. By combin-
ing mkdir with the -p option (which causes mkdir to create the parent directories of
the specified paths) with brace expansion, we were able to create 100 subdirectories.

The touch command is usually used to set or update the access, change, and modify
times of files. However, if a filename argument is that of a nonexistent file, an empty file
is created.

In our playground, we created 100 instances of a file named file-A. Let’s find them.

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike 1s, find does not produce results in sorted order. Its order is deter-
mined by the layout of the storage device. We can confirm that we actually have 100 in-
stances of the file this way.

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -1
100

245

17 — Searching for Files

Next, let’s look at finding files based on their modification times. This will be helpful
when creating backups or organizing files in chronological order. To do this, we will first
create a reference file against which we will compare modification time.

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification time to the cur-
rent time. We can verify this by using another handy command, stat, which is a kind of
souped-up version of 1s. The stat command reveals all that the system understands
about a file and its attributes.

[me@linuxbox ~]$ stat playground/timestamp

File: “playground/timestamp’

Size: 0 Blocks: 0 I0 Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2025-10-08 15:15:39.000000000 -0400
Modify: 2025-10-08 15:15:39.000000000 -0400
Change: 2025-10-08 15:15:39.000000000 -0400

If we use touch again and then examine the file with stat, we will see that the file’s
times have been updated.

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
File: “playground/timestamp’
Size: 0 Blocks: 0 I0 Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2025-10-08 15:23:33.000000000 -0400
Modify: 2025-10-08 15:23:33.000000000 -0400
Change: 2025-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files.

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch

I{}I I;I

246

find — Find Files the Hard Way

This updates all files in the playground named file-B. Next we’ll use find to identify
the updated files by comparing all the files to the reference file timestamp.

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed a touch on all the
files in the playground named file-B after we updated timestamp, they are now
“newer” than timestamp and thus can be identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier and apply it to
playground.

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(
-type d -not -perm 0700 \)

This command lists all 100 directories and 2,600 files in playground (as well as
timestamp and playground itself, for a total of 2,702) because none of them meets
our definition of “good permissions.” With our knowledge of operators and actions, we
can add actions to this command to apply new permissions to the files and directories in
our playground.

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec
chmod 0600 '{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod
0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands, one for the direc-
tories and one for the files, rather than this one large compound command, but it’s nice to
know that we can do it this way. The important point here is to understand how the opera-
tors and actions can be used together to perform useful tasks.

Options

Finally, we have the options. The options are used to control the scope of a find search.
They may be included with other tests and actions when constructing find expressions.
Table 17-7 lists the most commonly used find options.

Table 17-7: find Options

Option Description

247

17 — Searching for Files

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied when
the -de lete action is specified.

-maxdepth levels Set the maximum number of levels that find will

descend into a directory tree when performing tests and
actions.

-mindepth levels Setthe minimum number of levels that find will
descend into a directory tree before applying tests and
actions.

-mount Direct find not to traverse directories that are mounted
on other file systems.

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like file system.
This is needed when scanning DOS/Windows file
systems and CD-ROMs.

Summing Up

It's easy to see that Locate is as simple as find is complicated. They both have their
uses. Take the time to explore the many features of find. It can, with regular use, im-
prove your understanding of Linux file system operations.

Further Reading

e The locate, updatedb, find, and xargs programs are all part of the GNU
Project’s findutils package. The GNU Project provides a website with extensive
on-line documentation, which is quite good and should be read if you are using
these programs in high security environments:
http://www.gnu.org/software/findutils/

248

http://www.gnu.org/software/findutils/

18 — Archiving and Backup

18 - Archiving and Backup

One of the system administrator primary tasks is keeping the system’s data secure. One
way this is done is by performing timely backups of the system’s files. Even if we’re not
a system administrator, it is often useful to make copies of things and move large collec-
tions of files from place to place and from device to device.

In this chapter, we will look at several common programs that are used to manage collec-
tions of files. These are the file compression programs:

e (Qzip — Compress or expand files

e bzip2 - Ablock sorting file compressor
These are the archiving programs:

e tar —Tape archiving utility

e zip — Package and compress files
This is the file synchronization program:

e rsync — Remote file and directory synchronization

Compressing Files

Throughout the history of computing, there has been a struggle to get the most data into
the smallest available space, whether that space be memory, storage devices, or network
bandwidth. Many of the data services that we take for granted today, such as mobile
phone service, high-definition television, or broadband Internet, owe their existence to ef-
fective data compression techniques.

Data compression is the process of removing redundancy from data. Let’s consider an
imaginary example. Say we had an entirely black picture file with the dimensions of 100
pixels by 100 pixels. In terms of data storage (assuming 24 bits, or 3 bytes per pixel), the
image will occupy 30,000 bytes of storage.

100 * 100 * 3 = 30,000

An image that is all one color contains entirely redundant data. If we were clever, we
could encode the data in such a way that we simply describe the fact that we have a block

249

18 — Archiving and Backup

of 10,000 black pixels. So, instead of storing a block of data containing 30,000 zeros
(black is usually represented in image files as zero), we could compress the data into the
number 10,000, followed by a zero to represent our data. Such a data compression
scheme is called run-length encoding and is one of the most rudimentary compression
techniques. Today’s techniques are much more advanced and complex, but the basic goal
remains the same—get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out the compression)
fall into two general categories.

« Lossless: Lossless compression preserves all the data contained in the original.
This means that when a file is restored from a compressed version, the restored
file is exactly the same as the original, uncompressed version.

« Lossy: Lossy compression, on the other hand, removes data as the compression is
performed to allow more compression to be applied. When a lossy file is restored,
it does not match the original version; rather, it is a close approximation. Exam-
ples of lossy compression are JPEG (for images) and MP3 (for music).

In our discussion, we will look exclusively at lossless compression since most data on
computers cannot tolerate any data loss.

9zip
The gzip program is used to compress one or more files. When executed, it replaces the
original file with a compressed version of the original. The corresponding gunzip pro-

gram is used to restore compressed files to their original, uncompressed form. Here is an
example:

[me@linuxbox ~]$ 1s -1 /etc > foo.txt

[me@linuxbox ~]$ ls -1 foo.*

-rw-r--r-- 1 me me 15738 2025-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt

[me@linuxbox ~]$ 1s -1 foo.*

-rw-r--r-- 1 me me 3230 2025-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt

[me@linuxbox ~]$ 1ls -1 foo.*

-rw-r--r-- 1 me me 15738 2025-10-14 07:15 foo.txt

In this example, we create a text file named f0o0. txt from a directory listing. Next, we
run gzip, which replaces the original file with a compressed version named foo0. tXx-
t.gz. In the directory listing of f00.*, we see that the original file has been replaced
with the compressed version and that the compressed version is about one-fifth the size of
the original. We can also see that the compressed file has the same permissions and time-

250

Compressing Files

stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we can see that the
compressed version of the file has been replaced with the original, again with the permis-

sions and timestamp preserved.

gzip has many options, as described in Table 18-1.

Table 18-1: gzip Options

Option Long Option

-C --stdout
--to-stdout

-d --decompress
--uncompress

-f --force

-h --help

-1 --list

-r --recursive

-t --test

-V --verbose

-number

Let’s return to our earlier example.

Description

Write output to standard output and keep the
original files.

Decompress. This causes gzip to act like
gunzip.

Force compression even if a compressed
version of the original file already exists.

Display usage information.

List compression statistics for each file
compressed.

If one or more arguments on the command line
is a directory, recursively compress files
contained within them.

Test the integrity of a compressed file.
Display verbose messages while compressing.

Set amount of compression. number is an
integer in the range of 1 (fastest, least
compression) to 9 (slowest, most
compression). The values 1 and 9 may also be
expressed as - -fast and - -best,
respectively. The default value is 6.

[me@linuxbox ~]$ gzip foo.txt

[me@linuxbox ~]$ gzip -tv foo.txt.gz

foo.txt.gz: OK

251

18 — Archiving and Backup

[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo. txt with a compressed version named foo.txt.gz.
Next, we tested the integrity of the compressed version, using the -t and -V options. Fi-
nally, we uncompressed the file to its original form.

gzip can also be used in interesting ways via standard input and output.

[me@linuxbox ~]$ ls -1 /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .z, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file.

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternately, there is a program supplied with gzip, called zcat, that is equivalent to
gunzip with the -c option. It can be used like the cat command on gzip compressed
files.

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a z1less program, too. It performs the same function as the previ-
ous pipeline.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip but uses a different compres-
sion algorithm that achieves higher levels of compression at the cost of compression
speed. In most regards, it works in the same fashion as gzip. A file compressed with

252

Compressing Files

bzip2 is denoted with the extension .bz2.

[me@linuxbox ~]$ 1ls -1 /etc > foo.txt

[me@linuxbox ~]$ ls -1 foo.txt

-rw-r--r-- 1 me me 15738 2025-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt

[me@linuxbox ~]$ ls -1 foo.txt.bz2

-rw-r--r-- 1 me me 2792 2025-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]%$ bunzip2 foo.txt.bz2

As we can see, bzip2 can be used the same way as gzip. All the options (except for -
r) that we discussed for gzip are also supported in bzip2. Note, however, that the
compression-level option (-number) has a somewhat different meaning to bzip2.
bzip2 comes with bunzip2 and bzcat for uncompressing files.

bzip2 also comes with the bzip2recover program, which will try to recover dam-
aged . bz?2 files.

Don’t Be Compressive Compulsive

I occasionally see people attempting to compress a file that has already been
compressed with an effective compression algorithm by doing something like
this:

$ gzip picture.jpg

Don’t do it. You’re probably just wasting time and space! If you apply compres-
sion to a file that is already compressed, you will usually end up with a larger file.
This is because all compression techniques involve some overhead that is added
to the file to describe the compression. If you try to compress a file that already
contains no redundant information, the compression will most often not result in
any savings to offset the additional overhead.

Archiving Files

A common file-management task often used in conjunction with compression is archiv-
ing. Archiving is the process of gathering up many files and bundling them together into a
single large file. Archiving is often done as part of system backups. It is also used when
old data is moved from a system to some type of long-term storage.

253

18 — Archiving and Backup

tar

In the Unix-like world of software, the tar program is the classic tool for archiving files.
Its name, short for tape archive, reveals its roots as a tool for making backup tapes. While
it is still used for that traditional task, it is equally adept on other storage devices. We of-
ten see filenames that end with the extension . tar or . tgz, which indicate a “plain” tar
archive and a gzipped archive, respectively. A tar archive can consist of a group of sepa-
rate files, one or more directory hierarchies, or a mixture of both. The command syntax
works like this:

tar model[options] pathname. ..

Here mode is one of the following operating modes listed in Table 18-2 (only a partial list
is shown here; see the tar man page for a complete list).

Table 18-2: tar Modes

Mode Description

C Create an archive from a list of files and/or directories.
X Extract an archive.

r Append specified pathnames to the end of an archive.
t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some examples to show
how it works. First, let’s re-create our playground from the previous chapter.

[me@linuxbox ~]$ mkdir -p playground/dir-{001..100}
[me@linuxbox ~]$ touch playground/dir-{001..100}/file-{A..Z}

Next, let’s create a tar archive of the entire playground.

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground. tar that contains the entire
playground directory hierarchy. We can see that the mode and the f option, which is used
to specify the name of the tar archive, may be joined together and do not require a lead-
ing dash. Note, however, that the mode must always be specified first, before any option.

To list the contents of the archive, we can do this:

254

Archiving Files

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option.

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by creating a new di-
rectory named T00, changing the directory and extracting the tar archive.

[me@linuxbox ~]$ mkdir foo

[me@linuxbox ~]$ cd foo

[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ 1s

playground

If we examine the contents of ~/foo/playground, we see that the archive was suc-
cessfully installed, creating a precise reproduction of the original files. There is one
caveat, however. Unless we are operating as the superuser, files and directories extracted
from archives take on the ownership of the user performing the restoration, rather than
the original owner.

Another interesting behavior of tar is the way it handles pathnames in archives. The de-
fault for pathnames is relative, rather than absolute. tar does this by simply removing
any leading slash from the pathname when creating the archive. To demonstrate, we will
re-create our archive, this time specifying an absolute pathname.

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the Enter key, so we will get an absolute pathname for our demonstration. Next,
we will extract the archive as before and watch what happens.

[me@linuxbox ~]$ cd foo

[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ 1s

home playground

[me@linuxbox foo]$ 1ls home

255

18 — Archiving and Backup

me
[me@linuxbox foo]$ 1s home/me
playground

Here we can see that when we extracted our second archive, it re-created the directory
home/me/playground relative to our current working directory, ~/f00, not relative
to the root directory, as would have been the case with an absolute pathname. This may
seem like an odd way for it to work, but it’s actually more useful this way, because it al-
lows us to extract archives to any location rather than being forced to extract them to their
original locations. Repeating the exercise with the inclusion of the verbose option (Vv) will
give a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action. Imagine we want
to copy the home directory and its contents from one system to another and we have a
large USB hard drive that we can use for the transfer. On our modern Linux system, the
drive is “automagically” mounted in the /media directory. Let’s also imagine that the
disk has a volume name of BigDisk when we attach it. To make the tar archive, we can
do the following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the second computer.
Again, it is mounted at /media/BigDisk. To extract the archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to / so that the extrac-
tion is relative to the root directory, since all pathnames within the archive are relative.

When extracting an archive, it’s possible to limit what is extracted from the archive. For
example, if we wanted to extract a single file from an archive, it could be done like this:

tar xf archive. tar pathname

By adding the trailing pathname to the command, tar will restore only the specified file.
Multiple pathnames may be specified. Note that the pathname must be the full, exact rela-
tive pathname as stored in the archive. When specifying pathnames, wildcards are not
normally supported; however, the GNU version of tar (which is the version most often

256

Archiving Files

found in Linux distributions) supports them with the - -wildcards option. Here is an
example using our previous p layground. tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/pla
yground/dir-*/file-A'

This command will extract only files matching the specified pathname including the
wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this example, we will
use Tind to produce a set of files to include in an archive.

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf
playground.tar '{}' '+'

Here we use find to match all the files in playground named file-A and then, us-
ing the -exec action, we invoke tar in the append mode (r) to add the matching files
to the archive playground. tar.

Using tar with find is a good way of creating incremental backups of a directory tree
or an entire system. By using find to match files newer than a timestamp file, we could
create an archive that contains only those files newer than the last archive, assuming that
the timestamp file is updated right after each archive is created.

tar can also make use of both standard input and output. Here is a comprehensive exam-
ple:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-
from=- | gzip > playground.tgz

In this example, we used the find program to produce a list of matching files and piped
them into tar. If the filename - is specified, it is taken to mean standard input or output,
as needed. (By the way, this convention of using - to represent standard input/output is
used by a number of other programs, too). The - -files-from option (which may also
be specified as -T) causes tar to read its list of pathnames from a file rather than the
command line. Lastly, the archive produced by tar is piped into gzip to create the
compressed archive playground. tgz. The . tgz extension is the conventional exten-
sion given to gzip-compressed tar files. The extension .tar.gz is also used some-

257

18 — Archiving and Backup

times.

While we used the gzip program externally to produce our compressed archive in the
above example, modern versions of GNU tar support both gzip and bzip2 compres-
sion directly with the use of the z and j options, respectively. Using our previous exam-
ple as a base, we can simplify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2-compressed archive instead, we could have done
this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to .tbz to indicate a bzip2-compressed file) we enabled bzip2-compres-
sion.

Another interesting use of standard input and output with the tar command involves
transferring files between systems over a network. Imagine that we had two machines
running a Unix-like system equipped with tar and ssh. In such a scenario, we could
transfer a directory from a remote system (named remote-sys for this example) to our
local system.

[me@linuxbox ~]$ mkdir remote-stuff

[me@linuxbox ~]$ cd remote-stuff

[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -

me@remote-sys’s password:

[me@linuxbox remote-stuff]$ 1s

Documents

Here we were able to copy a directory named Documents from the remote system re-
mote-sys to a directory within the directory named remote-stuff on the local sys-
tem. How did we do this? First, we launched the tar program on the remote system us-
ing ssh. You will recall that ssh allows us to execute a program remotely on a net-
worked computer and “see” the results on the local system—the standard output pro-
duced on the remote system is sent to the local system for viewing. We can take advan-

258

Archiving Files

tage of this by having tar create an archive (the ¢ mode) and send it to standard output,
rather than a file (the T option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local system, we
execute tar and have it expand an archive (the X mode) supplied from standard input
(again, the T option with the dash argument).

zip
The zip program is both a compression tool and an archiver. The file format used by the

program is familiar to Windows users, as it reads and writes . zip files. In Linux, how-
ever, gzip is the predominant compression program, with bzip2 being a close second.

In its most basic usage, zip is invoked like this:
zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground directory (but
none of its contents) is stored. Although the addition of the extension .z1p is automatic,
we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series of messages
like this:

adding: playground/dir-020/file-Z (stored 0%)
adding: playground/dir-020/file-Y (stored 0%)
adding: playground/dir-020/file-X (stored 0%)
adding: playground/dir-087/ (stored 0%)

adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will add files to
the archive using one of two storage methods: either it will “store” a file without com-
pression, as shown here, or it will “deflate” the file that performs compression. The nu-
meric value displayed after the storage method indicates the amount of compression
achieved. Since our playground contains only empty files, no compression is performed
on its contents.

Extracting the contents of a zip file is straightforward when using the unzip program.

259

18 — Archiving and Backup

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing archive is speci-
fied, it is updated rather than replaced. This means the existing archive is preserved, but
new files are added and matching files are replaced.

Files may be listed and extracted selectively from a zip archive by specifying them to
unzip.

[me@linuxbox ~]$ unzip -1 playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
Length Date Time Name

0 10-05-16 09:25 playground/dir-087/file-Z

[me@linuxbox ~]$ cd foo

[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip

replace playground/dir-087/file-z? [y]es, [n]o, [A]ll, [N]one,
[r]lename: y

extracting: playground/dir-087/file-Z

Using the - 1 option causes unzip to merely list the contents of the archive without ex-
tracting the file. If no files are specified, unzip will list all files in the archive. The -v
option can be added to increase the verbosity of the listing. Note that when the archive
extraction conflicts with an existing file, the user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its implementation is
somewhat less useful. It is possible to pipe a list of filenames to zip via the -@ option.

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use Tind to generate a list of files matching the test -name "file-A" and
then pipe the list into zip, which creates the archive file-A.zip containing the se-
lected files.

z1ip also supports writing its output to standard output, but its use is limited because few
programs can make use of the output. Unfortunately, the unzip program does not accept

260

Archiving Files

standard input. This prevents zip and unzip from being used together to perform net-
work file copying like tar.

zip can, however, accept standard input, so it can be used to compress the output of
other programs.

[me@linuxbox ~]$ 1s -1 /etc/ | zip ls-etc.zip -
adding: - (deflated 80%)

In this example, we pipe the output of 1s into zip. Like tar, zip interprets the trailing
dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when the -p (for
pipe) option is specified.

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip/unzip can do. They both have a lot of
options that add to their flexibility, though some are platform specific to other systems.
The man pages for both zip and unzip are pretty good and contain useful examples.
However, the main use of these programs is for exchanging files with Windows systems,
rather than performing compression and archiving on Linux, where tar and gzip are
greatly preferred.

Synchronizing Files and Directories

A common strategy for maintaining a backup copy of a system involves keeping one or
more directories synchronized with another directory (or directories) located on either the
local system (usually a removable storage device of some kind) or a remote system. We
might, for example, have a local copy of a website under development and synchronize it
from time to time with the “live” copy on a remote web server.

In the Unix-like world, the preferred tool for this task is rsync. This program can syn-
chronize both local and remote directories by using the rsync remote-update protocol,
which allows rsync to quickly detect the differences between two directories and per-
form the minimum amount of copying required to bring them into sync. This makes
rsync very fast and economical to use, compared to other kinds of copy programs.

rsync is invoked like this:
rsync options source destination

where source and destination are one of the following:

261

18 — Archiving and Backup

e Alocal file or directory
e Aremote file or directory in the form of [user@]host:path
e A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-to-remote copy-
ing is not supported.

Let’s try rsync out on some local files. First, let’s clean out our foo0 directory.

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the p Llayground directory with a corresponding copy in fo0o0.

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving—causes recursion and preservation of
file attributes) and the -V option (verbose output) to make a mirror of the playground
directory within foo. While the command runs, we will see a list of the files and directo-
ries being copied. At the end, we will see a summary message like this indicating the
amount of copying performed:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

If we run the command again, we will see a different result.

[me@linuxbox ~]$ rsync -av playground foo
building file list ... done

sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that there were
no differences between ~/playground and ~/foo/playground, and therefore it
didn’t need to copy anything. If we modify a file in playground and run r sync again:

[me@linuxbox ~]$ touch playground/dir-099/file-Z

262

Synchronizing Files and Directories

[me@linuxbox ~]$ rsync -av playground foo

building file 1list ... done

playground/dir-099/file-Z

sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

we see that rsync detected the change and copied only the updated file.

There is a subtle but useful feature we can use when we specify an rsync source. Let’s
consider two directories.

[me@linuxbox ~]$ 1s

source destination

Directory source contains one file named filel and directory destination is
empty. If we perform a copy of source to destination like so:

[me@linuxbox ~]$ rsync source destination

then rsync copies the directory source into destination.

[me@linuxbox ~]$ ls destination
source

However, if we append a trailing / to the source directory name, rsync will copy only
the contents of the source directory and not the directory itself.

[me@linuxbox ~]$ rsync source/ destination

[me@linuxbox ~]$ ls destination
filel

This is handy if we want only the contents of a directory copied without creating another
level of directories within the destination. We can think of it as being like source/* in
its outcome, but this method will copy all of the source directory’s content including the
hidden files.

As a practical example, let’s consider the imaginary external hard drive that we used ear-
lier with tar. If we attach the drive to our system and it is mounted at /media/

263

mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox

18 — Archiving and Backup

BigDisk once again, we can perform a useful system backup by first creating a direc-
tory named /backup on the external drive and then using rsync to copy the most im-
portant stuff from our system to the external drive.

[me@linuxbox ~]1%$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup

In this example, we copied the /etc, /home, and /usr/local directories from our
system to our imaginary storage device. We included the --delete option to remove
files that may have existed on the backup device that no longer existed on the source de-
vice (this is irrelevant the first time we make a backup but will be useful on subsequent
copies). Repeating the procedure of attaching the external drive and running this rsync
command would be a useful (though not ideal) way of keeping a small system backed up.
Of course, an alias would be helpful here, too. We could create an alias and add it to our
.bashrc file to provide this feature.

alias backup='sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup’

Now all we have to do is attach our external drive and run the backup command to do
the job.

Using rsync Over a Network

One of the real beauties of rsync is that it can be used to copy files over a network. Af-
ter all, the r in rsync stands for “remote.” Remote copying can be done in one of two
ways. The first way is with another system that has rsync installed, along with a remote
shell program such as ssh. Let’s say we had another system on our local network with a
lot of available hard drive space and we wanted to perform our backup operation using
the remote system instead of an external drive. Assuming that it already had a directory
named /backup where we could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home
/usr/local remote-sys:/backup

We made two changes to our command to facilitate the network copy. First, we added the
- -rsh=ssh option, which instructs rsync to use the ssh program as its remote shell.

264

Synchronizing Files and Directories

In this way, we were able to use an ssh-encrypted tunnel to securely transfer the data
from the local system to the remote host. Second, we specified the remote host by prefix-
ing its name (in this case the remote host is named remote-sys) to the destination
pathname.

The second way that rsync can be used to synchronize files over a network is by using
an rsync server. rsync can be configured to run as a daemon and listen to incoming re-
quests for synchronization. This is often done to allow mirroring of a remote system. For
example, Red Hat Software maintains a large repository of software packages under de-
velopment for its Fedora distribution. It is useful for software testers to mirror this collec-
tion during the testing phase of the distribution release cycle. Since files in the repository
change frequently (often more than once a day), it is desirable to maintain a local mirror
by periodic synchronization, rather than by bulk copying of the repository. One of these
repositories is kept at Duke University; we could mirror it using our local copy of rsync
and their rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av -delete rsync://archive. linux.duke.edu/
fedora/linux/development/rawhide/Everything/x86_64/0s/ fedora-devel

In this example, we use the URI of the remote rsync server, which consists of a proto-
col (rsync://), followed by the remote host-name (archive. linux.duke.edu),
followed by the pathname of the repository.

Summing Up

We've looked at the common compression and archiving programs used on Linux and
other Unix-like operating systems. For archiving files, the tar/gzip combination is the
preferred method on Unix-like systems while zip/unzip is used for interoperability
with Windows systems. Finally, we looked at the rsync program (a personal favorite)
which is very handy for efficient synchronization of files and directories across systems.

Further Reading

e The man pages for all of the commands discussed here are pretty clear and con-
tain useful examples. In addition, the GNU Project has a good online manual for
its version of tar. It can be found here:

http://www.gnu.org/software/tar/manual/index.html

265

http://www.gnu.org/software/tar/manual/index.html

19 — Regular Expressions

19 - Regular Expressions

In the next few chapters, we are going to look at tools used to manipulate text. As we
have seen, text data plays an important role on all Unix-like systems, such as Linux. But
before we can fully appreciate all the features offered by these tools, we have to first ex-
amine a technology that is frequently associated with the most sophisticated uses of these
tools—regular expressions.

As we have navigated the many features and facilities offered by the command line, we
have encountered some truly arcane shell features and commands, such as shell expan-
sion and quoting, keyboard shortcuts, and command history, not to mention the vi editor.
Regular expressions continue this “tradition” and may be (arguably) the most arcane fea-
ture of them all. This is not to suggest that the time it takes to learn about them is not
worth the effort. Quite the contrary. A good understanding will enable us to perform
amazing feats, though their full value may not be immediately apparent.

What are Regular Expressions?

Simply put, regular expressions are symbolic notations used to identify patterns in text. In
some ways, they resemble the shell’s wildcard method of matching file and pathnames
but on a much grander scale. Regular expressions are supported by many command line
tools and by most programming languages to facilitate the solution of text manipulation
problems. However, to further confuse things, not all regular expressions are the same;
they vary slightly from tool to tool and from programming language to language. For our
discussion, we will limit ourselves to regular expressions as described in the POSIX stan-
dard (which will cover most of the command line tools), as opposed to many program-
ming languages (most notably Perl), which use slightly larger and richer sets of notations.

grep
The main program we will use to work with regular expressions is our old pal grep. The
name “grep” is actually derived from the phrase “global regular expression print,” so we
can see that grep has something to do with regular expressions. In essence, grep

searches text files for the occurrence text matching a specified regular expression and
outputs any line containing a match to standard output.

266

grep

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ 1s /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain the substring

zip.

The grep program accepts options and arguments this way, where regex is a regular ex-

pression:
grep [options] regex [file...]

Table 19-1 describes the commonly used grep options.

Table 19-1: grep Options

Option Long Option

-1 --ignhore-case

-V --invert-match

-C --count

-1 --files-with-matches
-L --files-without-match
-n --line-number

-h --no-filename

Description

Ignore case. Do not distinguish
between uppercase and lowercase
characters.

Invert match. Normally, grep
prints lines that contain a match.
This option causes grep to print
every line that does not contain a
match.

Print the number of matches (or
non-matches if the -v option is
also specified) instead of the lines
themselves.

Print the name of each file that
contains a match instead of the
lines themselves.

Like the - 1 option, but print only
the names of files that do not
contain matches.

Prefix each matching line with the
number of the line within the file.

For multi-file searches, suppress
the output of filenames.

267

19 — Regular Expressions

-q --quiet, --silent Suppress all output. This is useful
in shell scripting when we want to
test if a match was found. We’ll
cover testing a command’s exit
status in Chapter 27.

To more fully explore grep, let’s create some text files to search.

[me@linuxbox ~]$ 1s /bin > dirlist-bin.txt

[me@linuxbox ~]$ 1s /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ ls /sbin > dirlist-sbin.txt

[me@linuxbox ~]$ ls /usr/sbin > dirlist-usr-sbhin.txt
[me@linuxbox ~]$ 1ls dirlist*.txt

dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

[me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all the listed files for the string bzip and finds two
matches, both in the file dirlist-bin. txt. If we were interested only in the list of
files that contained matches rather than the matches themselves, we could specify the -1
option.

[me@linuxbox ~]%$ grep -1 bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted to see only a list of the files that did not contain a match, we
could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin.txt

dirlist-usr-bin.txt

dirlist-usr-sbin.txt

268

Metacharacters and Literals

Metacharacters and Literals

While it may not seem apparent, our grep searches have been using regular expressions
all along, albeit very simple ones. The regular expression bzip is taken to mean that a
match will occur only if the line in the file contains at least four characters and that some-
where in the line the characters b, z, i, and p are found in that order, with no other char-
acters in between. The characters in the string bzip are all literal characters, in that they
match themselves. In addition to literals, regular expressions may also include metachar-
acters that are used to specify more complex matches. Regular expression metacharacters
consist of the following:

AT A U A O B

All other characters are considered literals, though the backslash character is used in a
few cases to create meta sequences, as well as allowing the metacharacters to be escaped
and treated as literals instead of being interpreted as metacharacters.

Note: As we can see, many of the regular expression metacharacters are also
characters that have meaning to the shell when expansion is performed. When we
pass regular expressions containing metacharacters on the command line, it is vi-
tal that they be enclosed in quotes to prevent the shell from attempting to expand
them.

The Any Character

The first metacharacter we will look at is the dot or period character, which is used to
match any character. If we include it in a regular expression, it will match any character
in that character position. Here’s an example:

[me@linuxbox ~]$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip

gzip

funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

269

19 — Regular Expressions

We searched for any line in our files that matches the regular expression “.zip”. There are
a couple of interesting things to note about the results. Notice that the z1p program was
not found. This is because the inclusion of the dot metacharacter in our regular expression
increased the length of the required match to four characters, one of which must precede
the “z”. Also, if any files in our lists had contained the file extension .zip, they would
have been matched as well, because the period character in the file extension would be
matched by the “any character,” too.

Anchors

The caret (M) and dollar sign ($) characters are treated as anchors in regular expressions.
This means they cause the match to occur only if the regular expression is found at the
beginning of the line (M) or at the end of the line ($).

[me@linuxbox ~]$ grep -h 'Azip' dirlist*.txt
zip

zipcloak

zipgrep

zipinfo

zipnote

zipsplit

[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip

gzip

funzip

gpg-zip

preunzip

prezip

unzip

zip

[me@linuxbox ~]$ grep -h '"Azip$' dirlist*.txt
zip

Here we searched the list of files for the string zip located at the beginning of the line,
the end of the line, and on a line where it is at both the beginning and the end of the line
(i.e., by itself on the line). Note that the regular expression A$ (a beginning and an end
with nothing in between) will match blank lines.

270

Anchors

A Crossword Puzzle Helper

Even with our limited knowledge of regular expressions at this point, we can do
something useful.

My wife loves crossword puzzles and she will sometimes ask me for help with a
particular question. Something like, “What’s a five-letter word whose third letter
is ‘j” and last letter is ‘r’ that means...?” This kind of question got me thinking.

Did you know that your Linux system contains a dictionary? It does. Take a look
in the /usr/share/dict directory and you might find one or several. The
dictionary files located there are just long lists of words, one per line, arranged in
alphabetical order. On my system, the words file contains just over 98,500
words. To find possible answers to the crossword puzzle question above, we
could do this:

[me@linuxbox ~]$ grep -i 'A..j.r$' /usr/share/dict/words

Major

major

Using this regular expression, we can find all the words in our dictionary file that
are five letters long and have a j in the third position and an r in the last position.

Bracket Expressions and Character Classes

In addition to matching any character at a given position in our regular expression, we
can also match a single character from a specified set of characters by using bracket ex-
pressions. With bracket expressions, we can specify a set of characters (including charac-
ters that would otherwise be interpreted as metacharacters) to be matched. In this exam-
ple, using a two-character set, we match any line that contains the string bzip or gzip:

[me@linuxbox ~]% grep -h '[bg]zip' dirlist*.txt
bzip2

bzip2recover

9zip

A set may contain any number of characters, and metacharacters lose their special mean-
ing when placed within brackets. However, there are two cases in which metacharacters
are used within bracket expressions and have different meanings. The first is the caret
(M), which is used to indicate negation; the second is the dash (-), which is used to indi-
cate a character range.

271

19 — Regular Expressions

Negation

If the first character in a bracket expression is a caret (), the remaining characters are

taken to be a set of characters that must not be present at the given character position. We
do this by modifying our previous example, as follows:

[me@linuxbox ~]1%$ grep -h '[~bg]zip' dirlist*.txt
bunzip2

gunzip

funzip

gpg-zip

preunzip

prezip

prezip-bin

unzip

unzipsfx

With negation activated, we get a list of files that contain the string zip preceded by any
character except b or g. Notice that the file zip was not found. A negated character set
still requires a character at the given position, but the character must not be a member of
the negated set.

The caret character only invokes negation if it is the first character within a bracket ex-
pression; otherwise, it loses its special meaning and becomes an ordinary character in the
set.

Traditional Character Ranges

If we wanted to construct a regular expression that would find every file in our lists be-
ginning with an uppercase letter, we could do this:

[me@linuxbox ~]$ grep -h 'A[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

It’s just a matter of putting all 26 uppercase letters in a bracket expression. But the idea of
all that typing is deeply troubling, so there is another way.

[me@linuxbox ~]% grep -h 'A[A-Z]' dirlist*.txt
MAKEDEV

ControlPanel

GET

272

Bracket Expressions and Character Classes

HEAD

POST

X

X11

Xorg

MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a three-character range, we can abbreviate the 26 letters. Any range of charac-
ters can be expressed this way including multiple ranges, such as this expression that
matches all filenames starting with letters and numbers:

[me@linuxbox ~]%$ grep -h 'A[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially, so how do we actu-
ally include a dash character in a bracket expression? By making it the first character in
the expression. Consider these two examples:

[me@linuxbox ~]% grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an uppercase letter. The following will match
every filename containing a dash, or an uppercase A or an uppercase Z:

[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

POSIX Character Classes

The traditional character ranges are an easily understood and effective way to handle the
problem of quickly specifying sets of characters. Unfortunately, they don’t always work.
While we have not encountered any problems with our use of grep so far, we might run
into problems using other programs.

In Chapter 4, we looked at how wildcards are used to perform pathname expansion. In
that discussion, we said that character ranges could be used in a manner almost identical
to the way they are used in regular expressions, but here’s the problem:

273

19 — Regular Expressions

[me@linuxbox ~]$ 1s /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]*
/usr/sbin/MAKEFLOPPIES

/usr/sbin/NetworkManagerDispatcher

/usr/sbin/NetworkManager

(Depending on the Linux distribution, we will get a different list of files, possibly an
empty list. This example is from Ubuntu). This command produces the expected result—
a list of only the files whose names begin with an uppercase letter, but with this command
we get an entirely different result (only a partial listing of the results is shown):

[me@linuxbox ~]$ 1ls /usr/sbin/[A-Z]*
/usr/sbin/biosdecode

/usr/sbin/chat

/usr/sbin/chgpasswd
/usr/sbin/chpasswd

/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/sbin/console-kit-daemon

Why is that? It’s a long story, but here’s the short version:

Back when Unix was first developed, it knew only about ASCII characters, and this fea-
ture reflects that fact. In ASCII, the first 32 characters (numbers 0-31) are control codes
(things such as tabs, backspaces, and carriage returns). The next 32 (32-63) contain print-
able characters, including most punctuation characters and the numerals 0-9. The next 32
(numbers 64-95) contain the uppercase letters and a few more punctuation symbols. The
final 31 (numbers 96-126) contain the lowercase letters and yet more punctuation sym-
bols. Based on this arrangement, systems using ASCII used a collation order that looks
like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:
aAbBcCdDeEfFgGhHiIjJkK1LmMMNNoOpPqQrRsStTuUvVwWWXXyYzZ

As the popularity of Unix spread beyond the United States, there grew a need to support
characters not found in U.S. English. The ASCII table was expanded to use a full eight
bits, adding characters 128-255, which accommodated many more languages. To support
this ability, the POSIX standards introduced a concept called a locale, which could be ad-
justed to select the character set needed for a particular location. We can see the language
setting of our system using this command:

274

Bracket Expressions and Character Classes

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSIX-compliant applications will use a dictionary collation order
rather than ASCII order. This explains the behavior of the previous commands. A charac-
ter range of [A-Z] when interpreted in dictionary order includes all of the alphabetic
characters except the lowercase a, hence our results.

To partially work around this problem, the POSIX standard includes a number of charac-
ter classes that provide useful ranges of characters as described in Table 19-2.

Table 19-2: POSIX Character Classes

Character Class Description

[:alnum:] The alphanumeric characters. In ASCII, equivalent to:
[A-Za-z0-9]

[:word:] The same as [:alnum:], with the addition of the underscore
(_) character.

[:alpha:] The alphabetic characters. In ASCII, equivalent to:
[A-Za-z]

[:blank:] Includes the space and tab characters.

[:cntrl:] The ASCII control codes. Includes the ASCII characters 0
through 31 and 127.

[:digit:] The numerals 0 through 9.

[:graph:] The visible characters. In ASCII, it includes characters 33
through 126.

[:lower:] The lowercase letters.

[:punct:] The punctuation characters. In ASCII, equivalent to:
[-1"#8%&" ()*+, ./:;<=>?@[\\\]_"{|3}~]

[:print:] The printable characters. All the characters in [:graph:]

plus the space character.

[:space:] The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed. In ASCII,

equivalent to:
[\t\r\n\v\f]

[:upper:] The uppercase characters.

275

19 — Regular Expressions

[:xdigit:] Characters used to express hexadecimal numbers. In ASCII,

equivalent to:
[0-9A-Fa-f]

Even with the character classes, there is still no convenient way to express partial ranges,
such as [A-M].

Using character classes, we can repeat our directory listing and see an improved result.

[me@linuxbox ~]$ ls /usr/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Remember, however, that this is not an example of a regular expression; rather, it is the
shell performing pathname expansion. We show it here because POSIX character classes
can be used for both.

Reverting to Traditional Collation Order

You can opt to have your system use the traditional (ASCII) collation order by
changing the value of the LANG environment variable. As we saw earlier, the
LANG variable contains the name of the language and character set used in your
locale. This value was originally determined when you selected an installation
language as your Linux version was installed.

To see the locale settings, use the Locale command.

[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"

276

Bracket Expressions and Character Classes

LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

To change the locale to use the traditional Unix behaviors, set the LANG variable
to POSIX.

[me@linuxbox ~]$ export LANG=POSIX

Note that this change converts the system to use U.S. English (more specifically,
ASCII) for its character set, so be sure if this is really what you want.

You can make this change permanent by adding this line to your . bashrc file.
export LANG=POSIX

POSIX Basic vs. Extended Regular Expressions

Just when we thought this couldn’t get any more confusing, we discover that POSIX also
splits regular expression implementations into two kinds: basic regular expressions
(BRE) and extended regular expressions (ERE). The features we have covered so far are
supported by any application that is POSIX compliant and implements BRE. Our grep
program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metacharacters. With BRE,
the following metacharacters are recognized:

AN B

All other characters are considered literals. With ERE, the following metacharacters (and
their associated functions) are added:

() {372+

However (and this is the fun part), the (,), {, and } characters are treated as metachar-
acters in BRE if they are escaped with a backslash, whereas with ERE, preceding any
metacharacter with a backslash causes it to be treated as a literal. Any weirdness that
comes along will be covered in the discussions that follow.

Since the features we are going to discuss next are part of ERE, we are going to need to
use a different grep. Traditionally, this has been performed by the egrep program, but
the GNU version of grep also supports extended regular expressions when the -E op-
tion is used.

277

19 — Regular Expressions

POSIX

During the 1980’s, Unix became a very popular commercial operating system, but
by 1988, the Unix world was in turmoil. Many computer manufacturers had li-
censed the Unix source code from its creators, AT&T, and were supplying various
versions of the operating system with their systems. However, in their efforts to
create product differentiation, each manufacturer added proprietary changes and
extensions. This started to limit the compatibility of the software. As always with
proprietary vendors, each was trying to play a winning game of “lock-in” with
their customers. This dark time in the history of Unix is known today as “the
Balkanization.”

Enter the Institute of Electrical and Electronics Engineers (IEEE). In the mid-
1980s, the IEEE began developing a set of standards that would define how Unix
(and Unix-like) systems would perform. These standards, formally known as
IEEE 1003, define the application programming interfaces (APIs), shell and utili-
ties that are to be found on a standard Unix-like system. The name POSIX, which
stands for Portable Operating System Interface (with the X added to the end for
extra snappiness), was suggested by Richard Stallman (yes, that Richard Stall-
man) and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called alternation,
which is the facility that allows a match to occur from among a set of expressions. Just as
a bracket expression allows a single character to match from a set of specified characters,
alternation allows matches from a set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a plain old
string match.

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA

[me@linuxbox ~]$% echo "BBB" | grep AAA
[me@linuxbox ~1%

This is a pretty straightforward example, in which we pipe the output of echo into grep
and see the results. When a match occurs, we see it printed out; when no match occurs,
we see no results.

Now we’ll add alternation, signified by the vertical-bar metacharacter.

278

Alternation

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA

[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB

[me@linuxbox ~]%$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~1$

Here we see the regular expression 'AAA|BBB', which means “match either the string
AAA or the string BBB.” Notice that since this is an extended feature, we added the -E
option to grep (though we could have just used the egrep program instead), and we
enclosed the regular expression in quotes to prevent the shell from interpreting the verti-
cal-bar metacharacter as a pipe operator. Alternation is not limited to two choices.

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

To combine alternation with other regular expression elements, we can use () to separate
the alternation.

[me@linuxbox ~]$ grep -Eh '~(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with either bz, gz, or zip.
Had we left off the parentheses, the meaning of this regular expression changes to match
any filename that begins with bz or contains gz or contains zip:

[me@linuxbox ~]$ grep -Eh 'Abz|gz|zip' dirlist*.txt

Quantifiers

Extended regular expressions support several ways to specify the number of times an ele-
ment is matched, as described in the sections that follow.

? - Match an Element Zero or One Time

This quantifier means, in effect, “Make the preceding element optional.” Let’s say we
wanted to check a phone number for validity and we considered a phone number to be
valid if it matched either of these two forms, where n is a numeral:

279

19 — Regular Expressions

(nnn) nnn-nnnn

nnn nnn-nnnn
We could construct a regular expression like this:
A\ (?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]%

In this expression, we follow the parentheses characters with question marks to indicate
that they are to be matched zero or one time. Again, since the parentheses are normally
metacharacters (in ERE), we precede them with backslashes to cause them to be treated
as literals instead.

Let’s try it.

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E 'A\(?[0-9][0-9][0-9]
\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]%'

(555) 123-4567

[me@linuxbox ~]$ echo "555 123-4567" | grep -E '~\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$"

555 123-4567

[me@linuxbox ~]$ echo "AAA 123-4567" | grep -E '~\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$"

[me@linuxbox ~1$

Here we see that the expression matches both forms of the phone number but does not
match one containing non-numeric characters. This expression is not perfect as it still al-
lows mismatched parentheses around the area code, but it will perform the first stage of a
verification.

* - Match an Element Zero or More Times

Like the ? metacharacter, the * is used to denote an optional item; however, unlike the ?,
the item may occur any number of times, not just once. Let’s say we wanted to see
whether a string was a sentence; that is, it starts with an uppercase letter, then contains
any number of uppercase and lowercase letters and spaces, and ends with a period. To
match this (crude) definition of a sentence, we could use a regular expression like this:

A[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression containing the [: upper:]
character class, a bracket expression containing both the [:upper:] and [: lower:]
character classes and a space, and a period escaped with a backslash. The second element
is trailed with an * metacharacter so that after the leading uppercase letter in our sen-

tence, any number of uppercase and lowercase letters and spaces may follow it and still
match.

280

Quantifiers

[me@linuxbox ~]$ echo "This works." | grep -E 'A[[:upper:]][[:upper:]
[:lower:] 1*\.'

This works.

[me@linuxbox ~]$ echo "This Works." | grep -E 'A[[:upper:]][[:upper:]
[:lower:] 1*\.'

This Works.

[me@linuxbox ~]$ echo "this does not" | grep -E 'A[[:upper:]][[:upp
er:][:lower:]]*\.'

[me@linuxbox ~1$

The expression matches the first two tests, but not the third, since it lacks the required
leading uppercase character and trailing period.

+ - Match an Element One or More Times

The + metacharacter works much like the *, except it requires at least one instance of the
preceding element to cause a match. Here is a regular expression that will match only the
lines consisting of groups of one or more alphabetic characters separated by single spa-
ces:

A([[:alpha:]]+ ?)+$

[me@linuxbox ~]$ echo "This that" | grep -E 'A([[:alpha:]]+ ?)+$'
This that

[me@linuxbox ~]$ echo "a b c" | grep -E 'A([[:alpha:]]+ ?)+$'
abec

[me@linuxbox ~]% echo "a b 9" | grep -E 'A([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo "abc d" | grep -E 'A([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line @ b 9 because it contains a non-al-
phabetic character; nor does it match abc d because more than one space character
separates the characters ¢ and d.

{} - Match an Element a Specific Number of Times

The { and } metacharacters are used to express minimum and maximum numbers of re-
quired matches. They may be specified in four possible ways as outlined in Table 19-3.

Table 19-3: Specifying the Number of Matches

Specifier Meaning

281

19 — Regular Expressions

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times but no
more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use this method of
specifying repetitions to simplify our original regular expression from the following:

A\ (?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]%
to the following:

M(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Let’s try it.

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E 'A\(?[0-9]{3}\)? [0o-
9]{3}-[0-9]{4}s’

(555) 123-4567

[me@linuxbox ~]$ echo "555 123-4567" | grep -E 'A\(?[0-9]{3}\)? [0-9]
{3}-[0-9]{4}s'

555 123-4567

[me@linuxbox ~]$ echo "5555 123-4567" | grep -E '"A\(?[0-9]{3}\)? [0-9
1{3}-[0-9]{4}s’'

[me@linuxbox ~1$

As we can see, our revised expression can successfully validate numbers both with and
without the parentheses, while rejecting those numbers that are not properly formatted.

Putting Regular Expressions to Work

Let’s look at some of the commands we already know and see how they can be used with
regular expressions.

Validating a Phone List With grep

In our earlier example, we looked at single phone numbers and checked them for proper
formatting. A more realistic scenario would be checking a list of numbers instead, so let’s
make a list. We’ll do this by reciting a magical incantation to the command line. It will be
magic because we have not covered most of the commands involved, but worry not. We
will get there in future chapters. Here is the incantation:

282

Putting Regular Expressions to Work

[me@linuxbox ~]$ for i in {1..10}; do echo " (${RANDOM:0:3}) ${RANDO
M:0:3}-${RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist. txt containing ten phone num-
bers. Each time the command is repeated, another ten numbers are added to the list. We
can also change the value 10 near the beginning of the command to produce more or
fewer phone numbers. If we examine the contents of the file, however, we see we have a
problem.

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes, since we will use
grep to validate them.

One useful method of validation would be to scan the file for invalid numbers and display
the resulting list.

[me@linuxbox ~]$ grep -Ev 'A\([0-9]1{3}\) [0-9]{3}-[0-9]{4}$"
phonelist. txt

(292) 108-518

(129) 44-1379

[me@linuxbox ~1$

Here we use the -V option to produce an inverse match so that we will output only the
lines in the list that do not match the specified expression. The expression itself includes
the anchor metacharacters at each end to ensure that the number has no extra characters at
either end. This expression also requires that the parentheses be present in a valid num-
ber, unlike our earlier phone number example.

283

19 — Regular Expressions

Finding Ugly Filenames with find

The find command supports a test based on a regular expression. There is an important
consideration to keep in mind when using regular expressions in find versus grep.
Whereas grep will print a line when the line contains a string that matches an expres-
sion, find requires that the pathname exactly match the regular expression. In the fol-
lowing example, we will use find with a regular expression to find every pathname that
contains any character that is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and other potentially
offensive characters.

[me@linuxbox ~]$ find . -regex '.*[A-_./0-9a-zA-Z].*'

Because of the requirement for an exact match of the entire pathname, we use . * at both
ends of the expression to match zero or more instances of any character. In the middle of
the expression, we use a negated bracket expression containing our set of acceptable
pathname characters.

Searching for Files with locate

The locate program supports both basic (the - -regexp option) and extended (the - -
regex option) regular expressions. With it, we can perform many of the same operations
that we performed earlier with our dir list files.

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip

284

Putting Regular Expressions to Work

/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

Using alternation, we perform a search for pathnames that contain either bin/bz,
bin/gz,or /bin/zip.

Searching for Text with less and vim

less and vim both share the same method of searching for text. Pressing the / key fol-
lowed by a regular expression will perform a search. If we use less to view our
phonelist. txt file, like so:

[me@linuxbox ~]$ less phonelist.txt

then search for our validation expression, like this:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518

(129) 44-1379

(458) 273-1642
(686) 299-8268
(198) 307-2440

/M\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy to spot.

(232) 298-2265
(624) 381-1078
(540) 126-1980

285

19 — Regular Expressions

(874) 163-2885
(286) 254-2860

(292) 108-518
(129) 44-1379

(458) 273-1642

(686) 299-8268

(198) 307-2440

l

(END)

vim, on the other hand, supports basic regular expressions, so our search expression
would look like this:

/([0-91\{3\}) [0-9]\{3\}-[0-9]\{4\}

We can see that the expression is mostly the same; however, many of the characters that
are considered metacharacters in extended expressions are considered literals in basic ex-
pressions. They are treated only as metacharacters when escaped with a backslash. De-
pending on the particular configuration of vim on our system, the matching will be high-
lighted. If not, try this command mode command to activate highlighting:

:hlsearch

Note: Depending on your distribution, vim may or may not support text search
highlighting. Ubuntu, in particular, supplies a stripped-down version of vim by
default. On such systems, you may want to use your package manager to install a
more complete version of vim.

Summing Up

In this chapter, we saw a few of the many uses of regular expressions. We can find even
more if we use regular expressions to search for additional applications that use them. We
can do that by searching the man pages.

[me@linuxbox ~]$ cd /usr/share/man/mani
[me@linuxbox manl1]$ zgrep -El 'regex|regular expression' *.gz

The zgrep program provides a front end for grep, allowing it to read compressed files.
In our example, we search the compressed section 1 man page files in their usual loca-

286

Summing Up

tion. The result of this command is a list of files containing either the string regex or the
string regular expression. As we can see, regular expressions show up in a lot of
programs.

There is one feature found in basic regular expressions that we did not cover. Called back
references, this feature will be discussed in the next chapter.

Further Reading

There are many online resources for learning regular expressions, including various tuto-
rials and cheat sheets.

In addition, the Wikipedia has good articles on the following background topics:
e POSIX: http://en.wikipedia.org/wiki/Posix

e ASCII: http://en.wikipedia.org/wiki/Ascii

287

http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/Posix

20 — Text Processing

20 - Text Processing

All Unix-like operating systems rely heavily on text files for data storage. So it makes
sense that there are many tools for manipulating text. In this chapter, we will look at pro-
grams that are used to “slice and dice” text. In the next chapter, we will look at more text
processing, focusing on programs that are used to format text for printing and other kinds
of human consumption.

This chapter will revisit some old friends and introduce us to some new ones:
e cat — Concatenate files and print on the standard output
e sort — Sort lines of text files
e uniq — Report or omit repeated lines
e cut — Remove sections from each line of files
e paste — Merge lines of files
e join —Join lines of two files on a common field
e tac — Concatenate and print files in reverse
e rev — Reverse lines characterwise
e comm — Compare two sorted files line by line
e diff — Compare files line by line
e patch — Apply a diff file to an original
e tr —Translate or delete characters
e sed — Stream editor for filtering and transforming text

e aspell - Interactive spell checker

Applications of Text

So far, we have learned a couple of text editors (nano and vim), looked at a bunch of
configuration files, and have witnessed the output of dozens of commands, all in text. But

288

Applications of Text

what else is text used for? For many things, it turns out.

Documents

Many people write documents using plain text formats. While it is easy to see how a
small text file could be useful for keeping simple notes, it is also possible to write large
documents in text format. One popular approach is to write a large document in a text for-
mat and then embed a markup language to describe the formatting of the finished docu-
ment. Many scientific papers are written using this method, as Unix-based text processing
systems were among the first systems that supported the advanced typographical layout
needed by writers in technical disciplines. In recent years, Markdown has become a very
popular markup language that uses plain text for document formatting.

Web Pages

The world’s most popular type of electronic document is probably the web page. Web
pages are text documents that use either Hypertext Markup Language (HTML) or Exten-
sible Markup Language (XML) as markup languages to describe the document’s visual
format.

Email

Email is an intrinsically text-based medium. Even non-text attachments are converted
into a text representation for transmission. We can see this for ourselves by downloading
an email message and then viewing it in Less. We will see that the message begins with
a header that describes the source of the message and the processing it received during its
journey, followed by the body of the message with its content.

Printer Output

On Unix-like systems, output destined for a printer is sent as plain text or, if the page
contains graphics, is converted into a text format page description language known as
PostScript, which is then sent to a program that generates the graphic dots to be printed.

Program Source Code

Many of the command line programs found on Unix-like systems were created to support
system administration and software development, and text processing programs are no
exception. Many of them are designed to solve software development problems. The rea-
son text processing is important to software developers is that all software starts out as
text. Source code, the part of the program the programmer actually writes, is always in
text format.

289

20 — Text Processing

Revisiting Some Old Friends

Back in Chapter 6, “Redirection,” we learned about some commands that are able to ac-
cept standard input in addition to command line arguments. We touched on them only
briefly then, but now we will take a closer look at how they can be used to perform text
processing.

cat

The cat program has a number of interesting options. Many of them are used to help
better visualize text content. One example is the -A option, which is used to display non-
printing characters in the text. There are times when we want to know whether control
characters are embedded in our otherwise visible text. The most common of these are tab
characters (as opposed to spaces) and carriage returns, often present as end-of-line char-
acters in MS-DOS-style text files. Another common situation is a file containing lines of
text with trailing spaces.

Let’s create a test file using cat as a primitive word processor. To do this, we’ll just en-
ter the command cat (along with specifying a file for redirected output) and type our
text, followed by Enter to properly end the line and then Ctr 1-d, to indicate to cat
that we have reached end-of-file. In this example, we enter a leading tab character and
follow the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumps over the lazy dog.
[me@linuxbox ~1$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
AIThe quick brown fox jumps over the lazy dog. $
[me@linuxbox ~]$%$

As we can see in the results, the tab character in our text is represented by AI. This is a
common notation that means Ctr 1-1 which, as it turns out, is the same as a tab charac-
ter. We also see that a $ appears at the true end of the line, indicating that our text con-
tains trailing spaces.

290

Revisiting Some Old Friends

MS-DOS Text vs. Unix Text

One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns come
from? DOS and Windows! Unix and DOS don’t define the end of a line the same
way in text files. Unix ends a line with a linefeed character (ASCII 10) while MS-
DOS and its derivatives use the sequence carriage return (ASCII 13) and linefeed
to terminate each line of text.

There are a several ways to convert files from DOS to Unix format. On many
Linux systems, there are programs called dos2unix and unix2dos, which can
convert text files to and from DOS format. However, if you don’t have dos2u-
nix on your system, don’t worry. The process of converting text from DOS to
Unix format is simple; it involves the removal of the offending carriage returns.
That is easily accomplished by a couple of the programs discussed later in this
chapter.

cat also has options that are used to modify text. The two most prominent are -n, which
numbers lines, and -S, which suppresses the output of multiple blank lines. We can
demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumps over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt

1 The quick brown fox

2

3 jumps over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo. tXxt test file, which contains two
lines of text separated by two blank lines. After processing by cat with the -ns options,
the extra blank line is removed and the remaining lines are numbered. While this is not
much of a process to perform on text, it is a process.

291

20 — Text Processing

sort

The sort program sorts the contents of standard input, or one or more files specified on
the command line, and sends the results to standard output. Using the same technique that
we used with cat, we can demonstrate processing of standard input directly from the

keyboard as follows:

[me@linuxbox ~]$ sort > foo.txt
c

b

a

[me@linuxbox ~]$ cat foo.txt

a

b

c

After entering the command, we type the letters c, b, and a, and then we press Ctr1-d
to indicate end-of-file. We then view the resulting file and see that the lines now appear in
sorted order.

Since sort can accept multiple files on the command line as arguments, it is possible to
merge multiple files into a single sorted whole. For example, if we had three text files and
wanted to combine them into a single sorted file, we could do something like this:

sort filel.txt file2.txt file3.txt > final sorted_Tlist.txt

sort has several interesting options. Table 20-1 contains a partial list:

Table 20-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed on
the entire line, starting with the
first character in the line. This
option causes SOr t to ignore
leading spaces in lines and
calculates sorting based on the first
non-whitespace character on the
line.

-f --ignore-case Make sorting case-insensitive.

292

Revisiting Some Old Friends

-n --numeric-sort

-r --reverse

-k --key=field1i[, field2]
-m --merge

-0 --output=rfile

-t --field-separator=char

Perform sorting based on the
numeric evaluation of a string.
Using this option allows sorting to
be performed on numeric values
rather than alphabetic values.

Sort in reverse order. Results are in
descending rather than ascending
order.

Sort based on a key field located
from field1 to field2 rather than the
entire line. See the following
discussion.

Treat each argument as the name
of a presorted file. Merge multiple
files into a single sorted result
without performing any additional
sorting.

Send sorted output to file rather
than standard output.

Define the field-separator
character. By default fields are
separated by spaces or tabs.

Although most of these options are pretty self-explanatory, some are not. First, let’s look
at the -n option, used for numeric sorting. With this option, it is possible to sort values
based on numeric values. We can demonstrate this by sorting the results of the du com-
mand to determine the largest users of disk space. Normally, the du command lists the re-

sults of a summary in pathname order.

[me@linuxbox ~]$ du -s /usr/share/* | head

252 /usr/share/aclocal

96 /usr/share/acpi-support
8 /usr/share/adduser

196 /usr/share/alacarte

344 /usr/share/alsa

8 /usr/share/alsa-base
12488 /usr/share/anthy

8 /usr/share/apmd

293

20 — Text Processing

21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the first 10 lines. We
can produce a numerically sorted list to show the 10 largest consumers of space this way.

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc

197560 /usr/share/fonts

179144 /usr/share/gnome

146764 /usr/share/myspell

144304 /usr/share/gimp

135880 /usr/share/dict

76508 /usr/share/icons

68072 /usr/share/apps

62844 /usr/share/foomatic

By using the n and r options, we produce a reverse numerical sort, with the largest val-
ues appearing first in the results. This sort works because the numerical values occur at
the beginning of each line. But what if we want to sort a list based on some value found
within the line? For example, here are the results of 1s - 1:

[me@linuxbox ~]$ ls -1 /usr/bin | head

total 152948

-rwxr-xr-x 1 root root 34824 2016-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2007-11-27 06:08 az2p
-rwxr-xr-x 1 root root 13036 2016-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2007-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2016-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2016-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2016-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2016-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2016-10-09 17:02 adept_batch

Ignoring, for the moment, that 1S can sort its results by size, we could use sort to sort
this list by file size, as well.

[me@linuxbox ~]$ 1s -1 /usr/bin | sort -nrk 5 | head

294

Revisiting Some Old Friends

-rwxr-xr-x 1 root root 8234216 2016-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2016-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2016-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2016-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2016-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2016-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2016-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2016-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2016-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2016-10-10 12:56 smbcacls

Many uses of sort involve the processing of tabular data, such as the results of the pre-
vious 1S command. If we apply database terminology to the previous table, we would
say that each row is a record and that each record consists of multiple fields, such as the
file attributes, link count, filename, file size, and so on. sort is able to process individ-
ual fields. In database terms, we are able to specify one or more key fields to use as sort
keys. In the previous example, we specify the n and r options to perform a reverse nu-
merical sort and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is interesting and has many features, but first we need to talk about how
sort defines fields. Let’s consider the following simple text file consisting of a single
line containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains these charac-
ters:

“William”
The second field contains these characters:

“Shotts”

This means that whitespace characters (spaces and tabs) are used as delimiters between
fields and that the delimiters are included in the field when sorting is performed.

Looking again at a line from our 1S output, as follows, we can see that a line contains
eight fields and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2016-04-07 17:42 inkscape

295

20 — Text Processing

For our next series of experiments, let’s consider the following file containing the history
of three popular Linux distributions released from 2006 to 2008. Each line in the file has
three fields: the distribution name, version number, and date of release in MM/DD/
YYYY format.

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the resulting file dis-
tros. txt.

Next, we’ll try sorting the file and observe these results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/200608
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007

296

Revisiting Some Old Friends

Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora version numbers.
Since 1 comes before 5 in the character set, version 10 ends up at the top while version 9
falls to the bottom.

To fix this problem, we are going to have to sort on multiple keys. We want to perform an
alphabetic sort on the first field and then a numeric sort on the second field. sort allows
multiple instances of the -k option so that multiple sort keys can be specified. In fact, a
key may include a range of fields. If no range is specified (as has been the case with our
previous examples), SOrt uses a key that begins with the specified field and extends to
the end of the line. Here is the syntax for our multi-key sort:

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Though we used the long form of the option for clarity, -k 1,1 -k 2n would be ex-
actly equivalent. In the first instance of the key option, we specified a range of fields to
include in the first key. Since we wanted to limit the sort to just the first field, we speci-
fied 1, 1 which means “start at field 1 and end at field 1.” In the second instance, we
specified 2n, which means field 2 is the sort key and that the sort should be numeric. An
option letter may be included at the end of a key specifier to indicate the type of sort to be
performed. These option letters are the same as the global options for the sort program:
b (ignore leading blanks), n (numeric sort), r (reverse sort), and so on.

The third field in our list contains a date in an inconvenient format for sorting. On com-

297

20 — Text Processing

puters, dates are usually formatted in YYYY-MM-DD order to make chronological sort-
ing easy, but ours are in the American format of MM/DD/YYYY. How can we sort this
list in chronological order?

Fortunately, sort provides a way. The key option allows specification of offsets within
fields, so we can define keys within fields.

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008

Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/2007
SUSE 10.3 10/04/2007
Fedora 7 05/31/2007
Ubuntu 7.04 04/19/2007
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7, we instruct SOrt to use a sort key that begins at the seventh
character within the third field, which corresponds to the start of the year. Likewise, we
specify -k 3.1 and -k 3.4 to isolate the month and day portions of the date. We also
add the n and r options to achieve a reverse numeric sort. The b option is included to
suppress the leading spaces (whose numbers vary from line to line, thereby affecting the
outcome of the sort) in the date field.

Some files don’t use tabs and spaces as field delimiters; for example, here’s the /etc/
passwd file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh

298

Revisiting Some Old Friends

man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/1lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we sort this file using a
key field? sort provides the -t option to define the field separator character. To sort the
passwd file on the seventh field (the account’s default shell), we could do this:

[me@linuxbox ~]% sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,, : /home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false

gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104: :/home/klog:/bin/false

messagebus:x:108:119: :/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,, :/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on the seventh field.

uniq
Compared to sort, the uniq program is lightweight. uniq performs a seemingly triv-

ial task. When given a sorted file (or standard input), it removes any duplicate lines and
sends the results to standard output. It is often used in conjunction with sort to clean the

output of duplicates.

Tip: While uniq is a traditional Unix tool often used with sort, the GNU ver-
sion of sort supports a -uU option, which removes duplicates from the sorted

output.

Let’s make a text file to try this as shown here:

[me@linuxbox ~]$ cat > foo.txt
a
b
c

299

20 — Text Processing

(=2

Remember to type Ctr L-d to terminate standard input. Now, if we run uniq on our text
file, we get this:

[me@linuxbox ~]%$ uniq foo.txt

O T 9 O T 9D

The results are no different from our original file; the duplicates were not removed. For
uniq to do its job, the input must be sorted first.

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines that are adjacent to each other.

uniq has several options. Table 20-2 lists the common ones.

Table 20-2: Common uniq Options

Option Long Option Description

-C --count Output a list of duplicate lines preceded by
the number of times the line occurs.

-d - -repeated Output only repeated lines, rather than
unique lines.

-fn --skip-fields=n Ignore n leading fields in each line. Fields
are separated by whitespace as they are in
sort; however, unlike sort, uniq has
no option for setting an alternate field
separator.

300

Revisiting Some Old Friends

-1 --ignore-case Ignore case during the line comparisons.

-s n --skip-chars=n Skip (ignore) the leading n characters of
each line.

-u --unique Output only unique lines. Lines with

duplicates are ignored.

Here we see uniq used to report the number of duplicates found in our text file, using
the - option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
2 a
2 b
2 C

Slicing and Dicing

The next three programs we will discuss are used to peel columns of text out of files and
recombine them in useful ways.

cut

The cut program is used to extract a section of text from a line and output the extracted
section to standard output. It can accept multiple file arguments or input from standard in-
put.

Specifying the section of the line to be extracted is somewhat awkward and is specified
using the options listed in Table 20-3.

Table 20-3: cut Selection Options

Option Long Option Description

-c list --characters=1list Extract the portion of the
line defined by list. The list
may consist of one or more
comma-separated numerical
ranges.

-f list --fields=1list Extract one or more fields
from the line as defined by
list. The list may contain one

301

20 — Text Processing

or more fields or field ranges
separated by commas.

-d delim --delimeter=delim When - f is specified, use
delim as the field delimiting
character. By default, fields
must be separated by a
single tab character.

--complement Extract the entire line of
text, except for those
portions specified by -C
and/or - f.

As we can see, the way cut extracts text is rather inflexible. cut is best used to extract
text from files that are produced by other programs, rather than text directly typed by hu-
mans. We’ll take a look at our distros. txt file to see whether it is “clean” enough to
be a good specimen for our cut examples. If we use cat with the - A option, we can see
whether the file meets our requirements of tab-separated fields:

[me@linuxbox ~]$ cat -A distros.txt
SUSEAI10.2A112/07/2006%
FedoranrI10AI11/25/2008%
SUSEAI11.0/106/19/2008%
Ubuntu/rI8.04/104/24/2008%
FedoranI8AI11/08/2007%
SUSEAI10.3/1I10/04/2007%
UbuntuArI6.10AI10/26/2006%
FedoranrI7AI05/31/2007$
UbuntuAI7.10AI10/18/2007%
UbuntuAI7.04AI04/19/2007%
SUSEAI10.1/105/11/2006%
FedoranrI6nIl0/24/2006%
FedoranrI9AIN5/13/2008%
Ubuntu/rI6.06/AI06/01/2006%
UbuntuAI8.10AI10/30/2008%
FedoranrI5AI03/20/2006%

It looks good. There are no embedded spaces, just single tab characters between the
fields. Since the file uses tabs rather than spaces, we’ll use the -f option to extract a
field.

302

Slicing and Dicing

12/07/2006
11/25/20608
06/19/2008
04/24/2008
11/08/2007
10/04/2007
10/26/2006
05/31/2007
10/18/2007
04/19/2007
05/11/2006
10/24/2006
05/13/2008
06/01/2006
10/30/2008
03/20/2006

[me@linuxbox ~]$ cut -f 3 distros.txt

Because our distros file is tab-delimited, it is best to use cut to extract fields rather
than characters. This is because when a file is tab-delimited, it is unlikely that each line
will contain the same number of characters, which makes calculating character positions
within the line difficult or impossible. In our previous example, however, we now have
extracted a field that luckily contains data of identical length, so we can show how char-

acter extraction works by extracting the year from each line.

2006
2008
2008
2008
2007
2007
2006
2007
2007
2007
2006
2006
2008
2006
2008
2006

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10

303

20 — Text Processing

By running cut a second time on our list, we are able to extract character positions 7
through 10, which corresponds to the year in our date field. The 7-10 notation is an ex-
ample of a range. The cut man page contains a complete description of how ranges can
be specified.

Expanding Tabs

Our distros. txt file is ideally formatted for extracting fields using cut. But
what if we wanted a file that could be fully manipulated with cut by characters,
rather than fields? This would require us to replace the tab characters within the
file with the corresponding number of spaces. Fortunately, the GNU Coreutils
package includes a tool for that. Named expand, this program accepts either one
or more file arguments or standard input and outputs the modified text to standard
output.

If we process our distros. txt file with expand, we can use cut -c to ex-
tract any range of characters from the file. For example, we could use the follow-
ing command to extract the year of release from our list by expanding the file and
using cut to extract every character from the 23rd position to the end of the line:

[me@linuxbox ~]$ expand distros.txt | cut -c 23-

Coreutils also provides the unexpand program to substitute tabs for spaces.

When working with fields, it is possible to specify a different field delimiter rather than
the tab character. Here we will extract the first field from the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head
root
daemon
bin
sys
sync
games
man

lp
mail
news

Using the -d option, we are able to specify the colon character as the field delimiter.

304

Slicing and Dicing

paste

The paste command does the opposite of cut. Rather than extracting a column of text
from a file, it adds one or more columns of text to a file. It does this by reading multiple
files and combining the fields found in each file into a single stream on standard output.
Like cut, paste accepts multiple file arguments and/or standard input. To demonstrate
how paste operates, we will perform some surgery on our distros. txt file to pro-
duce a chronological list of releases.

From our earlier work with sort, we will first produce a list of distros sorted by date
and store the result in a file called distros-by-date. txt.

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > dis
tros-by-date. txt

Next, we will use cut to extract the first two fields from the file (the distro name and
version) and store that result in a file named distro-versions. txt.

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.t
Xt

[me@linuxbox ~]$ head distros-versions.txt
Fedora 10

Ubuntu 8.10

SUSE 11.0

Fedora 9

Ubuntu 8.04

Fedora 8

Ubuntu 7.10

SUSE 10.3

Fedora 7

Ubuntu 7.04

The final piece of preparation is to extract the release dates and store them in a file named
distro-dates. txt.

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt
[me@linuxbox ~]$ head distros-dates.txt

11/25/2008

10/30/2008

06/19/2008

305

20 — Text Processing

05/13/2008
04/24/2008
11/08/2007
10/18/2007
10/04/20607
05/31/2007
04/19/2007

We now have the parts we need. To complete the process, we’ll use paste to put the
column of dates ahead of the distro names and versions, thus creating a chronological list.
This is done simply by using paste and ordering its arguments in the desired arrange-
ment.

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04
12/07/2006 SUSE 10.2
10/26/2006 Ubuntu 6.10
10/24/2006 Fedora 6
06/01/2006 Ubuntu 6.06
05/11/2006 SUSE 10.1
03/20/2006 Fedora 5

join

In some ways, join is like paste in that it adds columns to a file, but it uses a unique
way to do it. A join is an operation usually associated with relational databases where
data from multiple tables with a shared key field is combined to form a desired result.
The join program performs the same operation. It joins data from multiple files based
on a shared key field.

To see how a join operation is used in a relational database, let’s imagine a small database
consisting of two tables, each containing a single record. The first table, called CUS-

306

Slicing and Dicing

TOMERS, has three fields: a customer number (CUSTNUM), the customer’s first name
(FNAME), and the customer’s last name (LNAME):

CUSTNUM FNAME LNAME

4681934 John Smith

The second table is called ORDERS and contains four fields: an order number (ORDER -
NUM), the customer number (CUSTNUM), the quantity (QUAN), and the item ordered
(ITEM).

ORDERNUM CUSTNUM QUAN ITEM

3014953305 4681934 1 Blue Widget

Note that both tables share the field CUSTNUM. This is important, because it allows a
relationship between the tables.

Performing a join operation would allow us to combine the fields in the two tables to
achieve a useful result, such as preparing an invoice. Using the matching values in the
CUSTNUM fields of both tables, a join operation could produce the following:

FNAME LNAME QUAN ITEM

John Smith 1 Blue Widget

To demonstrate the join program, we’ll need to make a couple of files with a shared
key. To do this, we will use our distros-by-date. txt file. From this file, we will
construct two additional files. One contains the release dates (which will be our shared
key for this demonstration) and the release names, as shown here

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-
key-names. txt

[me@linuxbox ~]$ head distros-key-names.txt

11/25/2008 Fedora

10/30/2008 Ubuntu

06/19/2008 SUSE

05/13/2008 Fedora

04/24/2008 Ubuntu

11/08/2007 Fedora

10/18/2007 Ubuntu

10/04/2007 SUSE

05/31/2007 Fedora

04/19/2007 Ubuntu

307

20 — Text Processing

The second file contains the release dates and the version numbers, as shown here:

[me@linuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distro
s-key-vernums. txt

[me@linuxbox ~]$ head distros-key-vernums.txt

11/25/2008 10

10/30/2008 8.10

06/19/2008 11.0

05/13/2008 9

04/24/2008 8.04

11/08/2007 8

10/18/2007 7.10

10/04/2007 10.3

05/31/2007 7

04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is important to point
out that the files must be sorted on the key field for join to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt |
head

11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delimiter and a single
space as the output field delimiter. This behavior can be modified by specifying options.
See the join man page for details.

tac

The tac command works like cat only in reverse, literally. It concatenates files in re-
verse order. One way to use tac is to re-order log files. Log files are often displayed this

308

Slicing and Dicing

way:

[me@linuxbox ~]$ tail /var/log/backup.log
Wed Aug 14 06:00:32 AM EDT 2025: backup (0.6) of linuxbox started.
Wed Aug 14 06:08:01 AM EDT 2025: backup of linuxbox finished.

Thu Aug 15 07:36:30 AM EDT 2025: backup (0.6) of linuxbox started.
Thu Aug 15 07:45:57 AM EDT 2025: backup of linuxbox finished.

Fri Aug 16 07:37:57 AM EDT 2025: backup (0.6) of linuxbox started.
Fri Aug 16 07:44:11 AM EDT 2025: backup of linuxbox finished.

As we can see, the log is presented with the latest entry at the bottom. If we wanted to see
the most recent event at the top of the list we could do this:

[me@linuxbox ~]$ tail /var/log/backup.log | tac
Fri Aug 16 07:44:11 AM EDT 2025: backup of linuxbox finished.
Fri Aug 16 07:37:57 AM EDT 2025: backup (0.6) of linuxbox started.

Thu Aug 15 07:45:57 AM EDT 2025: backup of linuxbox finished.
Thu Aug 15 07:36:30 AM EDT 2025: backup (0.6) of linuxbox started.

Wed Aug 14 06:08:01 AM EDT 2025: backup of linuxbox finished.
Wed Aug 14 06:00:32 AM EDT 2025: backup (0.6) of linuxbox started.

rev

In a similar vein, the rev command reverses the characters in a string:

[me@linuxbox ~]%$ echo “This is a test.” | rev
.tset a si sihT

Cute, but what is it good for? The rev command is often used with cut. Let’s consider
our backup. log file again. Imagine we wanted to remove the period character from
the end of each line. Since the lines vary in length there is no way to specify a cut com-
mand to remove something from the end of the line. Here’s where rev comes in. By re-
versing the characters in each line, we can move the periods to the beginning where cut
can easily remove them:

309

20 — Text Processing

[me@linuxbox ~]$ tail /var/log/backup.log | rev | cut -c 2- | rev
Wed Aug 14 06:00:32 AM EDT 2025: backup (0.6) of linuxbox started
Wed Aug 14 06:08:01 AM EDT 2025: backup of linuxbox finished

Thu Aug 15 07:36:30 AM EDT 2025: backup (0.6) of linuxbox started
Thu Aug 15 07:45:57 AM EDT 2025: backup of linuxbox finished

Fri Aug 16 07:37:57 AM EDT 2025: backup (0.6) of linuxbox started
Fri Aug 16 07:44:11 AM EDT 2025: backup of linuxbox finished

In this example we use rev to reverse the characters in each line, cut the contents of line
from position 2 (the character after the period in the reversed string) to the end of the line
then reverse the characters again to return it to readable form.

Comparing Text

It is often useful to compare versions of text files. For system administrators and software
developers, this is particularly important. A system administrator may, for example, need
to compare an existing configuration file to a previous version to diagnose a system prob-
lem. Likewise, a programmer frequently needs to see what changes have been made to
programs over time.

comm

The comm program compares two text files and displays the lines that are unique to each
one and the lines they have in common. To demonstrate, we will create two nearly identi-
cal text files using cat.

[me@linuxbox ~]$ cat > filel.txt
a
b
c
d
[me@linuxbox ~]$ cat > file2.txt
b

c
d
e

Next, we will compare the two files using comm:

310

Comparing Text

[me@linuxbox ~]$ comm filel.txt file2.txt
a

(@)

As we can see, comm produces three columns of output. The first column contains lines
unique to the first file argument, the second column contains the lines unique to the sec-
ond file argument, and the third column contains the lines shared by both files. comm
supports options in the form -n, where n is either 1, 2, or 3. When used, these options
specify which columns to suppress. For example, if we wanted to only output the lines
shared by both files, we would suppress the output of the first and second columns.

[me@linuxbox ~]$ comm -12 filel.txt file2.txt
b
c
d

diff

Like the comm program, diff is used to detect the differences between files. However,
diff is a much more complex tool, supporting many output formats and the ability to
process large collections of text files at once. diff is often used by software developers
to examine changes between different versions of program source code and thus has the
ability to recursively examine directories of source code, often referred to as source trees.
One common use for diff is the creation of diff files or patches that are used by pro-
grams such as patch (which we’ll discuss shortly) to convert one version of a file (or
files) to another version.

If we use diff to look at our previous example files:

[me@linuxbox ~]$ diff filel.txt file2.txt
1do
< a
4a4
> e

we see its default style of output: a terse description of the differences between the two

311

20 — Text Processing

files. In the default format, each group of changes is preceded by a change command in
the form of range operation range to describe the positions and types of changes required
to convert the first file to the second file, as outlined in Table 20-4.

Table 20-4: diff Change Commands

Change Description

riar2 Append the lines at the position r2 in the second file to the position
r1 in the first file.

ricr2 Change (replace) the lines at position r1 with the lines at the
position r2 in the second file.

ridr2 Delete the lines in the first file at position r1, which would have
appeared at range r2 in the second file

In this format, a range is a comma-separated list of the starting line and the ending line.
While this format is the default (mostly for POSIX compliance and backward compatibil -
ity with traditional Unix versions of diff), it is not as widely used as other, optional for-
mats. Two of the more popular formats are the context format and the unified format.

When viewed using the context format (the - C option), we will see this:

[me@linuxbox ~]$ diff -c filel.txt file2.txt
*** filel.txt2025-12-23 06:40:13.000000000 -0500
--- file2.txt2025-12-23 06:40:34.000000000 -0500

Rk Rk o S o

* k k 1,4 *k k%

- a

The output begins with the names of the two files and their timestamps. The first file is
marked with asterisks and the second file is marked with dashes. Throughout the remain-
der of the listing, these markers will signify their respective files. Next, we see groups of
changes, including the default number of surrounding context lines. In the first group, we
see this:

312

Comparing Text

* %k % 1 4 * % %
14
which indicates lines 1 through 4 in the first file. Later we see this:
== 1,4 ---
which indicates lines 1 through 4 in the second file. Within a change group, lines begin

with one of four indicators shown in Table 20-5.

Table 20-5: diff Context Format Change Indicators

Indicator Meaning

blank A line shown for context. It does not indicate a difference between
the two files.

- A line deleted. This line will appear in the first file but not in the
second file.

+ A line added. This line will appear in the second file but not in the
first file.

! A line changed. The two versions of the line will be displayed, each
in its respective section of the change group.

The unified format is similar to the context format but is more concise. It is specified
with the -u option.

[me@linuxbox ~]$ diff -u filel.txt file2.txt

--- filel.txt2008-12-23 06:40:13.000000000 -0500
+++ file2.txt2008-12-23 06:40:34.000000000 -0500
@@ -1,4 +1,4 @@

-a

b

c

d

+e

The most notable difference between the context and unified formats is the elimination of
the duplicated lines of context, making the results of the unified format shorter than those
of the context format. In our previous example, we see file timestamps like those of the
context format, followed by the string @@ -1,4 +1,4 @@. This indicates the lines in
the first file and the lines in the second file described in the change group. Following this
are the lines themselves, with the default three lines of context. Each line starts with one
of three possible characters listed in Table 20-6.

313

20 — Text Processing

Table 20-6: d1iff Unified Format Change Indicators

Character Meaning

blank This line is shared by both files.

- This line was removed from the first file.

+ This line was added to the first file.
patch

The patch program is used to apply changes to text files. It accepts output from diff
and is generally used to convert older version files into newer versions. Let’s consider a
famous example. The Linux kernel is developed by a large, loosely organized team of
contributors who submit a constant stream of small changes to the source code. The
Linux kernel consists of several million lines of code, while the changes that are made by
one contributor at one time are quite small. It makes no sense for a contributor to send
each developer an entire kernel source tree each time a small change is made. Instead, a
diff file is submitted. The diff file contains the change from the previous version of the
kernel to the new version with the contributor's changes. The receiver then uses the
patch program to apply the change to his own source tree. Using diff/patch offers
two significant advantages.

1. The diff file is small, compared to the full size of the source tree.

2. The diff file concisely shows the change being made, allowing reviewers of the
patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It would be
equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation (see Further Reading
below) suggests using diff as follows:

diff -Naur old file new file > diff _file

where old_file and new_file are either single files or directories containing files. The r
option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file into the new file.
patch < diff_file

We’ll demonstrate with our test file.

314

Comparing Text

[me@linuxbox ~]$ diff -Naur filel.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt

patching file filel.txt

[me@linuxbox ~]$ cat filel.txt

b

c
d
e

In this example, we created a diff file named patchfile.txt and then used the
patch program to apply the patch. Note that we did not have to specify a target file to
patch, as the diff file (in unified format) already contains the filenames in the header.
Once the patch is applied, we can see that filel. txt now matches file2. txt.

patch has a large number of options, and there are additional utility programs that can
be used to analyze and edit patches.

Editing on the Fly

Our experience with text editors has been largely interactive, meaning that we manually
move a cursor around and then type our changes. However, there are non-interactive
ways to edit text as well. It’s possible, for example, to apply a set of changes to multiple
files with a single command.

tr

The tr program is used to transliterate characters. We can think of this as a sort of char-
acter-based search-and-replace operation. Transliteration is the process of changing char-
acters from one alphabet to another. For example, converting characters from lowercase
to uppercase is transliteration. We can perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input, and outputs its results on standard output.
tr accepts two arguments: a set of characters to convert from and a corresponding set of
characters to convert to. Character sets may be expressed in one of three ways.

1. An enumerated list. For example, ABCDEFGHI JKLMNOPQRSTUVWXYZ

2. A character range. For example, A-Z. Note that this method is sometimes subject
to the same issues as other commands, because of the locale collation order, and

315

20 — Text Processing

thus should be used with caution.
3. POSIX character classes. For example, [:upper:].

In most cases, both character sets should be of equal length; however, it is possible for
the first set to be larger than the second, particularly if we want to convert multiple char-
acters to a single character.

[me@linuxbox ~]%$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted from the input
stream. Earlier in this chapter, we discussed the problem of converting MS-DOS text files
to Unix-style text. To perform this conversion, carriage return characters need to be re-
moved from the end of each line. This can be performed with tr as follows:

tr -d '\r' < dos_file > unix_file

where dos_file is the file to be converted and unix_file is the result. This form of the com-
mand uses the escape sequence \r to represent the carriage return character. To see a
complete list of the sequences and character classes tr supports, try the following:

[me@linuxbox ~]$ tr --help

ROT13: The Not-So-Secret Decoder Ring

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 “encryp-
tion” is being generous; “text obfuscation” is more accurate. It is used sometimes
on text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is half way up the possible 26 char-
acters, performing the algorithm a second time on the text restores it to its original
form. Use the following to perform this encoding with tr:

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the following translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

316

Editing on the Fly

A number of email programs and Usenet news readers support ROT13 encoding.
Wikipedia contains a good article on the subject:

http://en.wikipedia.org/wiki/ROT13

tr can perform another trick, too. Using the -S option, tr can “squeeze” (delete) re-
peated instances of a character.

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying the set “ab” to tr,
we eliminate the repeated instances of the letters in the set, while leaving the character
that is missing from the set (“c”) unchanged. Note that the repeating characters must be
adjoining. If they are not, the squeezing will have no effect.

[me@linuxbox ~]$%$ echo "abcabcabc" | tr -s ab
abcabcabc

sed

The name sed is short for stream editor. It performs text editing on a stream of text, ei-
ther a set of specified files or standard input. sed is a powerful and somewhat complex
program (there are entire books about it), so we will not cover it completely here.

In general, the way sed works is that it is given either a single editing command (on the
command line) or the name of a script file containing multiple commands, and it then
performs these commands upon each line in the stream of text. Here is a simple example
of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and pipe it into sed.
sed, in turn, carries out the instruction s/front/back/ upon the text in the stream
and produces the output “back” as a result. We can also recognize this command as re-

317

http://en.wikipedia.org/wiki/ROT13

20 — Text Processing

sembling the “substitution” (search-and-replace) command in vi.

Commands in sed begin with a single letter. In the previous example, the substitution
command is represented by the letter s and is followed by the search-and-replace strings,
separated by the slash character as a delimiter. The choice of the delimiter character is ar-
bitrary. By convention, the slash character is often used, but sed will accept any charac-
ter that immediately follows the command as the delimiter. We could perform the same
command this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back '
back

By using the underscore character immediately after the command, it becomes the delim-
iter. The ability to set the delimiter can be used to make commands more readable, as we
shall see.

Most commands in sed may be preceded by an address, which specifies which line(s) of
the input stream will be edited. If the address is omitted, then the editing command is car-
ried out on every line in the input stream. The simplest form of address is a line number.
We can add one to our example.

[me@linuxbox ~]%$ echo "front" | sed 'is/front/back/'
back

Adding the address 1 to our command causes our substitution to be performed on the first
line of our one-line input stream. If we specify another number and we see that the edit-
ing is not carried out, since our input stream does not have a line 2.

[me@linuxbox ~]$ echo "front" | sed '2s/front/back/'
front

Addresses may be expressed in many ways. Table 20-7 lists the most common.

Table 20-7: sed Address Notation

Address Description

n A line number where n is a positive integer.

$ The last line.

/regexp/ Lines matching a POSIX basic regular expression. Note that the

318

Editing on the Fly

addri,addr2

first~step

addri,+n

addr!

regular expression is delimited by slash characters. Optionally,
the regular expression may be delimited by an alternate
character, by specifying the expression with \cregexpc,
where c is the alternate character.

A range of lines from addr1 to addr2, inclusive. Addresses may
be any of the single address forms listed earlier.

Match the line represented by the number first, then each
subsequent line at step intervals. For example 1~2 refers to
each odd numbered line, and 5~5 refers to the fifth line and
every fifth line thereafter.

Match addr1 and the following n lines.

Match all lines except addr, which may be any of the forms
listed earlier.

We’ll demonstrate different kinds of addresses using the distros. txt file from earlier
in this chapter. First, here’s a range of line numbers:

[me@linuxbox ~]$ sed -n '1,5p' distros.txt
SUSE 10.2 12/07/2006

Fedora 10 11/25/2008

SUSE 11.0 06/19/2008

Ubuntu 8.04 04/24/2008

Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and continuing to line 5. To
do this, we use the p command, which simply causes a matched line to be printed. For
this to be effective, however, we must include the option -n (the “no auto-print” option)
to cause sed not to print every line which is the default.

Next, we’ll try a regular expression.

SUSE
SUSE
SUSE
SUSE

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt

10.2
11.0
10.3
10.1

12/07/2006
06/19/2008
10/04/2007
05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able to isolate the

319

20 — Text Processing

lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the address.

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt

Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all the lines in the file except the ones matched by the
regular expression.

So far, we’ve looked at two of the sed editing commands, S and p. Table 20-8 provides
a more complete list of the basic editing commands.

Table 20-8: sed Basic Editing Commands

Command Description
= Output the current line number.
Append text after the current line.

a

d Delete the current line.

1 Insert text in front of the current line.
p

Print the current line. By default, sed prints every
line and only edits lines that match a specified
address within the file. The default behavior can
be overridden by specifying the -n option.

q Exit sed without processing any more lines. If the
- N option is not specified, output the current line.

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever

320

Editing on the Fly

y/setl/set2

regexp is found. replacement may include the
special character &, which is equivalent to the text
matched by regexp. In addition, replacement may
include the sequences \1 through \9, which are
the contents of the corresponding subexpressions
in regexp. For more about this, see the discussion
of back references below. After the trailing slash
following replacement, an optional flag may be
specified to modify the S command’s behavior.

Perform transliteration by converting characters
from set1 to the corresponding characters in set2.
Note that unlike tr, sed requires that both sets be
of the same length.

The s command is by far the most commonly used editing command. We will demon-
strate just some of its power by performing an edit on our distros. txt file. We dis-
cussed earlier how the date field in distros. txt was not in a “computer-friendly” for-
mat. While the date is formatted MM/DD/YYYY, it would be better (for ease of sorting)
if the format were YYYY-MM-DD. Performing this change on the file by hand would be
both time consuming and error prone, but with sed, this change can be performed in one

step.

SUSE

Fedora
SUSE

Ubuntu
Fedora
SUSE

Ubuntu
Fedora
Ubuntu
Ubuntu
SUSE

Fedora
Fedora
Ubuntu
Ubuntu
Fedora

10.2
10
11.0
8.04
8
10.3
6.10
7
7.10
7.04
10.1
6

9
6.06
8.10
5

[me@linuxbox ~]$ sed 's/\([0-91\{2\}\)\/\([0-9]1\{2\}\)\/\([0-91\{4\}\
)$/\3-\1-\2/"' distros.txt

2006-12-07
2008-11-25
2008-06-19
2008-04-24
2007-11-08
2007-10-04
2006-10-26
2007-05-31
2007-160-18
2007-04-19
2006-05-11
2006-10-24
2008-05-13
2006-06-01
2008-10-30
2006-03-20

321

20 — Text Processing

Wow! What an ugly looking command. But it works. In just one step, we have changed
the date format in our file. It is also a perfect example of why regular expressions are
sometimes jokingly referred to as a “write-only” medium. We can write them, but we
sometimes cannot read them. Before we are tempted to run away in terror from this com-
mand, let’s look at how it was constructed. First, we know that the command will have
this basic structure.

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the date. Because it is
in MM/DD/YYYY format and appears at the end of the line, we can use an expression
like this:

[0-9]1{2}/[0-9]1{2}/[0-9]1{4}$

This matches two digits, a slash, two digits, a slash, four digits, and the end of line. So
that takes care of regexp, but what about replacement? To handle that, we must introduce
a new regular expression feature that appears in some applications that use BRE. This
feature is called back references and works like this: if the sequence \n appears in re-
placement where n is a number from 1 to 9, the sequence will refer to the corresponding
subexpression in the preceding regular expression. To create the subexpressions, we sim-
ply enclose them in parentheses like so:

([0-91{2})/([0-9]1{2})/([0-9]{4})$

We now have three subexpressions. The first contains the month, the second contains the
day of the month, and the third contains the year. Now we can construct replacement as
follows:

\3-\1-\2

This gives us the year, a dash, the month, a dash, and the day.

Now, our command looks like this:

sed 's/([0-91{2})/([0-91{2})/([0-91{4})$/\3-\1-\2/" distros.txt

322

Editing on the Fly

We have two remaining problems. The first is that the extra slashes in our regular expres-
sion will confuse sed when it tries to interpret the S command. The second is that since
sed, by default, accepts only basic regular expressions, several of the characters in our
regular expression will be taken as literals, rather than as metacharacters. We can solve
both these problems with a liberal application of backslashes to escape the offending
characters.

sed 's/\([0-91\{2\I]\)\/\([0-91\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/" dis
tros. txt

And there we have it!

Another feature of the S command is the use of optional flags that may follow the re-
placement string. The most important of these is the g flag, which instructs sed to apply
the search-and-replace globally to a line, not just to the first instance, which is the default.
Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed, but only to the first instance of the letter b,
while the remaining instances were left unchanged. By adding the g flag, we are able to
change all the instances.

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have only given sed single commands via the command line. It is also possi-
ble to construct more complex commands in a script file using the - option. To demon-
strate, we will use sed with our distros. txt file to build a report. Our report will
feature a title at the top, our modified dates, and all the distribution names converted to
uppercase. To do this, we will need to write a script, so we’ll fire up our text editor and
enter the following:

sed script to produce Linux distributions report

1 i\
\

323

20 — Text Processing

Linux Distributions Report\

S/\([0-91\{2\I\)\/\([0-91\{2\}I\)\/\([0-9]1\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

We will save our sed script as distros. sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07
FEDORA 10 2008-11-25
SUSE 11.0 2008-06-19
UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08
SUSE 10.3 2007-10-04
UBUNTU 6.10 2006-10-26
FEDORA 7 2007-05-31
UBUNTU 7.10 2007-160-18
UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11
FEDORA 6 2006-10-24
FEDORA 9 2008-05-13
UBUNTU 6.06 2006-06-01
UBUNTU 8.10 2008-10-30
FEDORA 5 2006-03-20

As we can see, our script produces the desired results, but how does it do it? Let’s take
another look at our script. We’ll use cat to number the lines.

[me@linuxbox ~]$ cat -n distros.sed
1 # sed script to produce Linux distributions report

1 i\
\

Linux Distributions Report\

S/N(LO-9IN{2\FI\)\/\([0-9]\{2\FI\)\/\([0-9]\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqgrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

00N UL WN

324

Editing on the Fly

Line one of our script is a comment. Like many configuration files and programming lan-
guages on Linux systems, comments begin with the # character and are followed by hu-
man-readable text. Comments can be placed anywhere in the script (though not within
commands themselves) and are helpful to any humans who might need to identify and/or
maintain the script.

Line 2 is a blank line. Like comments, blank lines may be added to improve readability.

Many sed commands support line addresses. These are used to specify which lines of
the input are to be acted upon. Line addresses may be expressed as single line numbers,
line number ranges, and the special line number $, which indicates the last line of input.

Lines 3, 4, 5, and 6 contain text to be inserted at the address 1, the first line of the input.
The 1 command is followed by the sequence of a backslash and then a carriage return to
produce an escaped carriage return, or what is called a line-continuation character. This
sequence, which can be used in many circumstances including shell scripts, allows a car-
riage return to be embedded in a stream of text without signaling the interpreter (in this
case sed) that the end of the line has been reached. The 1, and the a (which appends
text, rather than inserting it) and ¢ (which replaces text) commands allow multiple lines
of text as long as each line, except the last, ends with a line-continuation character. The
sixth line of our script is actually the end of our inserted text and ends with a plain car-
riage return rather than a line-continuation character, signaling the end of the 1 com-
mand.

Note: A line-continuation character is formed by a backslash followed immedi-
ately by a carriage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by an address, each
line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase letters. Note that
unlike tr, the y command in sed does not support character ranges (for example, [a-
z]), nor does it support POSIX character classes. Again, since the y command is not pre-
ceded by an address, it applies to every line in the input stream.

People Who Like sed Also Like...

sed is a capable program, able to perform fairly complex editing tasks to streams
of text. It is most often used for simple, one-line tasks rather than long scripts.
Many users prefer other tools for larger tasks. The most popular of these are awk

325

20 — Text Processing

and per L. These go beyond mere tools like the programs covered here and ex-
tend into the realm of complete programming languages. per 1, in particular, is
often used instead of shell scripts for many system management and administra-
tion tasks, as well as being a popular medium for web development. awk is a little
more specialized. Its specific strength is its ability to manipulate tabular data. It
resembles sed in that awk programs normally process text files line by line, us-
ing a scheme similar to the sed concept of an address followed by an action.
While both awk and per 1 are outside the scope of this book, they are good skills
for the Linux command line user to learn.

aspell

The last tool we will look at is aspell, an interactive spelling checker. The aspell
program is the successor to an earlier program named ispell and can be used, for the
most part, as a drop-in replacement. While the aspe 11 program is mostly used by other
programs that require spell-checking capability, it can also be used effectively as a stand-
alone tool from the command line. It has the ability to intelligently check various types of
text files, including HTML documents, C/C++ programs, email messages, and other
kinds of specialized texts.

To spellcheck a text file containing simple prose, it could be used like this:

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s create a simple
text file named f00. tXt containing some deliberate spelling errors.

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jimps over the laxy dog.

Next we’ll check the file using aspe 11:

[me@linuxbox ~]$ aspell check foo.txt

As aspellis interactive in the check mode, we will see a screen like this:

326

Editing on the Fly

The quick brown fox over the laxy dog.

1) jumps 6) limps

2) imps 7) pimps

3) gimps 8) wimps

4) jump's 9) comps

5) Jim's Q) gimp's

i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add 1) Add Lower
b) Abort X) Exit

?

At the top of the display, we see our text with a suspiciously spelled word highlighted. In
the middle, we see ten spelling suggestions numbered zero through nine, followed by a
list of other possible actions. Finally, at the bottom, we see a prompt ready to accept our
choice.

If we press the 1 key, aspell replaces the offending word with the word “jumps” and
moves on to the next misspelled word, which is laxy. If we select the replacement lazy,
aspell replaces it and terminates. Once aspe L1 has finished, we can examine our file
and see that the misspellings have been corrected:

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumps over the lazy dog.

Unless told otherwise via the command line option --dont-backup, aspell creates
a backup file containing the original text by appending the extension .bak to the file-
name.

Showing off our sed editing prowess, we’ll put our spelling mistakes back in so we can
reuse our file.

[me@linuxbox ~]1% sed -i 's/lazy/laxy/; s/jumps/jimps/' foo.txt

The sed option -1 tells sed to edit the file “in-place,” meaning that rather than sending
the edited output to standard output, it will rewrite the file with the changes applied. We
also see the ability to place more than one editing command on the line by separating
them with a semicolon.

327

20 — Text Processing

Next, we’ll look at how aspe L1 can handle different kinds of text files. Using a text edi-
tor such as vim (the adventurous may want to try sed), we will add some HTML
markup to our file.

<htm1>
<head>
<title>Mispelled HTML file</title>
</head>
<body>
<p>The quick brown fox jimps over the laxy dog.</p>
</body>
</htm1>

Now, if we try to spellcheck our modified file, we run into a problem. If we do it this
way:

[me@linuxbox ~]$ aspell check foo.txt

we’ll get this:

Shtmlsg
<head>
<title>Mispelled HTML file</title>
</head>
<body>
<p>The quick brown fox jimps over the laxy dog.</p>
</body>
</htm1l>
e
1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add 1) Add Lower
b) Abort X) Exit
e
?

328

Editing on the Fly

aspell will see the contents of the HTML tags as misspelled. This problem can be
overcome by including the -H (HTML) checking-mode option, like this:

[me@linuxbox ~]$ aspell -H check foo.txt

which will result in this:

1) Mi spelled
2) Mi-spelled
3) Misspelled
4) Dispelled
5) Spelled

i) Ignore

r) Replace

a) Add

b) Abort

6)
7)
8)
9)
0)
I)
R)
L)
X)

<html>
<head>
<title>[FRJEYAEY HTML file</title>
</head>
<body>
<p>The quick brown fox jimps over the laxy dog.</p>
</body>
</html>

Misapplied
Miscalled
Respelled
Misspell
Misled
Ignore all
Replace all
Add Lower
Exit

?

The HTML is ignored, and only the non-markup portions of the file are checked. In this
mode, the contents of HTML tags are ignored and not checked for spelling. However, the
contents of ALT tags, which benefit from checking, are checked in this mode.

Note: By default, aspell will ignore URLs and email addresses in text. This
behavior can be overridden with command line options. It is also possible to
specify which markup tags are checked and skipped. See the aspell man page

for details.

329

20 — Text Processing

Summing Up

In this chapter, we looked at a few of the many command line tools that operate on text.
In the next chapter, we will look at several more. Admittedly, it may not seem immedi-
ately obvious how or why you might use some of these tools on a day-to-day basis,
though we have tried to show some practical examples of their use. We will find in later
chapters that these tools form the basis of a tool set that is used to solve a host of practical
problems. This will be particularly true when we get into shell scripting, where these
tools will really show their worth.

Further Reading

The GNU Project website contains many online guides to the tools discussed in this chap-
ter.

e From the Coreutils package:
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-
files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-
sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-char-

acters

e From the Diffutils package:
http://www.gnu.org/software/diffutils/manual/html mono/diff.html

e sed:
http://www.gnu.org/software/sed/manual/sed.html

e aspell:
http://aspell.net/man-html/index.html
e There are many other online resources for sed, in particular:

http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt

e Also try googling “sed one liners”, “sed cheat sheets”

Extra Credit

There are a few more interesting text-manipulation commands worth investigating.
Among these are split (split files into pieces), csp Lit (split files into pieces based on
context), and sdiff (side-by-side merge of file differences).

330

http://sed.sourceforge.net/sed1line.txt
http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Sed.html
http://aspell.net/man-html/index.html
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/diffutils/manual/html_mono/diff.html
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files

21 — Formatting Output

21 - Formatting Output

In this chapter, we continue our look at text-related tools, focusing on programs that are
used to format text output, rather than changing the text itself. These tools are often used
to prepare text for eventual printing, a subject that we will cover in the next chapter. We
will cover the following programs in this chapter:

e Nl - Number lines

e Told - Wrap each line to a specified length
e fmt — A simple text formatter

e pr — Prepare text for printing

e printf — Format and print data

e groff — A document formatting system

Simple Formatting Tools

We’ll look at some of the simple formatting tools first. These are mostly single-purpose
programs, and a bit unsophisticated in what they do, but they can be used for small tasks
and as parts of pipelines and scripts.

nl — Number Lines

The n'1 program is a rather arcane tool used to perform a simple task. It numbers lines. In
its simplest use, it resembles cat -n.

[me@linuxbox ~]$ nl distros.txt | head
1 SUSE 10.2 12/07/2006
2 Fedora 10 11/25/2008
3 SUSE 11.0 06/19/2008
4 Ubuntu 8.04 04/24/2008
5 Fedora 8 11/08/2007
6 SUSE 10.3 10/04/2007

331

21 — Formatting Output

7 Ubuntu 6.10 10/26/2006
8 Fedora 7 05/31/2007
9 Ubuntu 7.10 10/18/2007
10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple files as command line arguments or standard in-
put. However, n1 has a number of options and supports a primitive form of markup to al-
low more complex kinds of numbering.

nl supports a concept called “logical pages” when numbering. This allows n'l to reset
(start over) the numerical sequence when numbering. Using options, it is possible to set
the starting number to a specific value and, to a limited extent, its format. A logical page
is further broken down into a header, body, and footer. Within each of these sections, line
numbering may be reset and/or be assigned a different style. If n'l is given multiple files,
it treats them as a single stream of text. Sections in the text stream are indicated by the
presence of some rather odd-looking markup added to the text, as described in Table 21-
1.

Table 21-1: nl Markup

Markup Meaning

AR AN Start of logical page header
A Start of logical page body
\: Start of logical page footer

Each of the markup elements listed in Table 21-1 must appear alone on its own line. After
processing a markup element, n1 deletes it from the text stream.

Table 21-2 lists the common options for n 1.

Table 21-2: Common n 1 Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a = Number all lines
t = Number only non-blank lines. This is the default.

n = None
pregexp = Number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. The default is n (none).

332

Simple Formatting Tools

-h style Set header numbering to style. The default is n (none).
-1 number Set page numbering increment to number. The default is one.

-n format Sets numbering format to format, where format is one of the
following:
1n = Left justified, without leading zeros.
rn = Right justified, without leading zeros. This is the default.
rz = Right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-S string Add string to the end of each line number to create a separator. The
default is a single tab character.

-V number Set first line number of each logical page to number. The default is
one.

-w width Set width of the line number field to width. The default is 6.

Admittedly, we probably won’t be numbering lines that often, but we can use nl to look
at how we can combine multiple tools to perform more complex tasks. We will build on
our work in the previous chapter to produce a Linux distributions report. Since we will be
using n'1, it will be useful to include its header/body/footer markup. To do this, we will
add it to the sed script from the previous chapter. Using our text editor, we will change
the script as follows and save it as distros-nl. sed:

sed script to produce Linux distributions report

1 i\

ANGAN AR SN

\

Linux Distributions Report\
\

Name Ver. Released\
mmee meee mmmeeaaa \
AN
S/N(LO-9IN{2\I\)N/N([0-9]\{2\FI\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\

AN

\

End Of Report

333

21 — Formatting Output

The script now inserts the n1 logical page markup and adds a footer at the end of the re-
port. Note that we had to double up the backslashes in our markup because they are nor-
mally interpreted as an escape character by sed.

Next, we’ll produce our enhanced report by combining sort, sed, and nl.

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.s
ed | nl

Linux Distributions Report

Name Ver. Released
1 Fedora 5 2006-03-20
2 Fedora 6 2006-10-24
3 Fedora 7 2007-05-31
4 Fedora 8 2007-11-08
5 Fedora 9 2008-05-13
6 Fedora 10 2008-11-25
7 SUSE 10.1 2006-05-11
8 SUSE 10.2 2006-12-07
9 SUSE 10.3 2007-10-04
10 SUSE 11.0 2008-06-19
11 Ubuntu 6.06 2006-06-01
12 Ubuntu 6.10 2006-10-26
13 Ubuntu 7.04 2007-04-19
14 Ubuntu 7.10 2007-10-18
15 Ubuntu 8.04 2008-04-24
16 Ubuntu 8.10 2008-10-30

End Of Report

Our report is the result of our pipeline of commands. First, we sort the list by distribution
name and version (fields 1 and 2), and then we process the results with sed, adding the
report header (including the logical page markup for nl) and footer. Finally, we process
the result with nl, which, by default, only numbers the lines of the text stream that be-
long to the body section of the logical page.

We can repeat the command and experiment with different options for nl. Some interest-

334

Simple Formatting Tools

ing ones are the following:

nl -n rz

and the following:

nl -w 3 -s

fold — Wrap Each Line to a Specified Length

Folding is the process of breaking lines of text at a specified width. Like our other com-
mands, fold accepts either one or more text files or standard input. If we send fold a

simple stream of text, we can see how it works.

[me@linuxbox ~]$ echo "The quick brown fox jumps over the lazy dog."
| fold -w 12

The quick br

own fox jump

s over the 1

azy dog.

Here we see Told in action. The text sent by the echo command is broken into seg-
ments specified by the -w option. In this example, we specify a line width of 12 charac-
ters. If no width is specified, the default is 80 characters. Notice how the lines are broken
regardless of word boundaries. The addition of the - s option will cause fold to break
the line at the last available space before the line width is reached.

[me@linuxbox ~]$ echo "The quick brown fox jumps over the lazy dog."
| fold -w 12 -s

The quick

brown fox

jumps over

the lazy

dog.

335

21 — Formatting Output

fmt — A Simple Text Formatter

The fmt program also folds text, plus a lot more. It accepts either files or standard input
and performs paragraph formatting on the text stream. Basically, it fills and joins lines in
text while preserving blank lines and indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt info page.

“fmt' reads from the specified FILE arguments (or standard input
if none are given), and writes to standard output.

By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced
on output.

“fmt' prefers breaking lines at the end of a sentence, and tries
to avoid line breaks after the first word of a sentence or before the
last word of a sentence. A "sentence break" is defined as either the
end of a paragraph or a word ending in any of ~.?!', followed by two
spaces or end of line, ignoring any intervening parentheses or
gquotes. Like TeX, “fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of that given by Donald E.
Knuth and Michael F. Plass in "Breaking Paragraphs Into Lines",
‘Software--Practice & Experience' 11, 11 (November 1981), 1119-1184.

We’ll copy this text into our text editor and save the file as fmt-info. txt. Now, let’s
say we wanted to reformat this text to fit a 50-character-wide column. We could do this
by processing the file with fmt and the -w option.

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
“fmt' reads from the specified FILE arguments
(or standard input if

none are given), and writes to standard output.

By default, blank lines, spaces between words,
and indentation are
preserved in the output; successive input lines
with different indentation are not joined; tabs
are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text since it explains

336

Simple Formatting Tools

what’s going on.

By default, blank lines, spaces between words, and indentation are preserved
in the output; successive input lines with different indentation are not joined;
tabs are expanded on input and introduced on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt provides an op-
tion to correct this.

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt

“fmt' reads from the specified FILE arguments
(or standard input if none are given), and writes
to standard output.

By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

“fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A '"sentence break"
is defined as either the end of a paragraph
or a word ending in any of ".?!', followed
by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like TeX,
“fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
‘Software--Practice & Experience' 11, 11
(November 1981), 1119-1184.

That’s much better. By adding the - C option, we now have the desired result.
fmt has some interesting options, as described in Table 21-3.
Table 21-3: fmt Options

Option Description

-C Operate in crown margin mode. This preserves the indentation of

337

21 — Formatting Output

-p string

-w width

The -p option is particularly interesting. With it, we can format selected portions of a
file, provided that the lines to be formatted all begin with the same sequence of charac-
ters. Many programming languages use the pound sign (#) to indicate the beginning of a
comment and thus can be formatted using this option. Let’s create a file that simulates a

the first two lines of a paragraph. Subsequent lines are aligned with
the indentation of the second line.

Format only those lines beginning with the prefix string. After
formatting, the contents of string are prefixed to each reformatted
line. This option can be used to format text in source code
comments. For example, any programming language or
configuration file that uses a “#” character to delineate a comment
could be formatted by specifying -p '# ' so that only the
comments will be formatted. See the example below.

Split-only mode. In this mode, lines will only be split to fit the
specified column width. Short lines will not be joined to fill lines.
This mode is useful when formatting text such as code where
joining is not desired.

Perform uniform spacing. This will apply traditional “typewriter-
style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful for
removing “justification,” that is, text that has been padded with
spaces to force alignment on both the left and right margins.

Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

program that uses comments.

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This 1line is a comment.
Followed by another comment line.

And another.

This, on the other hand, is a line of code.
And another 1line of code.

And another.

338

Simple Formatting Tools

Our sample file contains comments that begin with the string “# ” (a # followed by a
space) and lines of “code” that do not. Now, using fmt, we can format the comments and

leave the code untouched.

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another 1line of code.
And another.

Notice that the adjoining comment lines are joined, while the blank lines and the lines
that do not begin with the specified prefix are preserved.

pr — Format Text for Printing

The pr program is used to paginate text. When printing text, it is often desirable to sepa-
rate the pages of output with several lines of whitespace, to provide a top margin and a
bottom margin for each page. Further, this whitespace can be used to insert a header and
footer on each page.

We’ll demonstrate pr by formatting our distros. txt file into a series of short pages
(only the first two pages are shown).

[me@linuxbox ~]$ pr -1 15 -w 65 distros.txt

2025-12-11 18:27 distros.txt Page 1
SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

339

21 — Formatting Output

2025-12-11 18:27 distros.txt Page 2
SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007

In this example, we employ the -1 option (for page length) and the -w option (page
width) to define a “page” that is 65 columns wide and 15 lines long. pr paginates the
contents of the distros. txt file, separates each page with several lines of whitespace,
and creates a default header containing the file modification time, filename, and page
number. The pr program provides many options to control page layout. We’ll take a look
at them in Chapter 22, “Printing.”

printf — Format and Print Data

Unlike the other commands in this chapter, the printf command is not used for pipe-
lines (it does not accept standard input) nor does it find frequent application directly on
the command line (it’s mostly used in scripts). So why is it important? Because it is so
widely used.

printf (from the phrase “print formatted”) was originally developed for the C pro-
gramming language and has been implemented in many programming languages includ-
ing the shell. In fact, in bash, printf is a builtin.

printf works like this:
printf [-v var] “format” arguments

The command is given a string containing a format description, which is then applied to a
list of arguments. The formatted result is sent to standard output unless the -V option is
specified in which case the formatted result is stored in variable var. Here is a trivial ex-
ample of printf in action:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

340

Simple Formatting Tools

Here it is again using the -V option where the result is placed in a variable rather than be-
ing sent to standard output:

[me@linuxbox ~]$ printf -v result "I formatted the string: %s\n" foo
[me@linuxbox ~]%$ echo "$result"
I formatted the string: foo

The format string may contain literal text (like “I formatted the string:”), escape se-
quences (such as \n, a newline character), and sequences beginning with the % character,
which are called conversion specifications. In the example above, the conversion specifi-
cation %S is used to format the string “foo” and place it in the command’s output. Here it
is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %S conversion specification is replaced by the string “foo” in the com-
mand’s output. The s conversion is used to format string data. There are other specifiers
for other kinds of data. Table 21-4 lists the commonly used data types.

Table 21-4: Common printf Data Type Specifiers

Specifier Description

d Format a number as a signed decimal integer.

f Format and output a floating-point number.

0 Format an integer as an octal number.

S Format a string.

X Format an integer as a hexadecimal number using lowercase a to T

where needed.
X Same as X but use uppercase letters.

% Print a literal % symbol (i.e., specify %%)

We’ll demonstrate the effect each of the conversion specifiers on the string 380.

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380

341

21 — Formatting Output

380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six arguments for
printf to process. The six results show the effect of each specifier.

Several optional components may be added to the conversion specifier to adjust its out-
put. A complete conversion specification may consist of the following:

%[flags][width][.precision]conversion_specification
Multiple optional components, when used, must appear in the order specified earlier to be
properly interpreted. Table 21-5 describes each.

Table 21-5: printf Conversion Specification Components

Component Description
flags There are five different flags:

: Use the “alternate format” for output. This varies by data type.
For 0 (octal number) conversion, the output is prefixed with 0.
For X and X (hexadecimal number) conversions, the output is
prefixed with X or OX respectively.

O (zero): Pad the output with zeros. This means that the field will
be filled with leading zeros, as in 000380.

- (dash): Left-align the output. By default, printf right-aligns
output.

‘’ (space): Produce a leading space for positive numbers.

+ (plus sign): Sign positive numbers. By default, printf only
signs negative numbers.

width A number specifying the minimum field width.

.precision For floating-point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Table 21-6 lists some examples of different formats in action.

342

Simple Formatting Tools

Table 21-6: printf Conversion Specification Examples

Argument
380

380

380

380

380

380

380

abcdefghijk

abcdefghijk

Format
Il%d "

"%#X n

"%05d n

"%05.5f"

"%010.5f"

ll%+d n

Nos_g"

II%SSII

"%. 55"

Result
380

Ox17c

00380

380.00000

0380.00000

+380

380

abcdefghijk

abcde

Notes

Simple formatting of an
integer.

Integer formatted as a
hexadecimal number using
the “alternate format” flag.

Integer formatted with
leading zeros (padding)
and a minimum field width
of five characters.

Number formatted as a
floating-point number with
padding and five decimal
places of precision. Since
the specified minimum
field width (5) is less than
the actual width of the
formatted number, the
padding has no effect.

By increasing the
minimum field width to 10,
the padding is now visible.

The + flag signs a positive
number.

The - flag left-aligns the
formatting.

A string formatted with a
minimum field width.

By applying precision to a
string, it is truncated.

Again, printf is used mostly in scripts where it is employed to format tabular data,
rather than on the command line directly. But we can still show how it can be used to
solve various formatting problems. First, let’s output some fields separated by tab charac-

ters.

343

21 — Formatting Output

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" stril str2 str3
stri str2 str3

By inserting \ t (the escape sequence for a tab), we achieve the desired effect. Next, here
are some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071

3.14156295 32589
Line: 01071 3.142 Result: +32589

This shows the effect of minimum field width on the spacing of the fields. Or how about
formatting a tiny web page?

[me@linuxbox ~]1$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n
\t</head>\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</htm1>\n" "Page Tit
le" "Page Content"
<html>
<head>
<title>Page Title</title>
</head>
<body>
<p>Page Content</p>
</body>
</htm1>

Document Formatting Systems

So far, we have examined the simple text-formatting tools. These are good for small, sim-
ple tasks, but what about larger jobs? One of the reasons that Unix became a popular op-
erating system among technical and scientific users (aside from providing a powerful
multitasking, multiuser environment for all kinds of software development) is that it of-
fered tools that could be used to produce many types of documents, particularly scientific
and academic publications. In fact, as the GNU documentation describes, document
preparation was instrumental to the development of Unix.

The first version of UNIX was developed on a PDP-7 which was sitting
around Bell Labs. In 1971 the developers wanted to get a PDP-11 for further
work on the operating system. In order to justify the cost for this system, they
proposed that they would implement a document formatting system for the
AT&T patents division. This first formatting program was a reimplementation

344

Document Formatting Systems

of Mclllroy's “roff', written by J. F. Ossanna.

Two main families of document formatters dominate the field: those descended from the
original roff program, including nroff and troff, and those based on Donald
Knuth’s TEX (pronounced “tek™) typesetting system. And yes, the dropped “E” in the

middle is part of its name.

The name “roff” is derived from the term “run off” as in, “I’ll run off a copy for you.”
The nroff program is used to format documents for output to devices that use
monospaced fonts, such as character terminals and typewriter-style printers. At the time
of its introduction, this included nearly all printing devices attached to computers. The
later troff program formats documents for output on typesetters, devices used to pro-
duce “camera-ready” type for commercial printing. Most computer printers today are able
to simulate the output of typesetters. The roff family also includes some other programs
that are used to prepare portions of documents. These include eqn (for mathematical
equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to some degree, dis-
placed troff as the tool of choice for typesetter output. We won’t be covering TEX

here, both because of its complexity (there are entire books about it) and because it is not
installed by default on most modern Linux systems.

Tip: For those interested in installing TEX, check out the texlive package

which can be found in most distribution repositories, and the LyX graphical con-
tent editor.

groff

groff is a suite of programs containing the GNU implementation of troff. It also in-
cludes a script that is used to emulate Nroff and the rest of the roff family as well.

While roff and its descendants are used to make formatted documents, they do it in a
way that is rather foreign to modern users. Most documents today are produced using
word processors that are able to perform both the composition and the layout of a docu-
ment in a single step. Prior to the advent of the graphical word processor, documents
were often produced in a two-step process involving the use of a text editor to perform
composition, and a processor, such as troff, to apply the formatting. Instructions for
the formatting program were embedded into the composed text through the use of a
markup language. The modern analog for such a process is the web page, which is com-
posed using a text editor of some kind and then rendered by a web browser using HTML
as the markup language to describe the final page layout.

345

21 — Formatting Output

We’re not going to cover groff in its entirety, as many elements of its markup language
deal with rather arcane details of typography. Instead, we will concentrate on one of its
macro packages that remains in wide use. These macro packages condense many of its
low-level commands into a smaller set of high-level commands that make using groff

much easier.
For a moment, let’s consider the humble man page. It lives in the /usr/share/man

directory as a gz1ip compressed text file. If we were to examine its uncompressed con-
tents, we would see the following (the man page for 1s in section 1 is shown):

[me@linuxbox ~]$ zcat /usr/share/man/mani/1s.1.gz | head

.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.47.3.
.TH LS "1" "January 2025" "GNU coreutils 8.28" "User Commands"
.SH NAME

1s \- list directory contents

.SH SYNOPSIS

.B 1ls

[\fI\,OPTION\/\fR]... [\fI\,FILE\/\fR]...

.SH DESCRIPTION

.\" Add any additional description here

.PP

Compared to the man page in its normal presentation, we can begin to see a correlation
between the markup language and its results.

[me@linuxbox ~]$ man 1s | head
LS(1) User Commands LS(1)

NAME
1s - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

The reason this is of interest is that man pages are rendered by groff, using the man-
doc macro package. In fact, we can simulate the man command with the following pipe-
line:

[me@linuxbox ~]$ zcat /usr/share/man/manl/ls.1.gz | groff -mandoc -T

346

Document Formatting Systems

ascii | head
LS(1) User Commands LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

Here we use the groff program with the options set to specify the mandoc macro
package and the output driver for ASCII. groff can produce output in several formats.
If no format is specified, PostScript is output by default.

[me@linuxbox ~]%$ zcat /usr/share/man/mani/1s.1.gz | groff -mandoc |
head

%!PS-Adobe-3.0

%%Creator: groff version 1.18.1

%%CreationDate: Thu Feb 5 13:44:37 2025
%%DocumentNeededResources: font Times-Roman

%%+ font Times-Bold

%%+ font Times-Italic
%%DocumentSuppliedResources: procset grops 1.18 1
%%Pages: 4

%%PageOrder: Ascend

%%0rientation: Portrait

We briefly mentioned PostScript in the previous chapter and will again in the next chap-
ter. PostScript is a page description language that is used to describe the contents of a
printed page to a typesetter-like device. If we take the output of our command and store it
to a file (assuming that we are using a graphical desktop with a Desktop directory), an

icon for the output file should appear on the desktop.

[me@linuxbox ~]$ zcat /usr/share/man/manl/ls.1.gz | groff -mandoc >
~/Desktop/1s.ps

By double-clicking the icon, a page viewer should start up and reveal the file in its ren-
dered form, as shown in Figure 5.

347

21 — Formatting Output

116.96% &R =

LS(1) User Commands LS(1)

NAME
Is — list directory contents
SYNOPSIS
Is [(OPTION]... [FILE]...
DESCRIPTION
List information about the FILEs {the current directory by default). Sort entries alphabetically if none of
—cftuvSUX nor ——sort is specified.

Mandatory arguments to long options are mandatory for short options too.
—a, ——all

do not ignore entries starting with .
—A, ——almost—all

do not list implied . and ..

—author
with —1, print the author of each file
—b, ——escape
print C—style escapes for nongraphic characters
—block—size=SIZE
scale sizes by SIZE before printing them: e.g., ‘——block—size=M" prints sizes in units of
3 1.048,576 bytes: see SIZE format below
—B. ——ignore-backups
do not list implied entries ending with ~

— with =It: sort by, and show, ctime (time of last modification of file status information); with —1:
show ctime and sort by name: otherwise: sort by ctime, newest first

-C list entries by columns

—color[=WHEN]

colorize the output: WHEN can be “always® (default if omitted), “auto’, or ‘never’: more info
4 below

—d, ——directory
list directories themselves, not their contents

—D, ——dired

generate output designed for Emacs’ dired mode
-f do not sort, enable —aU, disable —ls ——color
—F. ——classifv

Figure 4: Viewing PostScript output with a page viewer in GNOME

What we see is a nicely typeset man page for 1s! In fact, it’s possible to convert the Post-
Script file into a Portable Document Format (PDF) file with this command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/ls.pdf

The ps2pdf program is part of the ghostscript package, which is installed on most
Linux systems that support printing.

Tip: Linux systems often include many command line programs for file format
conversion. They are often named using the convention of format2format. Try
using the command ls /usr/bin/*[[:alpha:]]2[[:alpha:]]* to
identify them. Also try searching for programs named formattoformat.

For our last exercise with groff, we will revisit our old friend distros. txt. This
time, we will use the tbl program, which is used to format tables to typeset our list of
Linux distributions. To do this, we are going to use our earlier sed script to add markup

348

Document Formatting Systems

to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary markup elements (called re-
quests in groff) that tb1 requires. Using a text editor, we will change distros.sed
to the following:

sed script to produce Linux distributions report

1 i\

.TS\

center box;\

ch s s\

cb cb cb\

1nec.\

Linux Distributions Report\
=\

Name Version Released\

S/A([0-91N2\IVN/A([0-91N 2\ ([0-9]\{A\I\)$/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see that the words Name
Version Released are separated by tabs, not spaces. We’ll save the resulting file as
distros-tbl.sed. tb1l uses the . TS and .TE requests to start and end the table.
The rows following the . TS request define global properties of the table, which, for our
example, are centered horizontally on the page and surrounded by a box. The remaining
lines of the definition describe the layout of each table row. Now, if we run our report-
generating pipeline again with the new sed script, we’ll get the following:

[me@linuxbox ~]% sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl

.sed | groff -t -T ascii
hoococcocooooccoooooscoooooooooo +
| Linux Distributions Report |
Foocoocoocoocoocoocoocoocoocoocoocooooooo +
| Name Version Released |
ffocooccoocoo-ooccoocoocoocoooooo +
| Fedora 5 2006-03-20 |
| Fedora 6 2006-10-24 |
| Fedora 7 2007-05-31 |
| Fedora 8 2007-11-08 |

349

21 — Formatting Output

| Fedora 9 2008-05-13
| Fedora 10 2008-11-25
| SUSE 10.1 2006-05-11
| SUSE 10.2 2006-12-07
| SUSE 10.3 2007-10-04
| SUSE 11.0 2008-06-19
| Ubuntu .06 2006-06-01

6
|Ubuntu 6.10 2006-10-26
|Ubuntu 7.04 2007-04-19
|Ubuntu 7.10 2007-10-18
|Ubuntu 8.04 2008-04-24
| Ubuntu 8.10 2008-10-30

Adding the -t option to groff instructs it to process the text stream with tb1l. Like-
wise, the -T option is used to output to ASCII rather than the default output medium,
PostScript.

The format of the output is the best we can expect if we are limited to the capabilities of a
terminal screen or typewriter-style printer. If we specify PostScript output and graphically
view the output, we get a much more satisfying result, as shown in Figure 6.

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl
.sed | groff -t > ~/Desktop/foo.ps

350

Document Formatting Systems

distros.ps

Db 0 Linux Distributions Report
Name Yersion Released
Fedora 5 2006-03-20
Fedora 6 2006-10-24
Fedora 7 2007-05-31
Fedora 8 2007-11-08
Fedora 9 2008-05-13
Fedora 10 2008-11-25
SUSE 10.1 2006-05-11
SUSE 10.2 2006-12-07
SUSE 10.3 2007-10-04
SUSE 11.0 2008-06-19
Ubuntu 6.06 2006-06-01
Ubuntu 6.10 2006-10-26
Ubuntu 7.04 2007-04-19
Ubuntu 7.10 2007-10-18
Ubuntu 8.04 2008-04-24
Ubuntu 8.10 2008-10-30

Figure 5: Viewing the finished table

Summing Up

Given that text is so central to the character of Unix-like operating systems, it makes
sense that ththat there are many tools to that are used to manipulate and format text. As
we have seen, there are! The simple formatting tools like fmt and pr will find many
uses in scripts that produce short documents, while groff (and friends) can be used to
write books. We may never write a technical paper using command line tools (though
there are many people who do!), but it’s good to know that we could.

Further Reading
e groff User’s Guide
http://www.gnu.org/software/groff/manual/
e Writing Papers With nroff Using -me:
http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf
e -me Reference Manual:

351

http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf
http://www.gnu.org/software/groff/manual/

21 — Formatting Output

http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

e And, of course, try the following articles at Wikipedia:

http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/Donald Knuth

http://en.wikipedia.org/wiki/Typesetting

352

http://en.wikipedia.org/wiki/Typesetting
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/TeX
http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

22 — Printing

22 - Printing

After spending the last couple of chapters manipulating text, it’s time to put that text on
paper. In this chapter, we’ll look at the command line tools that are used to print files and
control printer operation. We won’t be looking at how to configure printing, because that
varies from distribution to distribution and is usually set up automatically during installa-
tion. Note that we will need a working printer configuration to perform the exercises in
this chapter.

We will discuss the following commands:
e pr — Convert text files for printing
e 1lp/ lpr — Print files
e a2ps — Format files for printing on a PostScript printer
e lpstat — Show printer status information
e 1pq - Show printer queue status

e Lprm— Cancel print jobs

A Brief History of Printing

To fully understand the printing features found in Unix-like operating systems, we must
first learn some history. Printing on Unix-like systems goes way back to the beginning of
the operating system. In those days, printers and how they were used were much different
from today.

Printing in the Dim Times

Like computers, printers in the pre-PC era tended to be large, expensive, and centralized.
The typical computer user of 1980 worked at a terminal connected to a computer some
distance away. The printer was located near the computer and was under the watchful
eyes of the computer’s operators.

When printers were expensive and centralized, as they often were in the early days of
Unix, it was common practice for many users to share a printer. To identify print jobs be-

353

22 — Printing

longing to a particular user, a banner page displaying the name of the user was often
printed at the beginning of each print job. The computer support staff would then load up
a cart containing the day’s print jobs and deliver them to the individual users.

Character-Based Printers

The printer technology of the 80s was very different from today in two respects. First,
printers of that period were almost always impact printers. Impact printers use a mechan-
ical mechanism that strikes a ribbon against the paper to form character impressions on
the page. Two of the popular technologies of that time were daisy-wheel printing and dot-
matrix printing.

The second, and more important characteristic of early printers was that printers used a
fixed set of characters that were intrinsic to the device. For example, a daisy-wheel
printer could only print the characters actually molded into the petals of the daisy wheel.
This made the printers much like high-speed typewriters. As with most typewriters, they
printed using monospaced (fixed width) fonts. This means that each character has the
same width. Printing was done at fixed positions on the page, and the printable area of a
page contained a fixed number of characters. Most printers printed ten characters per inch
(CPI) horizontally and six lines per inch (LPI) vertically. Using this scheme, a US-letter
sheet of paper is 85 characters wide and 66 lines high. Taking into account a small margin
on each side, 80 characters was considered the maximum width of a print line. This ex-
plains why terminal displays (and our terminal emulators) are normally 80 characters
wide. Using a monospaced font and and an 80 character wide terminal provides a What
You See Is What You Get (WYSIWYG) view of printed output.

Data is sent to a typewriter-like printer in a simple stream of bytes containing the charac-
ters to be printed. For example, to print an “a”, the ASCII character code 97 is sent. In ad-
dition, the low-numbered ASCII control codes provided a means of moving the printer’s
carriage and paper, using codes for carriage return, line feed, form feed, and so on. Using
the control codes, it’s possible to achieve some limited font effects, such as boldface, by
having the printer print a character, backspace, and print the character again to get a
darker print impression on the page. We can actually witness this if we use nroff to ren-
der a man page and examine the output using cat -A.

[me@linuxbox ~]$ zcat /usr/share/man/mani/1s.1.gz | nroff -man | cat
-A | head
LS(1) User Commands LS(1)
$
$
$
NAHNAAHAMAHMEAHES
1ls - list directory contents$

354

A Brief History of Printing

$
SAHSYAHYNAHNOAHOPAHPSAHSIAHISAHSS$
1AH1sAHS [_AHO_AHP_AHT_AHI AHO AHN]... [_AHF_AHI AHL_AHE]...$

The AH (Ctrl-h) characters are the backspaces used to create the boldface effect. Like-
wise, we can also see a backspace/underscore sequence used to produce underlining.

Graphical Printers

The development of GUIs led to major changes in printer technology. As computers
moved to more picture-based displays, printing moved from character-based to graphical
techniques. This was facilitated by the advent of the low-cost laser printer which, instead
of printing fixed characters, could print tiny dots anywhere in the printable area of the
page. This made printing proportional fonts (like those used by typesetters), and even
photographs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme presented a for-
midable technical challenge. Here’s why: the number of bytes needed to fill a page using
a character-based printer can be calculated this way (assuming 60 lines per page each
containing 80 characters):

60 X 80 = 4,800 bytes

In comparison, a 300 dot per inch (DPI) laser printer (assuming an 8 by 10 inch print area
per page) requires this many bytes:

(8 X 300) X (10 X 300) / 8 = 900,000 bytes

Many of the slow PC networks simply could not handle the nearly one megabyte of data
required to print a full page on a laser printer, so it was clear that a clever invention was
needed.

That invention turned out to be the page description language (PDL). A page description
language is a programming language that describes the contents of a page. Basically it
says, “Go to this position, draw the character ‘a’ in 10 point Helvetica, go to this posi-
tion...” until everything on the page is described. The first major PDL was PostScript
from Adobe Systems, which is still in wide use today. The PostScript language is a com-
plete programming language tailored for typography and other kinds of graphics and
imaging. It includes built-in support for 35 standard, high-quality fonts, plus the ability to
accept additional font definitions at runtime. At first, support for PostScript was built into
the printers themselves. This solved the data transmission problem. While the typical
PostScript program was very verbose in comparison to the simple byte stream of charac-
ter-based printers, it was much smaller than the number of bytes required to represent the
entire printed page.

355

22 — Printing

A PostScript printer accepted a PostScript program as input. The printer contained its
own processor and memory (oftentimes making the printer a more powerful computer
than the computer to which it was attached) and executed a special program called a
PostScript interpreter, which read the incoming PostScript program and rendered the re-
sults into the printer’s internal memory, thus forming the pattern of bits (dots) that would
be transferred to the paper. The generic name for this process of rendering something into
a large bit pattern (called a bitmap) is raster image processor (RIP).

As the years went by, both computers and networks became much faster. This allowed the
RIP to move from the printer to the host computer, which, in turn, permitted high-quality
printers to be much less expensive.

Many printers today still accept character-based streams, but many low-cost printers do
not. They rely on the host computer’s RIP to provide a stream of bits to print as dots.
There are still some PostScript printers, too.

Printing with Linux

Modern Linux systems employ two software suites to perform and manage printing. The
first, Common Unix Printing System (CUPS) provides print drivers and print-job man-
agement, and the second, Ghostscript, a PostScript interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues. As we discussed in the
earlier history lesson, Unix printing was originally designed to manage a centralized
printer shared by multiple users. Since printers are slow by nature, compared to the com-
puters that are feeding them, printing systems need a way to schedule multiple print jobs
and keep things organized. CUPS also has the ability to recognize different types of data
(within reason) and can convert files to a printable form.

Preparing Files for Printing

As command line users, we are mostly interested in printing text, though it is certainly
possible to print other data formats as well.

pr — Convert Text Files for Printing

We looked at pr a little in the previous chapter. Now we will examine some of its many
options used in conjunction with printing. In our history of printing, we saw how charac-
ter-based printers use monospaced fonts, resulting in fixed numbers of characters per line
and lines per page. pr is used to adjust text to fit on a specific page size, with optional
page headers and margins. Table 22-1 summarizes its most commonly used options.

356

Preparing Files for Printing

Table 22-1: Common pr Options

Option
+first[: last]

-columns

-D “format”

-h “header”

-1 length

-0 offset
-w width

Description

Output a range of pages starting with first and, optionally,
ending with last.

Organize the content of the page into the number of columns
specified by columns.

By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

Double-space output.

Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

Use form feeds rather than carriage returns to separate pages.

In the center portion of the page header, use header rather
than the name of the file being processed.

Set page length to length. The default is 66 (US letter at six
lines per inch)

Number lines.
Create a left margin offset characters wide.

Set the page width to width. The default is 72.

pr is often used in pipelines as a filter. In this example, we will produce a directory list-
ing of /usr/bin and format it into paginated, three-column output using pr:

[me@linuxbox ~]$ 1ls /usr/bin | pr -3 -w 65 | head

2025-02-18 14:00
[

411toppm

azp

az2ps

az2ps- lpr-wrapper

Page 1
apturl bsd-write
ar bsh
arecord btcflash
arecordmidi bug-buddy
ark buildhash

357

22 — Printing

Sending a Print Job to a Printer

The CUPS printing suite supports two methods of printing historically used on Unix-like
systems. One method, called Berkeley or LPD (used in the Berkeley Software Distribu-
tion version of Unix), uses the Lpr program, while the other method, called SysV (from
the System V version of Unix), uses the Lp program. Both programs do roughly the same
thing. Choosing one over the other is a matter of personal taste.

Lpr — Print Files (Berkeley Style)

The Lpr program can be used to send files to the printer. It may also be used in pipelines,
as it accepts standard input. For example, to print the results of our previous multicolumn
directory listing, we could do this:

[me@linuxbox ~]$ ls /usr/bin | pr -3 | 1lpr

The report would be sent to the system’s default printer. To send the file to a different
printer, the - P option can be used like this:

lpr -P printer_name

Here, printer_name is the name of the desired printer. To see a list of printers known to
the system, use this:

[me@linuxbox ~]$ 1lpstat -a

Tip: Many Linux distributions allow you to specify a “printer” that outputs files
in Portable Document Format (PDF), rather than printing on the physical printer.
This is very handy for experimenting with printing commands. Check your
printer configuration program to see whether it supports this configuration. On
some distributions, you may need to install additional packages (such as cups -
pdf) to enable this capability.

Table 22-2 describes the common options for Lpr.

Table 22-2: Common lpr Options

Option Description

358

Sending a Print Job to a Printer

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system’s default printer is used.

-r Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

Lp — Print Files (System V Style)

Like Lpr, lp accepts either files or standard input for printing. It differs from lpr in
that it supports a different (and slightly more sophisticated) option set. Table 22-3 de-

scribes the common options.

Table 22-3: Common lp Options

Option
-d printer

-n number
-0 landscape
-0 fitplot

-0 scaling=number

-0 cpi=number

-0 lpi=number

-0 page-bottom=points
-0 page-left=points
-0 page-right=points

Description

Set the destination (printer) to printer. If no d
option is specified, the system default printer is
used.

Set the number of copies to number.
Set output to landscape orientation.

Scale the file to fit the page. This is useful when
printing images, such as JPEG files.

Scale file to number. The value of 100 fills the
page. Values less than 100 are reduced, while
values greater than 100 cause the file to be printed
across multiple pages.

Set the output characters per inch to number. The
default is 10.

Set the output lines per inch to number. The
default is 6.

Set the page margins. Values are expressed in
points, a unit of typographic measurement. There
are 72 points to an inch.

359

22 — Printing

-0 page-top=points

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range, for
example, 1,3,5,7-10

We’ll produce our directory listing again, this time printing 12 CPI and 8 LPI with a left
margin of one half inch. Note that we have to adjust the pr options to account for the
new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -1 88 | 1lp -0 page-left=36
-0 cpi=12 -o 1pi=8

This pipeline produces a four-column listing using smaller type than the default. The in-
creased number of characters per inch allows us to fit more columns on the page.

Another Option: a2ps

The a2ps program (available in most repositories) is interesting. As we can surmise
from its name, it’s a format conversion program, but it also much more. Its name origi-
nally meant “ASCII to PostScript” and it was used to prepare text files for printing on
PostScript printers. Over the years, however, the capabilities of the program have grown,
and now its name means “Anything to PostScript.” While its name suggests a format-
conversion program, it is actually a printing program. It sends its default output to the
system’s default printer rather than standard output. The program’s default behavior is
that of a “pretty printer,” meaning that it improves the appearance of output. We use the
program to create a PostScript file on our desktop.

[me@linuxbox ~]$ ls /usr/bin | pr -3 -t | a2ps -o ~/Desktop/ls.ps -L
66

[stdin (plain): 11 pages on 6 sheets]

[Total: 11 pages on 6 sheets] saved into the file "/home/me/Desktop/
1ls.ps'

Here we filter the stream with pr, using the -t option (omit headers and footers), and
then with a2ps, specifying an output file (-0 option) and 66 lines per page (-L option)
to match the output pagination of pr. If we view the resulting file with a suitable file
viewer, we will see the output in Figure 7.

360

Sending a Print Job to a Printer

Printed by William Shotts

Jul 23, 1814:12

stdin

Page 1110

Jul 23, 18 14:12

stdin

Page 210

%10

[
2t03-2.7

alps-lpr-wrapper
aa-enabled
aa-exec

aclocal
aclocal-1.15
aconnect
acpi_listen
add-apt-repository
addpart
addr21ine
alsabat
alsaloop
alsamixer
alsatplg
alsauem

anidi

anixer
amuFormat .sh
animate
animate-ing
animate-1n6.q16
anytopnn

apg

apgbfn

aplay
aplaymidi
apport-bug
apport-cli
apport-collect
apport-unpack
appres
appstreancli
apropos

apt
apt-add-repository
apt -cache

apt -cdren
apt-config
aptdeon
apt-extracttemplates
apt-ftparchive
apt-get

apt-key
apt-mark
apt-sortpkgs
apturl
apturl-gtk

ar

arch
arecord
arecordmidi
arm2hod]

autocont
autcheader

automdte

autemake
autemake-1.15
autopoint
autorecont

autoscan

autoupdate
avahi-browse
avahi-brouse-donains
avahi-publish
avahi-publish-address
avahi-publish-service
avahi-resclve
avahi-resclve-address
avahi-resclve-host-name
avahi-set-hest-nane
awk

bZsun

bachab

base32

base4

basenane

bashbug

e

beend

bdftopef
bdftruncate
bioradtopgn

bitrap

bluencon
bluetoothet 1
bluetooth-sendto
brptopnn

brptoppm

britea

boltetl

beotetl

brltty-cth
brltty-trtxt
brltty-tth
broadwayd

brouse

brushtopbm

bad-from

bsd-write

btattach

bteflash

btmgnt

btmon

busctl

ot

89

cg-gee

~49

Figure 6: Viewing aZps output

catman
cautious-launcher
e
cd-create-profile
cd-fixprofile
cd-iecdump

cd-itd

cdrdac

crifile

chacl

hage

hardet

chardet 3
chardetect
hardetect3
chattr

heon
heck-language-support
heese

hen

hrt

hsh

iptool

chbeonp

cksun

clear
clear_console

emp
cnamtopbn
codepage

col

colert

colormgr

colm

colunn

combined: £f

comn

compare
compare-imd
compare-im6,qlé
compose
composeqlyphs
composite

composi te-ing
composite-iné.qlé
condure
conjure-imé
conjure—im6.qi6
convert
convert-imé
convert-im6.ql6
corelist

cpan

cpans . 26-x86_64-1inux-g
cpio-filter

vt
dbus ¢ leanup-sockets
dbus-daenon

dbus-Launch
dbus moniter
dbus -run-ses ston
dbus-send
dbus-update-activation-
dbus -uuidgen

dc

deont

ddst decode

deal locvt

debeont
debconf-apt-progress
debeonf-comunicate
debconf-copyds
debeonf-escape
debconf-gettextize
debeonf-set-selections
debeon-show
debeons-updateps
deb-systend-helper
deb-systend- nvoke
dehtnldifs
deda-dup
delpart

delv

designer
desktop£ile

d
desktop-£ile-validate
deveunp

dfu-tool

dh

dh_aute_build
dh_auto_clean
ih_auto_cenfigure
h_suto_install
ih_sutorecent
_autoreconf_clean
__atto_test
__autotools-dev_restor
fh_aut ot ools-dev_update
_bash-completion
dh_bugfiles

dl
dl
dl
dl
dl
dl
dl
dl

_£ixperns
_geon?
dh_gencontzol

dh_tnstall
dh installeatalnas

dh_installinfo
dh_tnstallinit
dh_installlogeheck
dh_tnstalllogrotate
dh_tnstallman
dh_installnanpages
dh_tnstallneny
dh_installnime
dh_tnstallmodules
dh_installpan
dh_tnstallppp
dh_tnstallsystend
dh_tnstalludev
dh_tnstallim
dh_installxfonts
dh_Link

dh_Lintian
dh_listpackages
dh_makeshlibs
dh_mdSsums
dh_missing
dh_movefiles
dh_nunpy

dh_perl
dh_perl_openssl
dh_prep

dh_python2
dh_scour
dh_shlibdeps
dh_strip

dh_strip_nondsterninisn encgusss

th_systemd_enable
dh_systemd_start
dh_testdir
dh_testroot
dh_uct

dh_update_autotosls_con epsleps

dh_usrlocal
di £

i €£3

df £t at

dlg
direolors

df rmngr
dlrmngr-client

df rname

dirsplit

dlsplay

display-iné
display-imé.qlé
do-release-upgrade
dpkg
dpkg-architecture
dpkg-buildflags
dpkg-butldpackage
Anka-rherkhind I ddens

dpkg-parsechangelog
dpkg-query
dpkg-scanpackages
dpkg-scansources
dpkg-shlibdeps

dpkg-statoverride
dpkg-trigger
dpkg-vendor
driverless
dropbox

du

dumpkeys
dvd-ram-cont rol
dvdtrw-bookt ype
dvdtrw-format
dvdtri-mediainfo
dvipds

dwp

edit

sditdifs

editor

editres

eect

elfedit

enclxs

ences

enctsetl

enctssh

enchant
enchant-lsmod
env

envsubst

eog

epsfiit
eqn

esc-m

eutp

evince
evince-previewer
evinece-thumbnailer
ex

expand

expiry

expr

extractres
eyuvtoppm

£2py

fapy2.7

factor

faillog
faked-sysy
faked-ten

As we can see, the default output layout is “two up” format. This causes the contents of
two pages to be printed on each sheet of paper. a2ps applies nice page headers and foot-

ers, too.

a2ps has a lot of options. Table 22-4 provides a summary.

Table 22-4: a2ps Options

Option

--center-title=text

--columns=number

--foote
--guess

r=text

Description

Set center page title to text.

Arrange pages into number columns. The
default is 2.

Set page footer to text.

Report the types of files given as arguments.

361

22 — Printing

--left-footer=text
--left-title=text
--line-numbers=interval
--list=defaults

- -pages=range
--right-footer=text
--right-title=text

--rows=number

text
size

number

number
name
number
file

printer

number

text

Since a2ps tries to convert and format all
types of data, this option can be useful for
predicting what a2ps will do when given a
particular file.

Set the left-page footer to text.

Set the left-page title to text.

Number lines of output every interval lines.
Display default settings.

Print pages in range.

Set the right-page footer to text.

Set the right-page title to text.

Arrange pages into number rows. The default
is 1.

No page headers.
Set the page header to text.
Use size point font.

Set characters per line to number. This and the
- L option (see next entry) can be used to make
files paginated with other programs, such as
pr, fit correctly on the page.

Set lines per page to number.
Use media name. For example, A4.
Output number copies of each page.

Send output to file. If file is specified as -, use
standard output.

Use printer. If a printer is not specified, the
system default printer is used.

Portrait orientation.
Landscape orientation.
Set tab stops to every number characters.

Underlay (watermark) pages with text.

362

Sending a Print Job to a Printer

This is just a summary. a2ps has several more options.

Note: There is another output formatter that is useful for converting text into
PostScript. Called enscript, it can perform many of the same kinds of format-
ting and printing tricks, but unlike a2ps, it only accepts text input.

Monitoring and Controlling Print Jobs

As Unix printing systems are designed to handle multiple print jobs from multiple users,
CUPS is designed to do the same. Each printer is given a print queue, where jobs are
parked until they can be spooled to the printer. CUPS supplies several command line pro-
grams that are used to manage printer status and print queues. Like the 1pr and lp pro-
grams, these management programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat — Display Print System Status

The lpstat program is useful for determining the names and availability of printers on
the system. For example, if we had a system with both a physical printer (named
“printer”) and a PDF virtual printer (named “PDF”), we could check their status like this:

[me@linuxbox ~]$ 1lpstat -a
PDF accepting requests since Mon 08 Dec 2024 03:05:59 PM EST
printer accepting requests since Tue 24 Feb 2025 08:43:22 AM EST

Further, we could determine a more detailed description of the print system configuration
this way:

[me@linuxbox ~]$ lpstat -s

system default destination: printer

device for PDF: cups-pdf:/

device for printer: ipp://print-server:631/printers/printer

In this example, we see that “printer” is the system’s default printer and that it is a net-
work printer using Internet Printing Protocol (ipp://) attached to a system named “print-
server”.

Table 22-5 lists the commonly useful options.

363

22 — Printing

Table 22-5: Common lpstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note that
this is the status of the printer queue’s ability to accept
jobs, not the status of the physical printers. If no printers
are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no printers
are specified, all printers are shown.

-r Display the status of the print server.
-S Display a status summary.
-t Display a complete status report.

Lpq — Display Printer Queue Status

To see the status of a printer queue, the 1pq program is used. This allows us to view the
status of the queue and the print jobs it contains. Here is an example of an empty queue
for a system default printer named “printer”:

[me@linuxbox ~]$ 1lpq
printer is ready
no entries

If we do not specify a printer (using the -P option), the system’s default printer is shown.
If we send a job to the printer and then look at the queue, we will see it listed.

[me@linuxbox ~]$ ls *.txt | pr -3 | 1p

request id is printer-603 (1 file(s))

[me@linuxbox ~1%$ 1pq

printer is ready and printing

Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

364

Monitoring and Controlling Print Jobs

Llprm/ cancel — Cancel Print Jobs

CUPS supplies two programs used to terminate print jobs and remove them from the print
queue. One is Berkeley style (Lprm) and the other is System V (cancel). They differ
slightly in the options they support, but do basically the same thing. Using our earlier
print job as an example, we could stop the job and remove it this way:

[me@linuxbox ~]$ cancel 663
[me@linuxbox ~]$ 1pq
printer is ready

no entries

Each command has options for removing all the jobs belonging to a particular user, par-
ticular printer, and multiple job numbers. Their respective man pages have all the details.

Summing Up

In this chapter, we saw how the printers of the past influenced the design of the printing
systems on Unix-like machines, and how much control is available on the command line
to control not only the scheduling and execution of print jobs, but also the various output
options.

Further Reading

e A good article on the PostScript page description language:
http://en.wikipedia.org/wiki/PostScript
e The Common Unix Printing System (CUPS):

http://en.wikipedia.org/wiki/Common_Unix_Printing System
https://openprinting.github.io/cups/

e The Berkeley and System V Printing Systems:
http://en.wikipedia.org/wiki/Berkeley printing system

http://en.wikipedia.org/wiki/System V_printing system

365

http://en.wikipedia.org/wiki/System_V_printing_system
http://en.wikipedia.org/wiki/Berkeley_printing_system
http://en.wikipedia.org/wiki/Berkeley_printing_system
https://openprinting.github.io/cups/
https://openprinting.github.io/cups/
http://en.wikipedia.org/wiki/Common_Unix_Printing_System
http://en.wikipedia.org/wiki/Common_Unix_Printing_System
http://en.wikipedia.org/wiki/PostScript

23 — Compiling Programs

23 - Compiling Programs

In this chapter, we will look at how to build programs by compiling source code. The
availability of source code is the essential freedom that makes Linux possible. The entire
ecosystem of Linux development relies on free exchange between developers. For many
desktop users, compiling is a lost art. It used to be quite common, but today, distribution
providers maintain huge repositories of precompiled binaries, ready to download and use.
At the time of this writing, the Debian repository (one of the largest of any of the distri-
butions) contains more than 68,000 packages.

So why compile software? There are two reasons:

1. Availability. Despite the number of precompiled programs in distribution reposi-
tories, some distributions may not include all the desired applications. In this case,
the only way to get the desired program is to compile it from source.

2. Timeliness. While some distributions specialize in cutting-edge versions of pro-
grams, many do not. This means that to have the latest version of a program, com-
piling is necessary.

Compiling software from source code can become quite complex and technical and well
beyond the reach of many users. However, many compiling tasks are easy and involve
only a few steps. It all depends on the package. We will look at a simple case to provide
an overview of the process and as a starting point for those who want to undertake further
study.

We will introduce one new command:

e make — Utility to maintain programs

What is Compiling?

Simply put, compiling is the process of translating source code (the human-readable de-
scription of a program written by a programmer) into the native language of the com-
puter’s processor.

The computer’s processor (or CPU) works at an elemental level, executing programs in
what is called machine language. This is a numeric code that describes extremely small
operations, such as “add this byte,” “point to this location in memory,” or “copy this

366

What is Compiling?

byte.” Each of these instructions is expressed in binary (ones and zeros). The earliest
computer programs were written using this numeric code, which may explain why pro-
grammers who wrote it were said to smoke a lot, drink gallons of coffee, and wear thick
glasses.

This problem was overcome by the advent of assembly language, which replaced the nu-
meric codes with (slightly) easier to use character mnemonics such as CPY (for copy) and
MOV (for move). Programs written in assembly language are processed into machine
language by a program called an assembler. Assembly language is still used today for
certain specialized programming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They are called this
because they allow the programmer to be less concerned with the details of what the pro-
cessor is doing and more with solving the problem at hand. The early ones (developed
during the 1950s) include FORTRAN (designed for scientific and technical tasks) and
COBOL (designed for business applications). Both are still in limited use today.

While there are many popular programming languages, two predominate. Most programs
written for modern systems are written in either C or C++. In the examples to follow, we
will be compiling a C program.

Programs written in high-level programming languages are converted into machine lan-
guage by processing them with another program, called a compiler. Some compilers
translate high-level instructions into assembly language and then use an assembler to per-
form the final stage of translation into machine language.

A process often used in conjunction with compiling is called linking. There are many
common tasks performed by programs. Take, for instance, opening a file. Many programs
perform this task, but it would be wasteful to have each program implement its own rou-
tine to open files. It makes more sense to have a single piece of programming that knows
how to open files and to allow all programs that need it to share it. Providing support for
common tasks is accomplished by what are called libraries. They contain multiple rou-
tines, each performing some common task that multiple programs can share. If we look in
the /11ib and /usr/11ib directories, we can see where many of them live. A program
called a linker is used to form the connections between the output of the compiler and the
libraries that the compiled program requires. The final result of this process is the exe-
cutable program file, ready for use.

Are All Programs Compiled?

No. As we have seen, there are programs such as shell scripts that do not require compil -
ing. They are executed directly. These are written in what are known as scripting or inter-
preted languages. These languages have grown in popularity in recent years and include
Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an interpreter. An interpreter

367

23 — Compiling Programs

inputs the program file and reads and executes each instruction contained within it. In
general, interpreted programs execute much more slowly than compiled programs. This is
because each source code instruction in an interpreted program is translated every time it
is carried out, whereas with a compiled program, a source code instruction is only trans-
lated once, and this translation is permanently recorded in the final executable file.

Why are interpreted languages so popular? For many programming chores, the results are
“fast enough,” but the real advantage is that it is generally faster and easier to develop in-
terpreted programs than compiled programs. Programs are usually developed in a repeat-
ing cycle of code, compile, test. As a program grows in size, the compilation phase of the
cycle can become quite long. Interpreted languages remove the compilation step and thus
speed up program development.

Compiling a C Program

Let’s compile something. Before we do that, however, we’re going to need some tools
like the compiler, the linker, and make. The C compiler used almost universally in the
Linux environment is called gcc (GNU C Compiler), originally written by Richard Stall-
man. Most distributions do not install gcc by default. We can check to see whether the
compiler is present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Tip: Your distribution may have a meta-package (a collection of packages) for
software development. If so, consider installing it if you intend to compile pro-
grams on your system. If your system does not provide a meta-package, try in-
stalling the gcc and make packages. On many distributions, this is sufficient to
carry out the following exercise.

Obtaining the Source Code

For our compiling exercise, we are going to compile a program from the GNU Project
called diction. This handy little program checks text files for writing quality and style.
As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our source code named
src and then download the source code into it using ftp.

368

Compiling a C Program

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src

[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.

220 GNU FTP server ready.

Name (ftp.gnu.org:me): anonymous

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> cd gnu/diction

250 Directory successfully changed.
ftp> 1s

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

-rw-r--r-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-rw-r--r-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-rw-r--r-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz

226 Directory send OK.

ftp> get diction-1.11.tar.gz

local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for diction-1.11.tar.gz
(141062 bytes).

226 File send OK.

141062 bytes received in 0.16 secs (847.4 kB/s)

ftp> bye

221 Goodbye.

[me@linuxbox src]$ 1s

diction-1.11.tar.gz

While we used ftp in the previous example, which is traditional, there are other ways of
downloading source code. For example, the GNU Project also supports downloading us-
ing HTTPS. We can download the diction source code using the curl program.

[me@linuxbox ~]$ curl -0 https://ftp.gnu.org/gnu/diction/diction-1.11.tar.gz
% Total % Received % Xferd Average Speed Time Time Time
Current
Dload Upload Total Spent Left Speed
100 137k 100 137k 0 0 652k QO --1--1-- --i--1-- --1--1-- 652k

369

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/

23 — Compiling Programs

Note: Since we are the “maintainer” of this source code while we compile it, we
will keep it in ~/src. Source code installed by your distribution will be in-
stalled in /usr/src, while source code we maintain that's intended for use by
multiple users is usually installed in /usr/local/src.

As we can see, source code is usually supplied in the form of a compressed tar file.
Sometimes called a tarball, this file contains the source tree, or hierarchy of directories
and files that comprise the source code. After arriving at the ftp site, we examine the list
of tar files available and select the newest version for download. Using the get com-
mand within ftp, we copy the file from the ftp server to the local machine.

Once the tar file is downloaded, it must be unpacked. This is done with the tar program.

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz
[me@linuxbox src]$ 1s
diction-1.11 diction-1.11.tar.gz

Tip: The diction program, like all GNU Project software, follows certain
standards for source code packaging. Most other source code available in the
Linux ecosystem also follows this standard. One element of the standard is that
when the source code tar file is unpacked, a directory will be created that con-
tains the source tree, and this directory will be named project-x.xx, thus contain-
ing both the project’s name and its version number. This scheme allows easy in-
stallation of multiple versions of the same program. However, it is often a good
idea to examine the layout of the tree before unpacking it. Some projects will not
create the directory but instead will deliver the files directly into the current di-
rectory. This will make a mess in our otherwise well-organized src directory. To
avoid this, use the following command to examine the contents of the tar file:

tar tzvf tarfile | head

Examining the Source Tree

Unpacking the tar file results in the creation of a new directory, named diction-1.11.
This directory contains the source tree. Let’s look inside.

[me@linuxbox src]$ cd diction-1.11

370

Compiling a C Program

[me@linuxbox diction-1.11]$ 1s

config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config.sub diction.spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.1in
de en_GB misc.c style.c
de.po en_GB. po misc.h test
diction.1.in getoptl.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project, as well as many
others, will supply the documentation files README, INSTALL, NEWS, and COPYING.
These files contain the description of the program, information on how to build and in-
stall it, and its licensing terms. It is always a good idea to carefully read the README and
INSTALL files before attempting to build the program.

The other interesting files in this directory are the ones ending with . c and . h.

[me@linuxbox diction-1.117% 1s *.c

diction.c getoptl.c getopt.c misc.c sentence.c style.c
[me@linuxbox diction-1.111% ls *.h

getopt.h getopt_int.h misc.h sentence.h

The .c files contain the two C programs supplied by the package (style and dic-
tion), divided into modules. It is common practice for large programs to be broken into
smaller, easier-to-manage pieces. The source code files are ordinary text and can be ex-
amined with less.

[me@linuxbox diction-1.11]% less diction.c

The . h files are known as header files. These, too, are ordinary text. Header files contain
descriptions of the routines included in a source code file or library. For the compiler to
connect the modules, it must receive a description of all the modules needed to complete
the entire program. Near the beginning of the diction. c file, we see this line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source code in

371

23 — Compiling Programs

diction.c to “know” what’s in getopt.c. The getopt.c file supplies routines
that are shared by both the sty le and diction programs.

Before the inc Lude statement for getopt . h, we see some other inc lude statements
such as these:

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live outside the current
source tree. They are supplied by the system to support the compilation of every program.
If we look in /usr/include, we can see them.

[me@linuxbox diction-1.11]% ls /usr/include

The header files in this directory were installed when we installed the compiler.

Building the Program

Most programs build with a simple, two-command sequence.

./configure
make

The configure program is a shell script that is supplied with the source tree. Its job is
to analyze the build environment. Most source code is designed to be portable. That is, it
is designed to build on more than one kind of Unix-like system. But to do that, the source
code may need to undergo slight adjustments during the build to accommodate differ-
ences between systems. configure also checks to see that necessary external tools and
components are installed. Let’s run configure. Since configure is not located
where the shell normally expects programs to be located, we must explicitly tell the shell
its location by prefixing the command with ./ to indicate that the program is located in
the current working directory.

[me@linuxbox diction-1.11]$./configure

372

Compiling a C Program

configure will output a lot of messages as it tests and configures the build. When it
finishes, it will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required

configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]%

What’s important here is that there are no error messages. If there were, the configuration
failed, and the program will not build until the errors are corrected.

We see configure created several new files in our source directory. The most impor-
tant one is the makefile. The makefile is a configuration file that instructs the make pro-
gram exactly how to build the program. Without it, make will refuse to run. The makefile
is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]% less Makefile

The make program takes as input a makefile (which is normally named Makefile),
which describes the relationships and dependencies among the components that comprise
the finished program.

The first part of the makefile defines variables that are substituted in later sections of the
makefile. For example we see the following line:

cc= gcc

That defines the C compiler to be gcc. Later in the makefile, we see one instance where
it gets used.

diction: diction.o sentence.o misc.o getopt.o getoptl.o

373

23 — Compiling Programs

$(CC) -0 $@ $(LDFLAGS) diction.o sentence.o misc.o \
getopt.o getoptl.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc at runtime.

Most of the makefile consists of lines, which define a target, in this case the executable
file diction and the files on which it is dependent. The remaining lines describe the
commands needed to create the target from its components. We see in this example that
the executable file diction (one of the end products) depends on the existence of
diction.o, sentence.o, misc.o, getopt.o, and getoptl.o. Later, in the
makefile, we see definitions of each of these as targets.

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h

getoptl.o: getoptl.c getopt.h getopt_int.h

misc.o: misc.c config.h misc.h

sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled by a general tar-
get, earlier in the file, that describes the command used to compile any .c file intoa .0
file.

$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to compile the parts
and be done with it? The answer to this will become clear in a moment. In the meantime,
let’s run make and build our programs.

[me@linuxbox diction-1.11]% make

The make program will run, using the contents of Makefile to guide its actions. It will
produce a lot of messages.

When it finishes, we will see that all the targets are now present in our directory.

[me@linuxbox diction-1.11]% 1s

374

Compiling a C Program

config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
config. log diction.1.in en_GB.po misc.c style
config.status diction.c getoptl.c misc.h style.1
config.sub diction.o getoptl.o misc.o style.1.in
configure diction.pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test

de diction.texi getopt.o nl.po

de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out to build.
Congratulations are in order! We just compiled our first programs from source code!

But just out of curiosity, let’s run make again.

[me@linuxbox diction-1.11]% make
make: Nothing to be done for “all'.

It only produces this strange message. What’s going on? Why didn’t it build the program
again? Ah, this is the magic of make. Rather than simply building everything again,
make only builds what needs building. With all of the targets present, make determined
that there was nothing to do. We can demonstrate this by deleting one of the targets and
running make again to see what it does. Let’s get rid of one of the intermediate targets.

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.111% make

We see that make rebuilds it and re-links the diction and sty le programs, since they
depend on the missing module. This behavior also points out another important feature of
make: it keeps targets up-to-date. make insists that targets be newer than their dependen-
cies. This makes perfect sense, because a programmer will often update a bit of source
code and then use make to build a new version of the finished product. make ensures
that everything that needs building based on the updated code is built. If we use the
touch program to “update” one of the source code files, we can see this happen:

[me@linuxbox diction-1.117% ls -1 diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction

375

23 — Compiling Programs

-rw-r--r-- 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.111%$ touch getopt.c

[me@linuxbox diction-1.117% ls -1 diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]% make

After make runs, we see that it has restored the target to being newer than the depen-
dency:

[me@linuxbox diction-1.117% ls -1 diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:24 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a great benefit to
programmers. While the time savings may not be apparent with our small project, it is
very significant with larger projects. Remember, the Linux kernel (a program that under-
goes continuous modification and improvement) contains several million lines of code.

Installing the Program

Well-packaged source code will often include a special make target called install.
This target will install the final product in a system directory for use. Usually, this direc-
tory is /usr/local/bin, the traditional location for locally built software. However,
this directory is not normally writable by ordinary users, so we must become the supe-
ruser to perform the installation.

[me@linuxbox diction-1.111% sudo make install

After we perform the installation, we can check that the program is ready to go.

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]% man diction

There we have it!

376

Summing Up

Summing Up

In this chapter, we saw how three simple commands:

./configure

make

make install

can be used to build many source code packages. We also saw the important role that
make plays in the maintenance of programs. The make program can be used for any task

that needs to maintain a target/dependency relationship, not just for compiling source
code.

Further Reading

e The Wikipedia has good articles on compilers and the make program:
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Make (software)

e The GNU Make Manual:
http://www.gnu.org/software/make/manual/html node/index.html

377

http://www.gnu.org/software/make/manual/html_node/index.html
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Compiler

Part 4 — Writing Shell Scripts

Part 4 — Writing Shell Scripts

379

24 — Writing Your First Script

24 - Writing Your First Script

In the preceding chapters, we have assembled an arsenal of command line tools. While
these tools can solve many kinds of computing problems, we are still limited to manually
using them one by one on the command line. Wouldn’t it be great if we could get the
shell to do more of the work? We can. By joining our tools together into programs of our
own design, the shell can carry out complex sequences of tasks all by itself. We can en-
able it to do this by writing shell scripts.

What are Shell Scripts?

In the simplest terms, a shell script is a file containing a series of commands. The shell
reads this file and carries out the commands as though they have been entered directly on
the command line.

The shell is somewhat unique, in that it is both a powerful command line interface to the
system and a scripting language interpreter. As we will see, most of the things that can be
done on the command line can be done in scripts, and most of the things that can be done
in scripts can be done on the command line.

We have covered many shell features, but we have focused on those features most often
used directly on the command line. The shell also provides a set of features usually (but
not always) used when writing programs.

How to Write a Shell Script

To successfully create and run a shell script, we need to do three things.

1. Write a script. Shell scripts are ordinary text files. So, we need a text editor to
write them. The best text editors will provide syntax highlighting, allowing us to
see a color-coded view of the elements of the script. Syntax highlighting will help
us spot certain kinds of common errors. vim, gedit, kate, and many other edi-
tors are good candidates for writing scripts.

2. Make the script executable. The system is rather fussy about not letting any old
text file be treated as a program, and for good reason! We need to set the script
file’s permissions to allow execution.

380

How to Write a Shell Script

3. Put the script somewhere the shell can find it. The shell automatically searches
certain directories for executable files when no explicit pathname is specified. For
maximum convenience, we will place our scripts in these directories.

Script File Format

In keeping with programming tradition, we’ll create a “Hello World” program to demon-
strate an extremely simple script. Let’s fire up our text editors and enter the following
script:

#!/bin/bash
This is our first script.

echo 'Hello World!'

The last line of our script is pretty familiar; it’s just an echo command with a string ar-
gument. The second line is also familiar. It looks like a comment that we have seen used
in many of the configuration files we have examined and edited. One thing about com-
ments in shell scripts is that they may also appear at the ends of lines, provided they are
preceded with at least one whitespace character, like so:

echo 'Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.

Like many things, this works on the command line, too:

[me@linuxbox ~]1$ echo 'Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

The first line of our script is a little mysterious. It looks as if it should be a comment since
it starts with #, but it looks too purposeful to be just that. The #! character sequence is,
in fact, a special construct called a shebang. The shebang is used to tell the kernel the
name of the interpreter that should be used to execute the script that follows. Every shell
script should include this as its first line.

Let’s save our script file as he l1o_wor 1d.

381

24 — Writing Your First Script

Executable Permissions

The next thing we have to do is make our script executable. This is easily done using
chmod.

[me@linuxbox ~]$ ls -1 hello_world

-rw-r--r-- 1 me me 63 2009-03-07 10:10 hello_world
[me@linuxbox ~]$ chmod 755 hello_world

[me@linuxbox ~]$ ls -1 hello_world

-rwxr-xr-x 1 me me 63 2009-03-07 10:10 hello_world

There are two common permission settings for scripts: 755 for scripts that everyone can
execute, and 700 for scripts that only the owner can execute. Note that scripts must be
readable to be executed.

Script File Location

With the permissions set, we can now execute our script:

[me@linuxbox ~]1$./hello_world
Hello World!

For the script to run, we must precede the script name with an explicit path. If we don’t,
we get this:

[me@linuxbox ~]1$ hello_world
bash: hello_world: command not found

Why is this? What makes our script different from other programs? As it turns out, noth-
ing. Our script is fine. Its location is the problem. In Chapter 11, we discussed the PATH
environment variable and its effect on how the system searches for executable programs.
To recap, the system searches a list of directories each time it needs to find an executable
program, if no explicit path is specified. This is how the system knows to execute /
bin/1ls when we type ls at the command line. The /bin directory is one of the direc-
tories that the system automatically searches. The list of directories is held within an en-
vironment variable named PATH. The PATH variable contains a colon-separated list of
directories to be searched. We can view the contents of PATH.

382

Script File Location

[me@linuxbox ~]$ echo $PATH
/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin:/usr/games

Here we see our list of directories. If our script iswere located in any of the directories in
the list, our problem would be solved. Notice the first directory in the list, /home/me/
bin. Most Linux distributions configure the PATH variable to contain a bin directory in
the user’s home directory to allow users to execute their own programs. So, if we create
the bin directory and place our script within it, it should start to work like other pro-
grams.

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]%$ hello_world

Hello World!

And so it does.

If the PATH variable does not contain the directory, we can easily add it by including this
line in our . bashrc file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal session. To apply the
change to the current terminal session, we must have the shell re-read the .bashrc file.
This can be done by “sourcing” it.

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the Ssource command, a shell builtin that reads a
specified file of shell commands and treats it like input from the keyboard.

Note: Ubuntu (and most other Debian-based distributions) automatically adds
the ~/bin directory to the PATH variable if the ~/bin directory exists when
the user’s .bashrc file is executed. So, on Ubuntu systems, if we create the
~/Dbin directory and then log out and log in again, everything works.

383

24 — Writing Your First Script

Good Locations for Scripts

The ~/bin directory is a good place to put scripts intended for personal use. If we write
a script that everyone on a system is allowed to use, the traditional location is /usr/
local/bin. Scripts intended for use by the system administrator are often located in
/usr/local/sbin. In most cases, locally supplied software, whether scripts or com-
piled programs, should be placed in the /usr/local hierarchy and not in /bin or /
usr/bin. These directories are specified by the Linux Filesystem Hierarchy Standard
to contain only files supplied and maintained by the Linux distributor.

More Formatting Tricks

One of the key goals of serious script writing is ease of maintenance, that is, the ease
with which a script may be modified by its author or others to adapt it to changing needs.
Making a script easy to read and understand is one way to facilitate easy maintenance.

Long Option Names

Many of the commands we have studied feature both short and long option names. For
instance, the 1s command has many options that can be expressed in either short or long
form. For example, the following:

[me@linuxbox ~]1%$ 1s -ad

is equivalent to this:

[me@linuxbox ~]$ ls --all --directory

In the interests of reduced typing, short options are preferred when entering options on
the command line, but when writing scripts, long options can provide improved readabil -

ity.

Indentation and Line-Continuation

When employing long commands, readability can be enhanced by spreading the com-
mand over several lines. In Chapter 17, we looked at a particularly long example of the
find command.

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec

384

More Formatting Tricks

chmod 0600 ‘{}’ “;’ \) -or \(-type d -not -perm 0700 -exec chmod
0700 ‘{3}’" ;" \)

Obviously, this command is a little hard to figure out at first glance. In a script, this com-
mand might be easier to understand if written this way:

find playground \
AV
-type f \
-not -perm 0600 \
-exec chmod 0600 ‘{}" ‘;’" \
\) N\
-or \
NN\
-type d \
-not -perm 0700 \
-exec chmod 0700 “{}" ‘;’ \
\)

By using line continuations (backslash-linefeed sequences) and indentation, the logic of
this complex command is more clearly described to the reader. This technique works on
the command line, too, though it is seldom used, as it is awkward to type and edit. One
difference between a script and a command line is that the script may employ tab charac-
ters to achieve indentation, whereas the command line cannot since tabs are used to acti-
vate completion.

Configuring vim For Script Writing

The vim text editor has many, many configuration settings. There are several
common options that can facilitate script writing.

The following turns on syntax highlighting:
:syntax on

With this setting, different elements of shell syntax will be displayed in different
colors when viewing a script. This is helpful for identifying certain kinds of pro-
gramming errors. It looks cool, too. Note that for this feature to work, you must
have a complete version of vim installed, and the file you are editing must have a

385

24 — Writing Your First Script

shebang indicating the file is a shell script. If you have difficulty with the previ-
ous command, try : set syntax=sh instead.

The following turns on the option to highlight search results.
:set hlsearch

Say we search for the word echo. With this option on, each instance of the word
will be highlighted.

The following sets the number of columns occupied by a tab character.:
:set tabstop=4

The default is eight columns. Setting the value to 4 (which is a common practice)
allows long lines to fit more easily on the screen.

The following turns on the “auto indent” feature:
:set autoindent
This causes vim to indent a new line the same amount as the line just typed. This

speeds up typing on many kinds of programming constructs. To stop indentation,
press Ctrl-d.

These changes can be made permanent by adding these commands (without the
leading colon characters) in your ~/ . vimrc file.

Summing Up

In this first chapter of scripting, we looked at how scripts are written and made to easily
execute on our system. We also saw how we can use various formatting techniques to im-
prove the readability (and thus the maintainability) of our scripts. In future chapters, ease
of maintenance will come up again and again as a central principle in good script writing.

Further Reading

e For “Hello World” programs and examples in various programming languages,
see:

http://en.wikipedia.org/wiki/Hello_world

e This Wikipedia article talks more about the shebang mechanism:
http://en.wikipedia.org/wiki/Shebang (Unix

386

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Hello_world

25 — Starting a Project

25 - Starting a Project

Starting with this chapter, we will begin to build a program. The purpose of this project is
to see how various shell features are used to create programs and, more importantly, cre-
ate good programs.

The program we will write is a report generator. It will present various statistics about
our system and its status and will produce this report in HTML format, so we can view it
with a web browser such as Firefox or Chrome.

Programs are usually built up in a series of stages, with each stage adding features and
capabilities. The first stage of our program will produce a minimal HTML document that
contains no system information. That will come later.

First Stage: Minimal Document

The first thing we need to know is the format of a well-formed HTML document. It looks
like this:

<html1>
<head>
<title>Page Title</title>
</head>
<body>
Page body.
</body>
</htm1l>

If we enter this into our text editor and save the file as foo.html, we can use the fol-
lowing URL in Firefox to view the file:

file:///home/username/foo.html
The first stage of our program will be able to output this HTML file to standard output.

We can write a program to do this pretty easily. Let’s start our text editor and create a new
file named ~/bin/sys_info_page.

387

25 — Starting a Project

[me@linuxbox ~]$ vim ~/bin/sys_info_page

Enter the following program:

#1/bin/bash
Program to output a system information page

echo "<html>"

echo " <head>"

echo " <title>Page Title</title>"
echo " </head>"

echo " <body>"

echo " Page body."

echo " </body>"
echo "</htm1>"

Our first attempt at this problem contains a shebang, a comment (always a good idea),
and a sequence of echo commands, one for each line of output. After saving the file,
we’ll make it executable and attempt to run it.

[me@linuxbox ~]%$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document displayed on the
screen, since the echo commands in the script send their output to standard output. We’ll
run the program again and redirect the output of the program to the file
sys_info_page.html so that we can view the result with a web browser.

[me@linuxbox ~]$ sys_info_page > sys_info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.

When writing programs, it’s always a good idea to strive for simplicity and clarity. Main-
tenance is easier when a program is easy to read and understand, not to mention that it
can make the program easier to write by reducing the amount of typing. Our current ver-
sion of the program works fine, but it could be simpler. We could actually combine all the
echo commands into one, which will certainly make it easier to add more lines to the pro-

388

First Stage: Minimal Document

gram’s output. So, let’s change our program to this:

#!/bin/bash
Program to output a system information page

echo "<html>
<head>
<title>Page Title</title>
</head>
<body>
Page body.
</body>
</htm1>"

A quoted string may include newlines, and therefore contain multiple lines of text. The
shell will keep reading the text until it encounters the closing quotation mark. It works
this way on the command line, too:

[me@linuxbox ~]$ echo "<html>
> <head>

> <title>Page Title</title>
> </head>

> <body>

> Page body.

> </body>

> </htm1>"

The leading “>” character is the shell prompt contained in the PS2 shell variable. It ap-
pears whenever we type a multiline statement into the shell. This feature is a little ob-
scure right now, but later, when we cover multiline programming statements, it will turn
out to be quite handy.

Second Stage: Adding a Little Data

Now that our program can generate a minimal document, let’s put some data in the re-
port. To do this, we will make the following changes:

#!/bin/bash

389

25 — Starting a Project

Program to output a system information page

echo "<html>
<head>
<title>System Information Report</title>
</head>
<body>
<h1>System Information Report</hi>
</body>
</htm1>"

We added a page title and a heading to the body of the report.

Variables and Constants

There is an issue with our script, however. Notice how the string “System Information
Report” is repeated? With our tiny script it’s not a problem, but let’s imagine that our
script was really long and we had multiple instances of this string. If we wanted to
change the title to something else, we would have to change it in multiple places, which
could be a lot of work. What if we could arrange the script so that the string appeared
only once and not multiple times? That would make future maintenance of the script
much easier. Here’s how we could do that:

#!/bin/bash
Program to output a system information page
title="System Information Report"

echo "<html>
<head>
<title>$title</title>
</head>
<body>
<h1>$title</h1>
</body>
</htm1>"

By creating a variable named title and assigning it the value System Informa-
tion Report, we can take advantage of parameter expansion and place the string in
multiple locations.

390

Variables and Constants

So, how do we create a variable? Simple, we just use it. When the shell encounters a vari-
able, it automatically creates it. This differs from many programming languages in which
variables must be explicitly declared or defined before use. The shell is very lax about
this, which can lead to some problems. For example, consider this scenario played out on
the command line:

[me@linuxbox ~]$ foo="yes"

[me@linuxbox ~]$ echo $foo

yes

[me@linuxbox ~]$ echo $fool

[me@linuxbox ~]$

We first assign the value yes to the variable fo0, and then we display its value with
echo. Next we display the value of the variable name misspelled as fool and get a
blank result. This is because the shell happily created the variable fool when it encoun-
tered it and gave it the default value of nothing, or empty. From this, we learn that we
must pay close attention to our spelling! It’s also important to understand what really hap-
pened in this example. From our previous look at how the shell performs expansions, we
know that the following command:

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in the following:

[me@linuxbox ~]$ echo yes

By contrast, the following command:

[me@linuxbox ~]$ echo $fool

expands into this:

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with commands that re-
quire arguments. Here’s an example:

391

25 — Starting a Project

[me@linuxbox ~]$ foo=foo.txt

[me@linuxbox ~]$ fool=fool.txt

[me@linuxbox ~]$ cp $foo $fool

cp: missing destination file operand after “foo.txt'
Try “cp --help' for more information.

We assign values to two variables, fo0 and fool. We then perform a cp but misspell
the name of the second argument. After expansion, the Cp command is sent only one ar-
gument, though it requires two.

There are some rules about variable names:

1. Variable names may consist of alphanumeric characters (letters and numbers) and
underscore characters.

2. The first character of a variable name must be either a letter or an underscore.
3. Spaces and punctuation symbols are not allowed.

The word “variable” implies a value that changes, and in many applications, variables are
used this way. However, the variable in our application, title, is used as a constant. A
constant is just like a variable in that it has a name and contains a value. The difference is
that the value of a constant does not change. In an application that performs geometric
calculations, we might define PI as a constant and assign it the value of 3.1415, instead
of using the number literally throughout our program. The shell makes no distinction be-
tween variables and constants; they are mostly for the programmer’s convenience. A
common convention is to use uppercase letters to designate constants and lowercase let-
ters for true variables. We will modify our script to comply with this convention:

#!/bin/bash
Program to output a system information page
TITLE="System Information Report For $HOSTNAME"

echo "<html>
<head>
<tit1le>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
</body>
</htm1>"

392

Variables and Constants

We also took the opportunity to jazz up our title by adding the value of the shell variable
HOSTNAME. This is the network name of the machine.

Note: The shell actually does provide a way to enforce the immutability of con-
stants, through the use of the declare builtin command with the -r (read-
only) option. Had we assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is
rarely used, but it exists for very formal scripts.

Assigning Values to Variables and Constants

Here is where our knowledge of expansion really starts to pay off. As we have seen, vari-
ables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some other pro-
gramming languages, the shell does not care about the type of data assigned to a variable;
it treats them all as strings. You can force the shell to restrict the assignment to integers
by using the declare command with the -1 option, but, like setting variables as read-
only, this is rarely done.

Note that in an assignment, there must be no spaces between the variable name, the equal
sign, and the value. So what can the value consist of? It can have anything that we can
expand into a string.

a=z
b="a string"
c="a string and $b"

Assign the string "z" to variable a.
Embedded spaces must be within quotes.
Other expansions such as variables can be
expanded into the assignment.

Results of a command.

Arithmetic expansion.

Escape sequences such as tabs and newlines.

d="$(1ls -1 foo.txt)"
e=3$((5 * 7))
f="\t\ta string\n"

H O H OH H H H*

Multiple variable assignments may be done on a single line.

a=5 b="a string"

393

25 — Starting a Project

During expansion, variable names may be surrounded by optional curly braces, {}. This
is useful in cases where a variable name becomes ambiguous because of its surrounding
context. Here, we try to change the name of a file from myfile to myfilel, using a

variable:

[me@linuxbox ~]$ filename="myfile"

[me@linuxbox ~]$ touch "$filename"

[me@linuxbox ~]$ mv "$filename" "$filenamel"

mv: missing destination file operand after "myfile'
Try "mv --help' for more information.

This attempt fails because the shell interprets the second argument of the mv command as
a new (and empty) variable. The problem can be overcome this way:

[me@linuxbox ~]1$ mv "$filename" "${filename}1"

By adding the surrounding braces, the shell no longer interprets the trailing 1 as part of
the variable name.

Note: It's good practice to enclose variables and command substitutions in dou-
ble quotes to limit the effects of word-splitting by the shell. Quoting is especially
important when a variable might contain a filename.

We’ll take this opportunity to add some data to our report, namely the date and time the
report was created and the username of the creator.

#!/bin/bash
Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %zZ")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

echo "<html>
<head>
<title>$TITLE</title>
</head>
<body>

394

Variables and Constants

<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
</body>
</htm1>"

Here Documents

We’ve looked at two different methods of outputting our text, both using the echo com-
mand. There is a third way called a here document or here script. A here document is an
additional form of I/O redirection in which we embed a body of text into our script and
feed it into the standard input of a command. It works like this:

command << token
text
token

where command is the name of command that accepts standard input and token is a string
used to indicate the end of the embedded text. Here we’ll modify our script to use a here
document:

#!/bin/bash

Program to output a system information page
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %zZ")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_

<html>
<head>
<title>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
</body>
</html>
EOF

Instead of using echo, our script now uses cat and a here document. The string _ EOF_

395

25 — Starting a Project

(meaning End Of File, a common convention) was selected as the token and marks the
end of the embedded text. Note that the token must appear alone and that there must not
be trailing spaces on the line.

So, what’s the advantage of using a here document? It’s mostly the same as echo, except
that, by default, single and double quotes within here documents lose their special mean-
ing to the shell. Here is a command line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_

> $foo

> "$foo"

> '$foo'

> \$foo

> EOF_

some text

"some text"

'some text'

$foo

As we can see, the shell pays no attention to the quotation marks. It treats them as ordi-
nary characters. This allows us to embed quotes freely within a here document. This

could turn out to be handy for our report program.

The text within a here document undergoes parameter expansion, command substitution,
arithmetic expansion, and the literal characters $ and \ must be escaped with \.

However when we enclose the starting token in quotes, like so:

cat << '_EOF_'

The quotes will be removed and no expansions will be performed on the text:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << '_EOF_'
> $foo

> ll$foo n

> '$foo’

> \$foo

> _EOF_

$foo

396

Here Documents

ll$f00ll
'$foo’
\$foo

Here documents can be used with any command that accepts standard input. In this ex-
ample, we use a here document to pass a series of commands to the ftp program to re-
trieve a file from a remote FTP server:

#!/bin/bash
Script to retrieve a file via FTP

FTP_SERVER="ftp.nl.debian.org"
FTP_PATH="/debian/dists/stretch/main/installer-amd64/current/images/
cdrom"

REMOTE_FILE="debian-cd_info.tar.gz"

ftp -n << _EOF_

open $FTP_SERVER

user anonymous me@linuxbox
cd $FTP_PATH

hash

get $REMOTE_FILE

bye

EOF

1s -1 "$REMOTE_FILE"

If we change the redirection operator from << to <<-, the shell will ignore leading tab

characters (but not spaces) in the here document. This allows a here document to be in-
dented, which can improve readability.

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER="ftp.nl.debian.org"
FTP_PATH="/debian/dists/stretch/main/installer-amd64/current/images/
cdrom"

REMOTE_FILE="debian-cd_info.tar.gz"

ftp -n <<- _EOF_

397

25 — Starting a Project

open $FTP_SERVER

user anonymous me@linuxbox
cd $FTP_PATH

hash

get $REMOTE_FILE

bye

EOF

ls -1 "$REMOTE_FILE"

Be aware that this feature can be somewhat problematic, because many text editors (and
programmers themselves) will prefer to use spaces instead of tabs to achieve indentation
in their scripts.

Summing Up

In this chapter, we started a project that will carry us through the process of building a
successful script. We introduced the concept of variables and constants and how they can
be employed. They are the first of many applications we will find for parameter expan-
sion. We also looked at how to produce output from our script and various methods for
embedding blocks of text.

Further Reading

e For more information about HTML, see the following articles and tutorials:
http://en.wikipedia.org/wiki/Html

http://en.wikibooks.org/wiki/HTML_Programming
http://html.net/tutorials/html/

e The bash man page includes a section entitled “HERE DOCUMENTS,” which
has a full description of this feature.

398

http://html.net/tutorials/html/
http://en.wikibooks.org/wiki/HTML_Programming
http://en.wikibooks.org/wiki/HTML_Programming
http://en.wikipedia.org/wiki/Html
http://en.wikipedia.org/wiki/Html

26 — Top-Down Design

26 - Top-Down Design

As programs get larger and more complex, they become more difficult to design, code,
and maintain. As with any large project, it is often a good idea to break large, complex
tasks into a series of small, simple tasks. Let’s imagine that we are trying to describe a
common, everyday task, going to the market to buy food, to a person from Mars. We
might describe the overall process as the following series of steps:

1. Getin car.
Drive to market.
Park car.
Enter market.
Purchase food.
Return to car.
Drive home.

© N A WN

Park car.
9. Enter house.

However, a person from Mars is likely to need more detail. We could further break down
the subtask “Park car” into this series of steps:

1. Find parking space.

2. Drive car into space.
3. Turn off motor.

4. Set parking brake.

5. Exit car.

6. Lock car.

The “Turn off motor” subtask could further be broken down into steps including “Turn
off ignition,” “Remove ignition key,” and so on, until every step of the entire process of
going to the market has been fully defined.

This process of identifying the top-level steps and developing increasingly detailed views
of those steps is called top-down design. This technique allows us to break large complex
tasks into many small, simple tasks. Top-down design is a common method of designing

399

26 — Top-Down Design

programs and one that is well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our report-generator
script.

Shell Functions

Our script currently performs the following steps to generate the HTML document:
Open page.

Open page header.

Set page title.

Close page header.

Open page body.

Output page heading.

Output timestamp.

© N A WwWN =

Close page body.
Close page.

©

For our next stage of development, we will add some tasks between steps 7 and 8. These
will include the following:

e System uptime and load. This is the amount of time since the last shutdown or re-
boot and the average number of tasks currently running on the processor over sev-
eral time intervals.

e Disk space. This is the overall use of space on the system’s storage devices.

e Home space. This is the amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our script simply
through command substitution.

#!/bin/bash

Program to output a system information page
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<html>

400

Shell Functions

<head>
<tit1e>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)
</body>
</htm1l>
EOF

We could create these additional commands in two ways. We could write three separate
scripts and place them in a directory listed in our PATH, or we could embed the scripts
within our program as shell functions. As we have mentioned, shell functions are “mini-
scripts” that are located inside other scripts and can act as autonomous programs. Shell
functions have two common syntactic forms. First, here is the more formal form:

function name {

commands
return
}
Here is a simpler (and generally preferred) form:
name () {
commands
return
}

where name is the name of the function and commands is a series of commands contained
within the function. Both forms are equivalent and may be used interchangeably. The fol-
lowing is a script that demonstrates the use of a shell function:

#!/bin/bash

Shell function demo

echo "Step 2"
return

1

2

3

4

5 function step2 {
6

7

8 }

9

401

26 — Top-Down Design

10 # Main program starts here
11

12 echo "Step 1"

13 step2

14 echo "Step 3"

As the shell reads the script, it passes over lines 1 through 11 because those lines consist
of comments and the function definition. Execution begins at line 12, with an echo com-
mand. Line 13 calls the shell function step2 and the shell executes the function just as
it would any other command. Program control then moves to line 6, and the second echo
command is executed. Line 7 is executed next. Its return command terminates the
function and returns control to the program at the line following the function call (line
14), and the final echo command is executed. Note that for function calls to be recog-

nized as shell functions and not interpreted as the names of external programs, shell func-
tion definitions must appear in the script before they are called.

We’ll add minimal shell function definitions to our script, shown here:

#!/bin/bash
Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %zZ")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk space () {
return

}

report_home_space () {
return

}

cat << _EOF_
<html>
<head>
<title>$TITLE</title>

402

Shell Functions

</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)
</body>
</html>
EOF

Shell function names follow the same rules as variables. A function must contain at least
one command. The return command (which is optional) satisfies the requirement.

Local Variables

In the scripts we have written so far, all the variables (including constants) have been
global variables. Global variables maintain their existence throughout the program. This
is fine for many things, but it can sometimes complicate the use of shell functions. Inside
shell functions, it is often desirable to have local variables. Local variables are only ac-
cessible within the shell function in which they are defined and cease to exist once the
shell function terminates.

Having local variables allows the programmer to use variables with names that may al-
ready exist, either in the script globally or in other shell functions, without having to
worry about potential name conflicts.

Here is an example script that demonstrates how local variables are defined and used:

#!/bin/bash
local-vars: script to demonstrate local variables
f00=0 # global variable foo
funct_1 () {
local foo # variable local to funct_1

foo=1
echo "funct_1: foo = $foo"

403

26 — Top-Down Design

funct_2 () {

local foo # variable local to funct_2

foo=2

echo "funct_2: foo = $foo"
}
echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable name with the word
local. This creates a variable that is local to the shell function in which it is defined.
Once outside the shell function, the variable no longer exists. When we run this script, we
see these results:

[me@linuxbox ~]$ local-vars
global: foo = 0

funct_1: foo = 1
global: foo = 0
funct_2: foo = 2
global: foo = 0

We see that the assignment of values to the local variable fo0 within both shell functions
has no effect on the value of 00 defined outside the functions.

This feature allows shell functions to be written so that they remain independent of each
other and of the script in which they appear. This is valuable, because it helps prevent one
part of a program from interfering with another. It also allows shell functions to be writ-
ten so that they can be portable. That is, they may be cut and pasted from script to script,
as needed.

Shell Functions and Redirection

If we take a closer look at how shell functions are written we may notice something that
we touched upon in Chapter 6:

my_funct () {

404

Shell Functions and Redirection

commandil
command?2
command3

The three commands inside the curly brackets form a group command. As we recall from
Chapter 6, group commands combine multiple commands into a single entity when it
comes to redirection. With group commands we can do both:

{ commandl; command2; command3; } > some_output.txt

and:

{ commandl1; command2; command3; } < some_input.txt

The same holds true for shell functions. Let’s consider the following code:

my_funct () {
echo "My Documents"
1s ~/Documents
echo "My Music"
ls ~/Music
echo "My Videos"
1s ~/Videos
return

It’s easy to see what this function does, but where does its output go? It goes wherever we
direct it. When we call this function, it sends its combined output to standard output and
if we wish we can direct it to a file:

my_funct > my_directories.txt

Or a pipeline:

my_funct | sort

405

26 — Top-Down Design

We can even store the output in a variable by using command substitution:

my_var="$(my_funct)"

Redirection also applies to standard input. If the function contains a command that ac-
cepts standard input, for example cat with no arguments, we can easily do this:

my_funct < input.txt

Keep Scripts Running

While developing our program, it is useful to keep the program in a runnable state. By
doing this, and testing frequently, we can detect errors early in the development process.
This will make debugging problems much easier. For example, if we run the program,
make a small change, then run the program again and find a problem, it’s likely that the
most recent change is the source of the problem. By adding the empty functions, called
stubs in programmer-speak, we can verify the logical flow of our program at an early
stage. When constructing a stub, it’s a good idea to include something that provides feed-
back to the programmer, which shows the logical flow is being carried out. If we look at
the output of our script now:

[me@linuxbox ~]$ sys_info_page
<html>
<head>
<title>System Information Report For twin2</title>
</head>
<body>
<h1>System Information Report For linuxbox</h1>
<p>Generated 03/19/2009 04:02:10 PM EDT, by me</p>
</body>
</html>

we see that there are some blank lines in our output after the timestamp, but we can’t be
sure of the cause. If we change the functions to include some feedback:

406

Keep Scripts Running

report_uptime () {
echo "Function report_uptime executed."
return

b

report_disk_space () {
echo "Function report_disk space executed."
return

}

report_home_space () {
echo "Function report_home_space executed."
return

and run the script again:

[me@linuxbox ~]$ sys_info_page
<html>
<head>
<title>System Information Report For linuxbox</title>
</head>
<body>
<h1>System Information Report For linuxbox</h1>
<p>Generated 03/20/2009 05:17:26 AM EDT, by me</p>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.
</body>
</htm1>

we now see that, in fact, our three functions are being executed.

With our function framework in place and working, it’s time to flesh out some of the
function code. First, here’s the report_uptime function:

report_uptime () {
cat << _EOF_
<h2>System Uptime</h2>
<pre>$(uptime)</pre>
EOF

407

26 — Top-Down Design

return

It’s pretty straightforward. We use a here document to output a section header and the
output of the uptime command, surrounded by <pre> tags to preserve the formatting
of the command. The report_disk_space function is similar.

report_disk_space () {
cat << _EOF_
<h2>Disk Space Utilization</h2>
<pre>$(df -h)</pre>
EOF
return

This function uses the df -h command to determine the amount of disk space. Lastly,
we’ll build the report_home_space function.

report_home_space () {
cat << _EOF_
<h2>Home Space Utilization</h2>
<pre>$(du -sh /home/*)</pre>
EOF
return

We use the du command with the - sh options to perform this task. This, however, is not
a complete solution to the problem. While it will work on some systems (Ubuntu, for ex-
ample), it will not work on others. The reason is that many systems set the permissions of
home directories to prevent them from being world-readable, which is a reasonable secu-
rity measure. On these systems, the report_home_space function, as written, will
work only if our script is run with superuser privileges. A better solution would be to
have the script adjust its behavior according to the privileges of the user. We will take this
issue up in the next chapter.

408

Keep Scripts Running

Shell Functions In Your .bashrc File

Shell functions make excellent replacements for aliases, and are actually the pre-
ferred method of creating small commands for personal use. Aliases are limited in
the kind of commands and shell features they support, whereas shell functions al-
low anything that can be scripted. For example, if we liked the
report_disk_space shell function that we developed for our script, we
could create a similar function named ds for our .bashrc file:

ds () {
echo “Disk Space Utilization For $HOSTNAME”

df -h

Summing Up

Further Reading

In this chapter, we have introduced a common method of program design called top-
down design, and we saw how shell functions are used to build the stepwise refinement
that it requires. We also saw how local variables can be used to make shell functions
dependent from one another and from the program in which they are placed. This makes
it possible for shell functions to be written in a portable manner and to be reusable by al-
lowing them to be placed in multiple programs; this is a great time saver.

in-

e The Wikipedia has many articles on software design philosophy. Here are a cou-

ple of good ones:
https://en.wikipedia.org/wiki/Top-down design

https://en.wikipedia.org/wiki/Function (computer programmin

409

https://en.wikipedia.org/wiki/Function_(computer_programming)
https://en.wikipedia.org/wiki/Top-down_design
https://en.wikipedia.org/wiki/Top-down_design

27 — Flow Control: Branching with if

27 - Flow Control: Branching with if

In the previous chapter, we were presented with a problem. How can we make our report-
generator script adapt to the privileges of the user running the script? The solution to this
problem will require us to find a way to “change directions” within our script, based on
the results of a test. In programming terms, we need the program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simulation of a com-
puter language intended for human consumption.

X=5
If X =5, then:

Say “X equals 5.”
Otherwise:

Say “X doesis not equal 5.”

This is an example of a branch. Based on the condition, “If X = 5” do one thing, “Say X
equals 5,” and otherwise do another thing, “Say X does is not equal 5.”

if

Using the shell, we can code the previous logic as follows:

X=5

if ["$x" -eq 5]; then

echo "x equals 5."
else

echo "x does not equal 5."
fi

Or we can enter it directly at the command line (slightly shortened).

410

if

[me@linuxbox ~]$ x=5

[me@linuxbox ~1$ if ["$x" -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi

equals 5

[me@linuxbox ~]$ x=0

[me@linuxbox ~]$ if ["$x" -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi

does not equal 5

In this example, we execute the command twice; once, with the value of X set to 5, which
results in the string “equals 5” being output, and the second time with the value of X set
to 0, which results in the string “does not equal 5” being output.

The if compound command has the following syntax:

if commands; then
commands

[elif commands; then
commands. . .]

[else
commands]

fi

where commands is a list of commands. This is a little confusing at first glance. But be-
fore we can clear this up, we have to look at how the shell evaluates the success or failure
of a command.

Exit Status

Commands (including the scripts and shell functions we write) issue a value to the system
when they terminate, called an exit status. This value, which is an integer in the range of
0 to 255, indicates the success or failure of the command’s execution. By convention, a
value of zero indicates success and any other value indicates failure. The shell provides a
parameter that we can use to examine a command’s exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin

/usr/bin

[me@linuxbox ~]$ echo $?

(0]

[me@linuxbox ~]$ ls -d /bin/usr

1s: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?

2

411

27 — Flow Control: Branching with if

In this example, we execute the 1S command twice. The first time, the command exe-
cutes successfully. If we display the value of the parameter $?, we see that it is zero. We
execute the 1s command a second time (specifying a nonexistent directory), producing
an error, and examine the parameter $? again. This time it contains a 2, indicating that
the command encountered an error. Some commands use different exit status values to
provide diagnostics for errors, while many commands simply exit with a value of 1 when
they fail. Man pages often include a section entitled “Exit Status,” describing what codes
are used. However, a zero always indicates success.

The shell provides two extremely simple builtin commands that do nothing except termi-
nate with either a 0 or 1 exit status. The true command always executes successfully
and the false command always executes unsuccessfully.

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0

[me@linuxbox ~]$ false
[me@linuxbox ~]1$ echo $?
1

We can use these commands to see how the if statement works. What the i statement
really does is evaluate the success or failure of commands.

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.

[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if exe-
cutes successfully and is not executed when the command following 1f does not execute
successfully. If a list of commands follows if, the last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.

[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

412

test

test

By far, the command used most frequently with if is test. The test command per-

forms a variety of checks and comparisons. It has two equivalent forms. The first, shown
here:

test expression
And the second, more popular form, shown here:
[expression]

where expression is an expression that is evaluated as either true or false. The test com-
mand returns an exit status of 0 when the expression is true and a status of 1 when the ex-
pression is false.

It is interesting to note that both test and [are actually commands. In bash they are
builtins, but they also exist as programs in /usr/bin for use with other shells. The ex-
pression is actually just its arguments with the [command requiring that the] character
be provided as its final argument.

The test and [commands support a wide range of useful expressions and tests.

File Expressions

Table 27-1 lists the expressions used to evaluate the status of files.

Table 27-1: test File Expressions

Expression Is True If:

filel -ef filez file1 and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

filel -nt file2 file1 is newer than file2.

filel -ot file2 filel is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists.

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

413

27 — Flow Control: Branching with if

-k file file exists and has its “sticky bit” set.

-L file file exists and is a symbolic link

-0 file file exists and is owned by the effective user ID.

-p file file exists and is a named pipe.

-r file file exists and is readable (has readable permission for
the effective user).

-s file file exists and has a length greater than zero.

-S file file exists and is a network socket.

-t fd fd is a file descriptor directed to/from the terminal. This

can be used to determine whether standard
input/output/error is being redirected.

-u file file exists and is setuid.

-w file file exists and is writable (has write permission for the
effective user).

-x file file exists and is executable (has execute/search
permission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#1/bin/bash
test-file: Evaluate the status of a file
FILE=~/.bashrc

if [-e "S$FILE"]; then
if [-f "SFILE"]; then
echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then
echo "$FILE is a directory."
fi
if [-r "SFILE"]; then
echo "$FILE is readable."
fi
if [-w "SFILE"]; then

414

test

echo "$FILE is writable."
fi
if [-x "$FILE"]; then
echo "$FILE is executable/searchable."
fi
else
echo "$FILE does not exist"
exit 1
fi

exit

The script evaluates the file assigned to the constant FILE and displays its results as the
evaluation is performed. There are two interesting things to note about this script. First,
notice how the parameter $FILE is quoted within the expressions. This is not required to
syntactically complete the expression; rather it is a defense against the parameter being
empty or containing only whitespace. If the parameter expansion of $FILE were to result
in an empty value, it would cause an error (the operators would be interpreted as non-null
strings rather than operators). Using the quotes around the parameter ensures that the op-
erator is always followed by a string, even if the string is empty. Second, notice the pres-
ence of the exit command near the end of the script. The exit command accepts a sin-
gle, optional argument, which becomes the script’s exit status. When no argument is
passed, the exit status defaults to the exit status of the last command executed. Using
ex1it in this way allows the script to indicate failure if $FILE expands to the name of a
nonexistent file. The exit command appearing on the last line of the script is there as a
formality. When a script “runs off the end” (reaches end of file), it terminates with an exit
status of the last command executed.

Similarly, shell functions can return an exit status by including an integer argument to the
return command. If we were to convert the previous script to a shell function to in-
clude it in a larger program, we could replace the exit commands with return state-
ments and get the desired behavior.

test_file () {
test-file: Evaluate the status of a file
FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

415

27 — Flow Control: Branching with if

echo "$FILE is a regular file."
fi
if [-d "SFILE"]; then
echo "$FILE is a directory."
fi
if [-r "$FILE"]; then
echo "$FILE is readable."
fi
if [-w "SFILE"]; then
echo "$FILE is writable."
fi
if [-x "S$FILE"]; then
echo "$FILE is executable/searchable."

fi

else
echo "$FILE does not exist"
return 1

fi

String Expressions

Table 27-2 lists the expressions used to evaluate strings:

Table 27-2: test String Expressions

Expression Is True If...

string string is not null.

-n string The length of string is greater than zero.

-z string The length of string is zero.

S trl:ngl =S tFiI?QZ string1 and string2 are equal. Single or double
stringl == string2 equal signs may be used. The use of double equal

signs is supported by bash and is generally
preferred, but it is not POSIX compliant.

stringl '= string2 string1 and string2 are not equal.
stringl > string2 string1 sorts after string?2.
stringl < string2 string1 sorts before string2.

416

test

Warning: the > and < expression operators must be quoted (or escaped with a
backslash) when used with test. If they are not, they will be interpreted by the
shell as redirection operators, with potentially destructive results. Also note that
while the bash documentation states that the sorting order conforms to the col-
lation order of the current locale, it may not. ASCII (POSIX) order is used in ver-
sions of bash up to and including 4.0. This problem was fixed in version 4.1.

Here is a script that incorporates string expressions:

#!/bin/bash
test-string: evaluate the value of a string
ANSWER=maybe

if [-z "SANSWER"]; then
echo "There is no answer." >&2

exit 1
fi
if ["$ANSWER" == "yes"]; then
echo "The answer is YES."
elif ["SANSWER" == "no"]; then
echo "The answer is NO."
elif ["$ANSWER" == "maybe"]; then
echo "The answer is MAYBE."
else
echo "The answer is UNKNOWN."
fi

In this script, we evaluate the constant ANSWER. We first determine whether the string is
empty. If it is, we terminate the script and set the exit status to 1. Notice the redirection
that is applied to the echo command. This redirects the error message “There is no an-
swer.” to standard error, which is the proper thing to do with error messages. If the string
is not empty, we evaluate the value of the string to see whether it is equal to either “yes,”
“no,” or “maybe.” We do this by using elif, which is short for “else if.” By using
e lif, we are able to construct a more complex logical test.

Integer Expressions

To compare values as integers rather than as strings, we can use the expressions listed in

417

27 — Flow Control: Branching with if

Table 27-3.

Table 27-3: test Integer Expressions

Expression

integeril
integerl
integeril
integerl
integerl

integerl

Is True If...
-eq integer2 integer1 is equal to integer2.

-ne integer2 integer1 is not equal to integer2.

-le integer2 integer1 is less than or equal to integer?2.
-1t integer2 integer1 is less than integer?2.

-ge integer2 integer1 is greater than or equal to integer2.
-gt integer2 integer1 is greater than integer2.

Here is a script that demonstrates them:

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2

exit 1
fi

if ["SINT" -eq ©]; then
echo "INT is zero."

else

if ["S$INT" -1t 0]; then
echo "INT is negative."

else

echo "INT is positive."

fi

if [$((INT % 2)) -eq 0]; then
echo "INT is even."

else

echo "INT is odd."

fi
fi

418

test

The interesting part of the script is how it determines whether an integer is even or odd.
By performing a modulo 2 operation on the number, which divides the number by two
and returns the remainder, it can tell whether the number is odd or even.

A More Modern Version of test

Modern versions of bash include a compound command that acts as an enhanced re-
placement for test. It uses the following syntax:

[[expression]]

where, like test, expression is an expression that evaluates to either a true or false re-
sult. The [[]] command is similar to test (it supports all of its expressions), but adds
an important new string expression.

Sstringl =~ regex

This returns true if stringl is matched by the extended regular expression regex. This
opens up a lot of possibilities for performing such tasks as data validation. In our earlier
example of the integer expressions, the script would fail if the constant INT contained
anything except an integer. The script needs a way to verify that the constant contains an
integer. Using [[]] with the =~ string expression operator, we could improve the

script this way:

#!/bin/bash
test-integer2: evaluate the value of an integer.
INT=-5

if [["SINT" =~ A-2[0-9]+$]]; then
if ["$INT" -eq O]; then
echo "INT is zero."
else
if ["$INT" -1t @]; then
echo "INT is negative."
else
echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then
echo "INT is even."
else
echo "INT is odd."
fi

419

27 — Flow Control: Branching with if

fi

else
echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to only strings
that begin with an optional minus sign, followed by one or more numerals. This expres-
sion also eliminates the possibility of empty values.

Another added feature of [[]] is that the == operator supports pattern matching the
same way pathname expansion does. Here’s an example:

[me@linuxbox ~]$ FILE=foo.bar

[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"

> fi

foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file and pathnames.

(()) - Designed for Integers

In addition to the [[]] compound command, bash also provides the (()) com-
pound command, which is useful for operating on integers. It supports a full set of arith-
metic evaluations, a subject we will cover fully in Chapter 34, “Strings and Numbers.”

(()) is used to perform arithmetic truth tests. An arithmetic truth test results in true if
the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.

[me@linuxbox ~]1$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~1$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

420

(()) - Designed for Integers

test-integer2a: evaluate the value of an integer.
INT=-5

if [["S$INT" =~ A-?[0-9]+$]]; then
if ((INT == 0)); then
echo "INT is zero."
else
if ((INT < 0)); then
echo "INT is negative."
else
echo "INT is positive."
fi
if ((((INT % 2)) == 0)); then
echo "INT is even."
else
echo "INT is odd."
fi
fi
else
echo "INT is not an integer." >&2
exit 1
fi

Notice that we use less-than and greater-than signs and that == is used to test for equiva-
lence. This is a more natural-looking syntax for working with integers. Notice too, that
because the compound command (()) is part of the shell syntax rather than an ordi-
nary command, and it deals only with integers, it is able to recognize variables by name
and does not require expansion to be performed. We’ll discuss (()) and the related
arithmetic expansion further in Chapter 34.

Combining Expressions

It’s also possible to combine expressions to create more complex evaluations. Expres-
sions are combined by using logical operators. We saw these in Chapter 17, “Searching
for Files,” when we learned about the find command. There are three logical operations
for test and [[]]. They are AND, OR and NOT. test and [[]] use different op-

erators to represent these operations .

Table 27-4: Logical Operators
Operation test [[1]1and (())

421

27 — Flow Control: Branching with if

AND -a 8&&
OR -0 | |
NOT [!

Here’s an example of an AND operation. The following script determines whether an in-
teger is within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["S$INT" =~ A-?[0-9]+$]]; then
if [["$INT" -ge "SMIN_VAL" && "SINT" -le "$MAX_VAL"]]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."
else
echo "$INT is out of range."
fi
else
echo "INT is not an integer." >&2
exit 1
fi

In this script, we determine whether the value of integer INT lies between the values of
MIN_VAL and MAX_VAL. This is performed by a single use of [[]], which includes
two expressions separated by the && operator. We could have also coded this using
test:

if ["S$INT" -ge "SMIN_VAL" -a "S$INT" -le "$MAX_VAL"]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

fi

422

Combining Expressions

The ! negation operator reverses the outcome of an expression. It returns true if an ex-
pression is false, and it returns false if an expression is true. In the following script, we
modify the logic of our evaluation to find values of INT that are outside the specified
range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["S$INT" =~ A-?[0-9]+$]]; then
if [[! ("SINT" -ge "S$SMIN_VAL" && "S$INT" -le "$MAX_VAL") 1]; then
echo "$INT is outside $MIN_VAL to $MAX_VAL."
else
echo "$INT is in range."
fi
else
echo "INT is not an integer." >&2
exit 1
fi

We also include parentheses around the expression, for grouping. If these were not in-
cluded, the negation would only apply to the first expression and not the combination of
the two. Coding this with test would be done this way:

if [! \("$INT" -ge "$MIN_VAL" -a "SINT" -le "$MAX_VAL" \)];
then
echo "$INT is outside $MIN_VAL to $MAX_VAL."
else
echo "$INT is in range."
fi

Since all expressions and operators used by test are treated as command arguments by
the shell (unlike with [[]] and (())), characters that have special meaning to
bash, such as <, >, (, and), must be quoted or escaped.

423

27 — Flow Control: Branching with if

Seeing that test and [[]] do roughly the same thing, which is preferable? test is
traditional (and part of the POSIX specification for standard shells, which are often used
to run system startup scripts), whereas [[]] is specific to bash (and a few other mod-
ern shells). It’s important to know how to use test since it is widely used, but [[]] is
clearly more useful and is easier to code, so it is preferred for modern scripts.

Portability is the Hobgoblin of Little Minds

If you talk to “real” Unix people, you quickly discover that many of them don’t
like Linux very much. They regard it as impure and unclean. One tenet of Unix
users is that everything should be “portable.” This means that any script you write
should be able to run, unchanged, on any Unix-like system.

Unix people have good reason to believe this. Having seen what proprietary ex-
tensions to commands and shells did to the Unix world before POSIX, they are
naturally wary of the effect of Linux on their beloved OS.

But portability has a serious downside. It prevents progress. It requires that things
are always done using “lowest common denominator” techniques. In the case of
shell programming, it means making everything compatible with sh, the original

Bourne shell.

This downside is the excuse that proprietary software vendors use to justify their
proprietary extensions, only they call them “innovations.” But they are really just
lock-in devices for their customers.

The GNU tools, such as bash, have no such restrictions. They encourage porta-
bility by supporting standards and by being universally available. You can install
bash and the other GNU tools on almost any kind of system, even Windows,
without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way to Branch

bash provides two control operators that can perform branching. The && (AND) and | |
(OR) operators work like the logical operators in the [[]] compound command. Here
is the syntax for &&:

commandl && command2
and here is the syntax for | |:
commandl || command2

It is important to understand the behavior of these. With the && operator, command1 is al-

424

Control Operators: Another Way to Branch

ways executed and command? is executed if, and only if, command1 is successful. With
the | | operator, command1 is always executed and command?2 is executed if, and only if,
command] is unsuccessful.

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current working directory
will be changed to temp. The second command is attempted only if the mkdir com-
mand is successful. Likewise, a command like this:

[me@linuxbox ~1%$ [[-d temp]] || mkdir temp

will test for the existence of the directory temp, and only if the test fails will the direc-
tory be created. This type of construct is handy for handling errors in scripts, a subject we
will discuss more in later chapters. For example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp and it does not exist, then the script will termi-
nate with an exit status of 1.

Remember that a command can be a group command if we are feeling the urge to do
something complicated:

{ true && echo "true"; } && { false || echo "false"; }

Group commands return the exit status of the last command in the group.

Summing Up

We started this chapter with a question. How could we make our sys_info_page
script detect whether the user had permission to read all the home directories? With our
knowledge of if, we can solve the problem by adding this code to the
report_home_space function:

425

27 — Flow Control: Branching with if

report_home_space () {
if [["$(id -u)" -eq 0]]; then
cat << _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>

EOF
else
cat << _EOF_
<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh $HOME)</pre>
EOF
fi
return
}

We evaluate the output of the 1d command. With the -u option, id outputs the numeric
user ID number of the effective user. The superuser is always ID zero and every other
user is a number greater than zero. Knowing this, we can construct two different here
documents, one taking advantage of superuser privileges, and the other restricted to the
user’s own home directory.

We are going to take a break from the sys_info_page program, but don’t worry. It
will be back. In the meantime, we’ll cover some topics that we’ll need when we resume
our work.

Further Reading

There are several sections of the bash man page that provide further detail on the topics
covered in this chapter:

e Lists (covers the control operators | | and &&)
e Compound Commands (covers [[]], (()) and if)
e CONDITIONAL EXPRESSIONS
e SHELL BUILTIN COMMANDS (covers test)
Further, the Wikipedia has a good article on the concept of pseudocode:

http://en.wikipedia.org/wiki/Pseudocode

426

http://en.wikipedia.org/wiki/Pseudocode

28 — Reading Keyboard Input

28 — Reading Keyboard Input

The scripts we have written so far lack a feature common in most computer programs—
interactivity, that is, the ability of the program to interact with the user. While many pro-
grams don’t need to be interactive, some programs benefit from being able to accept input
directly from the user. Take, for example, this script from the previous chapter:

#!/bin/bash
test-integer2: evaluate the value of an integer.
INT=-5

if [["S$INT" =~ A-?[0-9]+$]]; then
if ["$INT" -eq O]; then
echo "INT is zero."
else
if ["S$INT" -1t 0]; then
echo "INT is negative."
else
echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then
echo "INT is even."
else
echo "INT is odd."
fi
fi
else
echo "INT is not an integer." >&2
exit 1
fi

Each time we want to change the value of INT, we have to edit the script. It would be
much more useful if the script could ask the user for a value. In this chapter, we will be-

427

28 — Reading Keyboard Input

gin to look at how we can add interactivity to our programs.

read - Read Values from Standard Input

The read builtin command is used to read a single line of standard input. This command

can be used to read keyboard input or, when redirection is employed, a line of data from a
file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed later in Table 28-1 and vari-
able is the name of one or more variables used to hold the input value. If no variable
name is supplied, the shell variable REPLY contains the line of data.

Basically, read assigns fields from standard input to the specified variables. If we mod-
ify our integer evaluation script to use read, it might look like this:

#!/bin/bash

read-integer: evaluate the value of an integer.
echo -n "Please enter an integer -> "
read int

if [["$int" =~ A-?[0-9]+$]]; then
if ["$int" -eq O]; then
echo "$int is zero."
else
if ["$int" -1t 0@]; then
echo "$int is negative."
else
echo "$int is positive."
fi
if [$((int % 2)) -eq 0]; then
echo "$int is even."

else
echo "$int is odd."
fi
fi
else
echo "Input value is not an integer." >&2
exit 1

fi

428

read — Read Values from Standard Input

We use echo with the -n option (which suppresses the trailing newline on output) to
display a prompt, and then we use read to input a value for the variable int. Running
this script results in this:

5 is

odd.

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.

read can assign input to multiple variables, as shown in this script:

echo
read

echo
echo
echo
echo
echo

#!/bin/bash

read-multiple: read multiple values from keyboard

-n "Enter one or more values > "
varl var2 var3 var4 var5

"varil
"var2
"var3
"var4
"var5s

'$varl'"
"$var2'"
"$var3'"
"$varg'"
"$vars'"

In this script, we assign and display up to five values. Notice how read behaves when
given different numbers of values, shown here:

[me@linuxbox
Enter one or
varl = 'a'
var2 = 'b'
var3 = 'c'
var4d = 'd'
var5 = 'e'
[me@linuxbox
Enter one or
varl = 'a'
var2 = "'
var3 = "'
var4 = "'

~1$ read-multiple
more values > a b c d e

~]1$ read-multiple
more values > a

429

28 — Reading Keyboard Input

var5 = "'
[me@linuxbox ~]$ read-multiple
Enter one or more values >a b cde f g

varl = 'a'
var2 = 'b'
var3 = 'c'
vard = 'd'
var5 = 'e f g'

If read receives fewer than the expected number, the extra variables are empty, while an
excessive amount of input results in the final variable containing all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY, will be as-
signed all the input.

#!/bin/bash
read-single: read multiple values into default variable

echo -n "Enter one or more values > "
read

echo "REPLY = '$REPLY'"

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > a b c d
REPLY = 'a b c d'

Options
read supports the options described in Table 28-1.
Table 28-1: read Options

Option Description

-a array Assign the input to array, starting with index zero. We
will cover arrays in Chapter 35.

430

read — Read Values from Standard Input

-d delimiter

-1 string

-Nn num

-p prompt

-t seconds

-u fd

Using the various options, we

The first character in the string delimiter is used to
indicate the end of input, rather than a newline character.

Use Readline to handle input. This permits input editing
in the same manner as the command line.

Use string as a default reply if the user simply presses
Enter. Requires the - e option.

Read num characters of input, rather than an entire line.
Display a prompt for input using the string prompt.

Raw mode. Do not interpret backslash characters as
escapes. Using this option is recommended for safety.
For example when inputting a DOS pathname, we want
backslashes to be treated as literal characters.

Silent mode. Do not echo characters to the display as
they are typed. This is useful when inputting passwords
and other confidential information.

Timeout. Terminate input after seconds. read returns a
non-zero exit status if an input times out.

Use input from file descriptor fd, rather than standard
input.

can do interesting things with read. For example, with the

- p option, we can provide a prompt string.

#!/bin/bash

read-single: read multiple values into default variable

read -r -p "Enter one or more values > "

echo "REPLY = '$REPLY'"

With the -t and - S options, we can write a script that reads “secret” input and times out
if the input is not completed in a specified time.

#!/bin/bash

431

28 — Reading Keyboard Input

read-secret: input a secret passphrase

if read -r -t 10 -sp "Enter secret passphrase > " secret_pass; then

echo -e "\nSecret passphrase = '$secret_pass'"
else

echo -e "\nInput timed out" >&2

exit 1

fi

The script prompts the user for a secret passphrase and waits ten seconds for input. If the
entry is not completed within the specified time, the script exits with an error. Since the -
S option is included, the characters of the passphrase are not echoed to the display as they
are typed.

It's possible to supply the user with a default response using the -e and -1 options to-
gether.

#!/bin/bash
read-default: supply a default value if user presses Enter key.

read -e -p "What is your user name? " -i $USER
echo "You answered: '$REPLY'"

In this script, we prompt the user to enter a username and use the environment variable
USER to provide a default value. When the script is run, it displays the default string and
if the user simply presses the Enter key, read will assign the default string to the REPLY
variable.

[me@linuxbox ~]$ read-default
What is your user name? me
You answered: 'me'

IFS

Normally, the shell performs word splitting on the input provided to read. As we have
seen, this means that multiple words separated by one or more spaces become separate
items on the input line and are assigned to separate variables by read. This behavior is
configured by a shell variable named IFS (for Internal Field Separator). The default

432

read — Read Values from Standard Input

value of IFS contains a space, a tab, and a newline character, each of which will separate
items from one another.

We can adjust the value of IFS to control the separation of fields input to read. For ex-
ample, the /etc/passwd file contains lines of data that use the colon character as a
field separator. By changing the value of IFS to a single colon, we can use read to input
the contents of /etc/passwd and successfully separate fields into different variables.
Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file
FILE=/etc/passwd

read -r -p "Enter a username > " user_name
file_info="$(grep "A$user_name:" $FILE)"

if [-n "$file_info"]; then

IFS=":" read -r user pw uid gid name home shell <<< "$file_info"
echo "User = '$user'"
echo "UID = '$uid""
echo "GID = '$gid'"
echo "Full Name = '$name'"
echo "Home Dir. = '$home'"
echo "Shell = '$shell""
else
echo "No such user '$user_name'" >&2
exit 1
fi

This script prompts the user to enter the username of an account on the system and then
displays the different fields found in the user’s record in the /etc/passwd file. The
script contains two interesting lines. The first is as follows:

file_info=$(grep "A$user_name:" SFILE)

This line assigns the results of a grep command to the variable file_info. The regu-
lar expression used by grep assures that the username will match only a single line in
the /etc/passwd file.

The second interesting line is this one:

IFS=":" read user pw uid gid name home shell <<< "$file_info"

433

28 — Reading Keyboard Input

The line consists of three parts: a variable assignment, a read command with a list of
variable names as arguments, and a strange new redirection operator. We’ll look at the
variable assignment first.

The shell allows one or more variable assignments to take place immediately before a
command. These assignments alter the environment for the command that follows. The
effect of the assignment is temporary changing only the environment for the duration of
the command. In our case, the value of IFS is changed to a colon character. Alternately,
we could have coded it this way:

OLD_IFS="$IFS"

IFS=":"

read user pw uid gid name home shell <<< "$file_info"

IFS="$0LD_IFS"

where we store the value of IFS, assign a new value, perform the read command, and
then restore IFS to its original value. Clearly, placing the variable assignment in front of
the command is a more concise way of doing the same thing.

The <<< operator indicates a here string. A here string is like a here document, only
shorter, consisting of a single string. In our example, the line of data from the /etc/
passwd file is fed to the standard input of the read command. We might wonder why
this rather oblique method was chosen rather than this:

echo "$file_info" | IFS=":" read user pw uid gid name home shell

Well, there’s a reason...

You Can’t Pipe read

While the read command normally takes input from standard input, you cannot
do this:

echo "foo" | read

We would expect this to work, but it does not. The command will appear to suc-
ceed, but the REPLY variable will always be empty. Why is this?

The explanation has to do with the way the shell handles pipelines. In bash (and
other shells such as sh), pipelines create subshells. These are copies of the shell
and its environment that are used to execute the command in the pipeline. In our
previous example, read is executed in a subshell.

Subshells in Unix-like systems create copies of the environment for the processes
to use while they execute. When the processes finishes, the copy of the environ-

434

read — Read Values from Standard Input

ment is destroyed. This means that a subshell can never alter the environment of
its parent process. read assigns variables, which then become part of the envi-
ronment. In the previous example, read assigns the value f00 to the variable
REPLY in its subshell’s environment, but when the command exits, the subshell
and its environment are destroyed, and the effect of the assignment is lost.

Using here strings is one way to work around this behavior. Another method is
discussed in Chapter 36.

Validating Input

With our new ability to have keyboard input comes an additional programming challenge,
validating input. Often the difference between a well-written program and a poorly writ-
ten one lies in the program’s ability to deal with the unexpected. Frequently, the unex-
pected appears in the form of bad input. We’ve done a little of this with our evaluation
programs in the previous chapter, where we checked the values of integers and screened
out empty values and non-numeric characters. It is important to perform these kinds of
programming checks every time a program receives input to guard against invalid data.
This is especially important for programs that are shared by multiple users. Omitting
these safeguards in the interests of economy might be excused if a program is to be used
once and only by the author to perform some special task. Even then, if the program per-
forms dangerous tasks such as deleting files, it would be wise to include data validation,
just in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash
read-validate: validate input
invalid_input () {

echo "Invalid input '$REPLY'" >&2
exit 1

}

read -r -p "Enter a single item > "

input is empty (invalid)
[[-z "$REPLY"]] && invalid_input

435

28 — Reading Keyboard Input

input is multiple items (invalid)
(("$(echo "$REPLY" | wc -w)" > 1)) && invalid_input

1s input a valid filename?
if [["$REPLY" =~ A[-[:alnum:]\._]+$]]; then
echo "'$REPLY' is a valid filename."
if [[-e "$REPLY"]]; then
echo "And file '$REPLY' exists."
else
echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?

if [["$REPLY" =~ A-?[[:digit:]]*\.[[:digit:]]+$]]; then
echo "'$REPLY' is a floating point number."

else
echo "'$REPLY' is not a floating point number."

fi

is input an integer?

if [["$REPLY" =~ A-?[[:digit:]]+$]11; then
echo "'$REPLY' is an integer."
else
echo "'$REPLY' is not an integer."
fi
else

echo "The string '$REPLY' is not a valid filename."
fi

This script prompts the user to enter an item. The item is subsequently analyzed to deter-
mine its contents. As we can see, the script makes use of many of the concepts that we
have covered thus far, including shell functions, [[1], (()), the control operator
&&, and 1f, as well as a healthy dose of regular expressions.

Menus

A common type of interactivity is called menu-driven. In menu-driven programs, the user
is presented with a list of choices and is asked to choose one. For example, we could
imagine a program that presented the following:

Please Select:

436

Menus

Display System Information
Display Disk Space

Display Home Space Utilization
Quit

© W N K

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can construct a
menu-driven program to perform the tasks on the previous menu:

#!/bin/bash
read-menu: a menu driven system information program

clear
echo "
Please Select:

Display System Information
Display Disk Space

Display Home Space Utilization
Quit

S wN B

read -r -p "Enter selection [0-3] > "

if [["$REPLY" =~ A[0-3]$]]; then

if [["$REPLY" == 0]]; then
echo "Program terminated."
exit

fi

if [["$REPLY" == 1]]; then
echo "Hostname: $HOSTNAME"
uptime
exit

fi

if [["$REPLY" == 2]]; then
df -h
exit

fi

if [["$REPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (A1l Users)"

437

28 — Reading Keyboard Input

du -sh /home/*
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"
fi
exit
fi
else
echo "Invalid entry." >&2
exit 1
fi

This script is logically divided into two parts. The first part displays the menu and inputs
the response from the user. The second part identifies the response and carries out the se-
lected action. Notice the use of the exit command in this script. It is used here to pre-
vent the script from executing unnecessary code after an action has been carried out. The
presence of multiple exit points in a program is generally a bad idea (it makes program
logic harder to understand), but it works in this script.

Summing Up

In this chapter, we took our first steps toward interactivity, allowing users to input data
into our programs via the keyboard. Using the techniques presented thus far, it is possible
to write many useful programs, such as specialized calculation programs and easy-to-use
front ends for arcane command line tools. In the next chapter, we will build on the menu-
driven program concept to make it even better.

Extra Credit

It is important to study the programs in this chapter carefully and have a complete under-
standing of the way they are logically structured, as the programs to come will be increas-
ingly complex. As an exercise, rewrite the programs in this chapter using the test com-
mand rather than the [[]] compound command. Hint: Use grep to evaluate the regu-
lar expressions and evaluate the exit status. This will be good practice.

Further Reading

e The Bash Reference Manual contains a chapter on builtins, which includes the
read command:

http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

438

http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

Further Reading

439

29 — Flow Control: Looping with while / until

29 - Flow Control: Looping with while /
until

In the previous chapter, we developed a menu-driven program to produce various kinds
of system information. The program works, but it still has a significant usability problem.
It executes only a single choice and then terminates. Even worse, if an invalid selection is
made, the program terminates with an error, without giving the user an opportunity to try
again. It would be better if we could somehow construct the program so that it could re-
peat the menu display and selection over and over, until the user chooses to exit the pro-
gram.

In this chapter, we will look at a programming concept called looping, which can be used
to make portions of programs repeat. The shell provides three compound commands for
looping. We will look at two of them in this chapter, and the third in a later chapter.

Looping

Daily life is full of repeated activities. Going to work each day, walking the dog, and slic-
ing a carrot are all tasks that involve repeating a series of steps. Let’s consider slicing a
carrot. If we express this activity in pseudocode, it might look something like this:

1. get cutting board

get knife

place carrot on cutting board
lift knife

advance carrot

SR T

slice carrot
7. if entire carrot sliced, then quit; else go to step 4

Steps 4 through 7 form a loop. The actions within the loop are repeated until the condi-
tion, “entire carrot sliced,” is reached.

440

Looping

while

bash can express a similar idea. Let’s say we wanted to display five numbers in sequen-
tial order from 1 to 5. A bash script could be constructed as follows:

#!/bin/bash
while-count: display a series of numbers
count=1

while [["$count" -1e 5]]; do
echo "$count"
count=$((count + 1))

done

echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
1
2
3
4
5

Finished.

The syntax of the while command is as follows:

while commands; do commands; done

Like if, while evaluates the exit status of a list of commands. As long as the exit status
is zero, it performs the commands inside the loop. In the previous script, the variable
count is created and assigned an initial value of 1. The while command evaluates the
exit status of the [[]] compound command. As long as the [[]] command returns an
exit status of zero, the commands within the loop are executed. At the end of each cycle,
the [[]] command is repeated. After five iterations of the loop, the value of count has
increased to 6, the [[]] command no longer returns an exit status of zero, and the loop
terminates. The program continues with the next statement following the loop.

We can use a while loop to improve the read-menu program from the previous chapter.

441

29 — Flow Control: Looping with while / until

#!/bin/bash

DELAY=3 # Number of seconds to display results

while [["$REPLY" != 0]]; do
clear
cat << _EOF_

Please Select:

Display System Information
Display Disk Space

Display Home Space Utilization
. Quit

© W N

EOF
read -r -p "Enter selection [0-3] > "

if [["$REPLY" =~ A[0-3]$]]; then
if [[$REPLY == 1]]; then
echo "Hostname: $HOSTNAME"
uptime
sleep "S$DELAY"

fi
if [["$REPLY" == 2]]; then
df -h
sleep "S$DELAY"
fi
if [["$REPLY" == 3]]; then
if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization
du -sh /home/*
else
echo "Home Space Utilization
du -sh "$HOME"
fi
sleep "$DELAY"
fi

else
echo "Invalid entry."
sleep "$DELAY"
fi
done

while-menu: a menu driven system information program

(A1l Users)"

($USER) "

442

Looping

echo "Program terminated."

By enclosing the menu in a while loop, we are able to have the program repeat the menu
display after each selection. The loop continues as long as REPLY is not equal to © and
the menu is displayed again, giving the user the opportunity to make another selection. At
the end of each action, a sleep command is executed so the program will pause for a
few seconds to allow the results of the selection to be seen before the screen is cleared
and the menu is redisplayed. Once REPLY is equal to 0O, indicating the “quit” selection,
the loop terminates and execution continues with the line following done.

break and continue

bash provides two builtin commands that can be used to control program flow inside
loops. The break command immediately terminates a loop, and program control re-
sumes with the next statement following the loop. The continue command causes the
remainder of the loop to be skipped, and program control resumes with the next iteration
of the loop. Here we see a version of the while-menu program incorporating both
break and continue:

#!/bin/bash
while-menu2: a menu driven system information program
DELAY=3 # Number of seconds to display results

while true; do
clear
cat << _EOF_
Please Select:

Display System Information
Display Disk Space

Display Home Space Utilization
Quit

S W N

EOF
read -p "Enter selection [0-3] > "

if [["$REPLY" =~ A[0-3]$]]; then
if [["$REPLY" == 1]]; then
echo "Hostname: $HOSTNAME"

443

29 — Flow Control: Looping with while / until

uptime
sleep "$DELAY"
continue
fi
if [["$REPLY" == 2]]; then
df -h
sleep "$DELAY"
continue
fi
if [["$REPLY" == 3]]; then
if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"
fi
sleep "$DELAY"
continue
fi
if [["$REPLY" == 0]]; then
break
fi
else
echo "Invalid entry."
sleep "$DELAY"
fi
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never terminates on its
own) by using the true command to supply an exit status to while. Since true will
always exit with an exit status of zero, the loop will never end. This is a surprisingly com-
mon scripting technique. Since the loop will never end on its own, it’s up to the program-
mer to provide some way to break out of the loop when the time is right. In this script, the
break command is used to exit the loop when the O selection is chosen. The con-
tinue command has been included at the end of the other script choices to allow for
more efficient execution. By using continue, the script will skip over code that is not
needed when a selection is identified. For example, if the 1 selection is chosen and iden-
tified, there is no reason to test for the other selections.

444

Looping

select

This would be a good time to mention the select shell builtin which is used to create
looping menus. It has a syntax that looks like this:

select var in [string.. ;] do commands; done
where var is a variable and string is the text of a menu choice.

When select executes, it displays the string(s) followed by the contents of the PS3
(prompt string 3) variable as a prompt for the user’s input. Once a choice is made, it sets
the REPLY variable with the user’s input (just like with read) and returns the string as-
sociated with the choice in the variable var. Once the values are set, commands are per-
formed and the prompt is displayed again for another choice. This sounds a little confus-
ing but we can demonstrate it with this tiny script:

#!/bin/bash
select-demo: select builtin demo

PS3="
Your choice: "

select my_choice in First Second Third Fourth Quit; do
echo "REPLY= $REPLY my_choice= $my_choice"
[["$my_choice" == "Quit"]] && break

done

First we set the contents of the PS3 variable with our desired prompt string. Next we exe-
cute select. In this example we have five strings and though we have used single
words as our strings, we can use any kind of quoted text. For our commands, we simply
echo the assignments made by select. We also test the contents of our variable
my_choice to see if the user has chosen the “Quit” option and if so, we perform a
break to exit the loop.

[me@linuxbox ~]$ select-demo
1) First

2) Second

3) Third

4) Fourth

5) Quit

445

29 — Flow Control: Looping with while / until

Your choice:

When select first executes it displays each of our strings preceded by a number fol-

lowed by our prompt string. The user next enters the number representing the desired
choice. The select command then sets the REPLY variable to contain whatever the
user entered and the corresponding string if any.

Your choice: 1
REPLY= 1 my_choice= First

Your choice: 2
REPLY= 2 my_choice= Second

Here we see the user entered “1” and the echo command displays the values of the RE -
PLY and my_choice variables. se lect will repeat displaying the prompt string until
the user enters a “5”. If the user enters an invalid value, se lect sets my_choice to an
empty string. If the user simply types Enter, this will cause select to start over and
redisplay the list of menu choices.

Your choice: 6
REPLY= 6 my_choice=

Your choice: abc
REPLY= abc my_choice=

The select loop will continue indefinitely until either a break command is encoun-
tered or the user types ctr1-d to signal end-of-file.

Your choice: 5
REPLY= 5 my_choice= Quit
[me@linuxbox ~]$%$

One interesting feature of select is that it does not display its menu choices or prompt
string on standard output, rather it uses standard error. This is actually handy because it
allows the real work done by the commands within the loop to be redirected, for example:

[me@linuxbox ~]% select-demo > choices.txt

446

Looping

When we do this redirection the menu and prompt are still displayed but the output of the
echo command is redirected.

Let’s make an alternate version of our system information script replacing our previous
while loop with select.

#!/bin/bash
select-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results
PS3="
Enter selection [1-4] > "

select str in \
"Display System Information" \
"Display Disk Space" \
"Display Home Space Utilization" \

"Quit"; do

if [["$REPLY" == "1"]]; then
echo "Hostname: $HOSTNAME"
uptime
sleep "$DELAY"
continue

fi

if [["$REPLY" == "2"]1]; then
df -h
sleep "$DELAY"
continue

fi

if [["$REPLY" == "3"]]; then

if [[$(id -u) -eq O]]; then
echo "Home Space Utilization (A1l Users)"
du -sh /home/* 2> /dev/null
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME" 2> /dev/null

fi
sleep "$DELAY"
continue
fi
if [["$REPLY" == "4"]]; then
break
fi

447

29 — Flow Control: Looping with while / until

if [[-z "$str"]]; then
echo "Invalid entry."
sleep "$DELAY"
fi
done
echo "Program terminated."

In our alternate script, we set the PS3 variable and then invoke select with four
strings. Though we could subsequently test the str variable set by select, it’s easier
to test the REPLY variable and act accordingly. At the end of the loop we check if the
str variable has a zero length indicating an invalid value.

So which method should we use for constructing a menu? The select command is in-
teresting, but besides its use of standard error for the menu display, it doesn't really save
us much, if any, coding effort and it sharply limits the visual design of the menu display.

until

The until command is much like while, except instead of exiting a loop when a non-
zero exit status is encountered, it does the opposite. An until loop continues until it re-
ceives a zero exit status. In our while-count script, we continued the loop as long as
the value of the count variable was less than or equal to 5. We could get the same result
by coding the script with until.

#!/bin/bash
until-count: display a series of numbers
count=1

until [["$count" -gt 5]]; do
echo "$count"
count=$((count + 1))

done

echo "Finished."

By changing the test expression to $count -gt 5, until will terminate the loop at
the correct time. The decision of whether to use the while or until loop is usually a
matter of choosing the one that allows the clearest test to be written.

448

Reading Files with Loops

Reading Files with Loops

while and until can process standard input. This allows files to be processed with
while and until loops. In the following example, we will display the contents of the dis-
tros. txt file used in earlier chapters:

#!/bin/bash
while-read: read lines from a file

while read -r distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \
"$distro" \
"$version" \
"$release"
done < distros.txt

To redirect a file to the loop, we place the redirection operator after the done statement.
The loop will use read to input the fields from the redirected file. The read command
will exit after each line is read, with a zero exit status until the end-of-file is reached. At
that point, it will exit with a non-zero exit status, thereby terminating the loop. It is also
possible to pipe standard input into a loop.

#!/bin/bash
while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read -r distro version release;
do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \
"$distro" \
"$version" \
"$release"
done

Here we take the output of the sort command and display the stream of text. However,
it is important to remember that since a pipe will execute the loop in a subshell, any vari-
ables created or assigned within the loop will be lost when the loop terminates.

449

29 — Flow Control: Looping with while / until

Summing Up
With the introduction of loops and our previous encounters with branching, subroutines

and sequences, we have covered the major types of flow control used in programs. bash
has some more tricks up its sleeve, but they are refinements on these basic concepts.

Further Reading

e The Bash Guide for Beginners from the Linux Documentation Project has some
more examples of while loops:

http://tldp.org/I. DP/Bash-Beginners-Guide/html/sect 09 02.html

e The Wikipedia has an article on loops, which is part of a larger article on flow
control:
http://en.wikipedia.org/wiki/Control flow#Loops

450

http://en.wikipedia.org/wiki/Control_flow#Loops
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

30 — Troubleshooting

30 - Troubleshooting

Now that our scripts become more complex, it’s time to look at what happens when
things go wrong. In this chapter, we’ll look at some of the common kinds of errors that
occur in scripts and examine a few useful techniques that can be used to track down and
eradicate problems.

Syntactic Errors

One general class of errors is syntactic. Syntactic errors involve mistyping some element
of shell syntax. The shell will stop executing a script when it encounters this type of error.

In the following discussions, we will use this script to demonstrate common types of er-
rors:

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

As written, this script runs successfully.

[me@linuxbox ~]$ trouble
Number is equal to 1.

451

30 — Troubleshooting

Missing Quotes

Let’s edit our script and remove the trailing quote from the argument following the first
echo command.

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1]; then

echo "Number is equal to 1.
else

echo "Number is not equal to 1."
fi

Here is what happens:

[me@linuxbox ~]$ trouble

/home/me/bin/trouble: line 10: unexpected EOF while looking for
matching "'

/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported by the error messages are
not where the missing quote was removed but rather much later in the program. If we fol-
low the program after the missing quote, we can see why. bash will continue looking for
the closing quote until it finds one, which it does, immediately after the second echo
command. After that, bash becomes very confused. The syntax of the subsequent if
command is broken because the f1 statement is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an editor with syntax
highlighting will help since, in most cases, it will display quoted strings in a distinctive
manner from other kinds of shell syntax. If a complete version of vim is installed, syntax
highlighting can be enabled by entering this command:

:syntax on

452

Syntactic Errors

Missing or Unexpected Tokens

Another common mistake is forgetting to complete a compound command, such as if or
while. Let’s look at what happens if we remove the semicolon after test in the if
command:

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1] then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

The result is this:

[me@linuxbox ~]$ trouble

/home/me/bin/trouble: line 9: syntax error near unexpected token
“else'

/home/me/bin/trouble: line 9: “else'

Again, the error message points to an error that occurs later than the actual problem.
What happens is really pretty interesting. As we recall, 1f accepts a list of commands
and evaluates the exit code of the last command in the list. In our program, we intend this
list to consist of a single command, [, a synonym for test. The [command takes what
follows it as a list of arguments; in our case, that’s four arguments: $number, 1, =, and
1. With the semicolon removed, the word then is added to the list of arguments, which
is syntactically legal. The following echo command is legal, too. It’s interpreted as an-
other command in the list of commands that if will evaluate for an exit code. The else
is encountered next, but it’s out of place since the shell recognizes it as a reserved word (a
word that has special meaning to the shell) and not the name of a command, which is the
reason for the error message.

Unanticipated Expansions

It’s possible to have errors that occur only intermittently in a script. Sometimes the script
will run fine and other times it will fail because of the results of an expansion. If we re-

453

30 — Troubleshooting

turn our missing semicolon and change the value of number to an empty variable, we
can demonstrate.

#!/bin/bash
trouble: script to demonstrate common errors
number=

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

Running the script with this change results in the following output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the second echo
command. The problem is the expansion of the number variable within the test com-
mand. When the following command:

[$number = 1]

undergoes expansion with number being empty, the result is this:

[=11

which is invalid and the error is generated. The = operator is a binary operator (it requires
a value on each side), but the first value is missing, so the test command expects a
unary operator (such as - z) instead. Further, since the test failed (because of the error),
the 1f command receives a non-zero exit code and acts accordingly, and the second
echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test

454

Syntactic Errors

command.

["$number" = 1]

Then when expansion occurs, the result will be this:

[mnn - 1]

This yields the correct number of arguments. In addition to empty strings, quotes should
be used in cases where a value could expand into multiword strings, as with filenames
containing embedded spaces.

Note: Make it a rule to always enclose variables and command substitutions in
double quotes unless word splitting is needed.

Logical Errors

Unlike syntactic errors, logical errors do not prevent a script from running. The script
will run, but it will not produce the desired result, because of a problem with its logic.
There are countless numbers of possible logical errors, but here are a few of the most
common kinds found in scripts:

1.

Incorrect conditional expressions. It’s easy to incorrectly code an if/then/else
and have the wrong logic carried out. Sometimes the logic will be reversed, or it
will be incomplete.

“Off by one” errors. When coding loops that employ counters, it is possible to
overlook that the loop may require that the counting start with zero, rather than
one, for the count to conclude at the correct point. These kinds of errors result in
either a loop “going off the end” by counting too far or a loop missing the last it-
eration by terminating one iteration too soon.

Unanticipated situations. Most logic errors result from a program encountering
data or situations that were unforeseen by the programmer. As we have seen, this
can also include unanticipated expansions, such as a filename that contains em-
bedded spaces that expands into multiple command arguments rather than a single
filename.

455

30 — Troubleshooting

Defensive Programming

It is important to verify assumptions when programming. This means a careful evaluation
of the exit status of programs and commands that are used by a script. Here is an exam-
ple, based on a true story. An unfortunate system administrator wrote a script to perform a
maintenance task on an important server. The script contained the following two lines of
code:

cd $dir_name
rm *

There is nothing intrinsically wrong with these two lines, as long as the directory named
in the variable, dir_name, exists. But what happens if it does not? In that case, the cd
command fails, and the script continues to the next line and deletes the files in the current
working directory. Not the desired outcome at all! The hapless administrator destroyed an
important part of the server because of this design decision.

Let’s look at some ways this design could be improved. First, it might be wise to ensure
that the dir_name variable expands into only one word by quoting it and make the exe-
cution of rm contingent on the success of cd.

cd "$dir_name" && rm *

This way, if the cd command fails, the rm command is not carried out. This is better but
still leaves open the possibility that the variable, dir_name, is unset or empty, which
would result in the files in the user’s home directory being deleted. This could also be
avoided by checking to see that dir_name actually contains the name of an existing di-
rectory.

[[-d "$dir_name"]] && cd "$dir_name" && rm *

Often, it is best to include logic to terminate the script and report an error when a situa-
tion such as the one shown previously occurs.

Delete files in directory $dir_name

if [[! -d "$dir_name"]]; then
echo "No such directory: '$dir_name'" >&2
exit 1

fi

456

Defensive Programming

if ! cd "$dir_name"; then
echo "Cannot cd to '$dir_name'" >&2
exit 1
fi
if ! rm *; then
echo "File deletion failed. Check results" >&2
exit 1
fi

Here, we check both the name, to see that it is an existing directory, and the success of
the cd command. If either fails, a descriptive error message is sent to standard error, and
the script terminates with an exit status of one to indicate a failure.

set -e, set -u, and set -o PIPEFAIL

One thing we notice about bash is that when a script executes and a command fails (not
including a syntax error in the script itself), the script will happily continue to the next
command. Often this is undesirable and the POSIX standard and subsequently, bash at-
tempts to address this issue. bash offers a setting that will to attempt handle errors auto-
matically, which simply means that with this setting enabled, a script will terminate if any
command (with some necessary exceptions) returns a non-zero exit status. To invoke this
setting, we place the command set -e near the beginning of the script. Several bash
coding standards insist on using this feature along with a couple of related settings, set
-u which terminates a script if there is an uninitialized variable, and set -0
PIPEFAIL which causes script termination if the final element in a pipeline fails.

Using these features is not recommended. It is better to design proper error handling and
not rely on set -e as a substitute for good coding practices.

The Bash FAQ #105 provides the following opinion on this:

‘set -e was an attempt to add "automatic error detection" to the shell. Its
goal was to cause the shell to abort any time an error occurred, so you don't
have to put *| | exit 1" after each important command.

That goal is non-trivial, because many commands intentionally return non-
zero. For example,

‘if [-d /foo]; then ...; else ...; fi’

Clearly we don't want to abort when the [-d /fo0] command returns
non-zero (because the directory does not exist) -- our script wants to handle

457

http://mywiki.wooledge.org/BashFAQ/105

30 — Troubleshooting

that in the e Lse part. So the implementers decided to make a bunch of
special rules, like "commands that are part of an if test are immune", or
"commands in a pipeline, other than the last one, are immune."

These rules are extremely convoluted, and they still fail to catch even some
remarkably simple cases. Even worse, the rules change from one Bash
version to another, as bash attempts to track the extremely slippery POSIX
definition of this "feature." When a subshell is involved, it gets worse still --
the behavior changes depending on whether bash is invoked in POSIX mode.

ShellCheck is Your Friend

There is a program available in most distribution repositories called shellcheck that
performs analysis of shell scripts and will detect many kinds of faults and poor scripting
practices. It is well worth using it to check the quality of our scripts. To use it with a
script that has a shebang, we simply do this:

shellcheck my_script

ShellCheck will automatically detect which shell dialect to use based on the shebang. For
testing script code that does not contain a shebang, such as function libraries, we can use
ShellCheck this way:

shellcheck -s bash my_library

Use the -s option to specify the desired shell dialect. More information about
ShellCheck can be found at its website http://www.shellcheck.net.

Watch Out for Filenames

There is another problem with this file deletion script that is more obscure but could be
very dangerous. Unix (and Unix-like operating systems) has, in the opinion of many, a
serious design flaw when it comes to filenames. Unix is extremely permissive about
them. In fact, there are only two characters that cannot be included in a filename. The
first is the / character since it is used to separate elements of a pathname, and the second
is the null character (a zero byte), which is used internally to mark the ends of strings.
Everything else is legal including spaces, tabs, line feeds, leading hyphens, carriage re-
turns, and so on.

Of particular concern are leading hyphens. For example, it's perfectly legal to have a file

458

http://www.shellcheck.net/

Defensive Programming

named "-rf ~". Consider for a moment what happens when that filename is passed to rm.

To defend against this problem, we want to change our rm command in the file deletion
script from this:

rm *
to the following:
rm ./*

This will prevent a filename starting with a hyphen from being interpreted as a command
option. As a general rule, always precede wildcards (such as * and ?) with ./ to prevent
misinterpretation by commands. This includes things like * . pdf and ??? .mp3, for ex-
ample.

Portable Filenames

To ensure that a filename is portable between multiple platforms (i.e., different
types of computers and operating systems), care must be taken to limit which
characters are included in a filename. There is a standard called the POSIX Porta-
ble Filename Character Set that can be used to maximize the chances that a file-
name will work across different systems. The standard is pretty simple. The only
characters allowed are the uppercase letters A-Z, the lowercase letters a-z, the nu-
merals 0-9, period (.), hyphen (-), and underscore (_). The standard further sug-
gests that filenames should not begin with a hyphen.

Verifying Input

A general rule of good programming is that if a program accepts input, it must be able to
deal with anything it receives. This usually means that input must be carefully screened to
ensure that only valid input is accepted for further processing. We saw an example of this
in the previous chapter when we studied the read command. One script contained the
following test to verify a menu selection:

[[$REPLY =~ A[0-3]%$ 1]

This test is very specific. It will return a zero exit status only if the string entered by the
user is a numeral in the range of zero to three. Nothing else will be accepted. Sometimes
these kinds of tests can be challenging to write, but the effort is necessary to produce a
high-quality script.

459

30 — Troubleshooting

Design is a Function of Time

When I was a college student studying industrial design, a wise professor stated
that the amount of design on a project was determined by the amount of time
given to the designer. If you were given five minutes to design a device “that kills
flies,” you designed a flyswatter. If you were given five months, you might come
up with a laser-guided “anti-fly system” instead.

The same principle applies to programming. Sometimes a “quick-and-dirty”
script will do if it’s going to be used once and only by the programmer. That kind
of script is common and should be developed quickly to make the effort economi-
cal. Such scripts don’t need a lot of comments and defensive checks. On the other
hand, if a script is intended for production use, that is, a script that will be used
over and over for an important task or by multiple users, it needs much more
careful development.

Testing

Testing is an important step in every kind of software development, including scripts.
There is a saying in the open-source world, “release early, release often,” that reflects this
fact. By releasing early and often, software gets more exposure to use and testing. Experi-
ence has shown that bugs are much easier to find, and much less expensive to fix, if they
are found early in the development cycle.

In Chapter 26, “Top-Down Design,” we saw how stubs can be used to verify program
flow. From the earliest stages of script development, they are a valuable technique to
check the progress of our work.

Let’s look at the file-deletion problem shown previously and see how this could be coded
for easy testing. Testing the original fragment of code would be dangerous since its pur-
pose is to delete files, but we could modify the code to make the test safe.

if [[-d $dir_name]]; then
if cd $dir_name; then
echo rm * # TESTING

else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi
else

echo "no such directory: '$dir_name'" >&2

460

Testing

exit 1
fi
exit # TESTING

Since the error conditions already output useful messages, we don't have to add any. The
most important change is placing an echo command just before the rm command to al-
low the command and its expanded argument list to be displayed, rather than the com-
mand actually being executed. This change allows safe execution of the code. At the end
of the code fragment, we place an exit command to conclude the test and prevent any
other part of the script from being carried out. The need for this will vary according to the
design of the script.

We also include some comments that act as “markers” for our test-related changes. These
can be used to help find and remove the changes when testing is complete.

Test Cases

To perform useful testing, it's important to develop and apply good test cases. This is
done by carefully choosing input data or operating conditions that reflect edge and cor-
ner cases. In our code fragment (which is simple), we want to know how the code per-
forms under three specific conditions:

1. dir_name contains the name of an existing directory.
2. dir_name contains the name of a nonexistent directory.
3. dir_name is empty.
By performing the test with each of these conditions, good test coverage is achieved.

Just as with design, testing is a function of time, as well. Not every script feature needs to
be extensively tested. It's really a matter of determining what is most important. Since it
could be so potentially destructive if it malfunctioned, our code fragment deserves careful
consideration during both its design and testing.

Debugging

If testing reveals a problem with a script, the next step is debugging. “A problem” usually
means that the script is, in some way, not performing to the programmer's expectations. If
this is the case, we need to carefully determine exactly what the script is actually doing
and why. Finding bugs can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defensively, to detect ab-
normal conditions and provide useful feedback to the user. Sometimes, however, prob-
lems are quite strange and unexpected, and more involved techniques are required.

461

30 — Troubleshooting

Finding the Problem Area

In some scripts, particularly long ones, it is sometimes useful to isolate the area of the
script that is related to the problem. This won’t always be the actual error, but isolation
will often provide insights into the actual cause. One technique that can be used to isolate
code is “commenting out” sections of a script. For example, our file deletion fragment
could be modified to determine whether the removed section was related to an error.

if [[-d $dir_name]]; then
if cd $dir_name; then
rm *
else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi
else
echo "no such directory: '$dir_name'" >&2
exit 1
fi

By placing comment symbols at the beginning of each line in a logical section of a script,
we prevent that section from being executed. Testing can then be performed again, to see
whether the removal of the code has any impact on the behavior of the bug.

Tracing

Bugs are often cases of unexpected logical flow within a script. That is, portions of the
script either are never being executed or are being executed in the wrong order or at the
wrong time. To view the actual flow of the program, we use a technique called tracing.

One tracing method involves placing informative messages in a script that display the lo-
cation of execution. We can add messages to our code fragment.

echo "preparing to delete files" >&2
if [[-d $dir_name]]; then
if cd $dir_name; then
echo "deleting files" >&2
rm *
else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi

462

Debugging

else
echo "no such directory: '$dir_name'" >&2
exit 1

fi

echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal output. We also do
not indent the lines containing the messages, so it is easier to find when it’s time to re-
move them.

Now when the script is executed, it’s possible to see that the file deletion has been per-
formed.

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files

file deletion complete
[me@linuxbox ~1$

bash also provides a method of tracing, implemented by the -X option and the set
command with the - X option. Using our earlier troub le script, we can activate tracing
for the entire script by adding the - X option to the first line.

#!1/bin/bash -x
trouble: script to demonstrate common errors
number=1

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble
+ number=1

463

30 — Troubleshooting

+|[|1:1|]|
+ echo 'Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions applied. The
leading plus signs indicate the display of the trace to distinguish them from lines of regu-
lar output. The plus sign is the default character for trace output. It is contained in the
PS4 (prompt string 4) shell variable. The contents of this variable can be adjusted to
make the prompt more useful. Here, we modify the contents of the variable to include the
current line number in the script where the trace is performed. Note that single quotes are
required to prevent expansion until the prompt is actually used.

[me@linuxbox ~]$ export PS4='SLINENO + '
[me@linuxbox ~]$ trouble

5 + number=1

7+ '["1=1"]"

8 + echo 'Number is equal to 1.'

Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the entire script, we can
use the set command with the - X option.

#!/bin/bash
trouble: script to demonstrate common errors
number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

We use the set command with the - X option to activate tracing and the +X option to de-
activate tracing. This technique can be used to examine multiple portions of a trouble-
some script.

464

Debugging

Examining Values During Execution

It is often useful, along with tracing, to display the content of variables to see the internal
workings of a script while it is being executed. Applying additional echo statements will
usually do the trick.

#!/bin/bash
trouble: script to demonstrate common errors
number=1

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable number and mark the
added line with a comment to facilitate its later identification and removal. This tech-
nique is particularly useful when watching the behavior of loops and arithmetic within
scripts.

Summing Up

In this chapter, we looked at just a few of the problems that can crop up during script de-
velopment. Of course, there are many more. The techniques described here will enable
finding most common bugs. Debugging is a fine art that is developed through experience,
both in knowing how to avoid bugs (testing constantly throughout development) and in
finding bugs (effective use of tracing).

Further Reading

e The Wikipedia has a couple of short articles on syntactic and logical errors:
http://en.wikipedia.org/wiki/Syntax error
http://en.wikipedia.org/wiki/l.ogic_error

e There are many online resources for the technical aspects of bash programming:

http://mywiki.wooledge.org/BashPitfalls
http://tldp.org/L.DP/abs/html/gotchas.html

465

http://tldp.org/LDP/abs/html/gotchas.html
http://mywiki.wooledge.org/BashPitfalls
http://en.wikipedia.org/wiki/Logic_error
http://en.wikipedia.org/wiki/Syntax_error
http://en.wikipedia.org/wiki/Syntax_error

30 — Troubleshooting

http://www.gnu.org/software/bash/manual/html node/Reserved-Word-Index.html

e David Wheeler has an excellent discussion of the Unix filename problem and how
to code shell scripts to deal with it:
https://www.dwheeler.com/essays/filenames-in-shell.html

e For really heavy-duty debugging, there is the Bash Debugger:
http://bashdb.sourceforge.net/

466

http://bashdb.sourceforge.net/
https://www.dwheeler.com/essays/filenames-in-shell.html
http://www.gnu.org/software/bash/manual/html_node/Reserved-Word-Index.html
http://tldp.org/LDP/abs/html/gotchas.html

31 — Flow Control: Branching with case

31 - Flow Control: Branching with case

In this chapter, we will continue our look at flow control. In Chapter 28, “Reading Key-
board Input,” we constructed some simple menus and built the logic used to act on a
user’s selection. To do this, we used a series of 1f commands to identify which of the
possible choices had been selected. This type of logical construct appears frequently in
programs, so much so that many programming languages (including the shell) provide a
special flow control mechanism for multiple-choice decisions.

case

In bash, the multiple-choice compound command is called case. It has the following
syntax:
case word in

[pattern [| pattern]...) commands ;;]...
esac
If we look at the read-menu program from Chapter 28, we see the logic used to act on
a user’s selection.

#!/bin/bash
read-menu: a menu driven system information program

clear
echo "
Please Select:

Display System Information
Display Disk Space

Display Home Space Utilization
Quit

S wN K

read -r -p "Enter selection [0-3] > "

467

31 — Flow Control: Branching with case

if [["$REPLY" =~ A[0-3]$]]; then

if [["$REPLY" == 0]]; then
echo "Program terminated."
exit

fi

if [["$REPLY" == 1]]; then
echo "Hostname: $HOSTNAME"
uptime
exit

fi

if [["$REPLY" == 2]]; then
df -h
exit

fi

if [["SREPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"
fi
exit
fi
else
echo "Invalid entry." >&2
exit 1
fi

Using case, we can replace this logic with something simpler.

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization

468

case

0. Quit

read -r -p "Enter selection [0-3] > "

case "SREPLY" in
0) echo "Program terminated."
exit
e
1) echo "Hostname: $HOSTNAME"
uptime

2) df -h
3) if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"
fi
*) echo "Invalid entry" >&2
exit 1

esac

The case command looks at the value of word, which in our example, the value of the
REPLY variable, and then attempts to match it against one of the specified patterns.

When a match is found, the commands associated with the specified pattern are executed.
After a match is found, no further matches are attempted.

Patterns

The patterns used by case are the same as those used by pathname expansion. Patterns
are terminated with a “)” character. Table 31-1 lists examples of valid patterns.

Table 31- 1: case Pattern Examples
Pattern Description
a) Matches if word equals “a”.
[[:alpha:]]) Matches if word is a single alphabetic character.

469

31 — Flow Control: Branching with case

??7?) Matches if word is exactly three characters long.
* L txt) Matches if word ends with the characters “.txt”.
*) Matches any value of word. It is good practice to include this

as the last pattern in a case command, to catch any values of
word that did not match a previous pattern, that is, to catch any
possible invalid values.

Here is an example of patterns at work:

#!/bin/bash
read -r -p "enter word > "
case "$REPLY" in

[[:alpha:]]) echo "is a single alphabetic character." ;;
[ABC][0-9]) echo "is A, B, or C followed by a digit." ;;

??7?) echo "is three characters long." ;;
* L. txt) echo "is a word ending in '.txt'" ;;
*) echo "is something else." ;;

esac

It is also possible to combine multiple patterns using the vertical bar character as a sepa-
rator. This creates an “or” conditional pattern. This is useful for such things as handling
both uppercase and lowercase characters. Here’s an example:

#!/bin/bash
case-menu: a menu driven system information program

clear
echo "
Please Select:

Display System Information
Display Disk Space

Display Home Space Utilization
Quit

o 0w >

read -r -p "Enter selection [A, B, C or Q] > "

470

case

case "$REPLY" in
gq|Q) echo "Program terminated."
exit
r
aJA) echo "Hostname: $HOSTNAME"
uptime
i
b|B) df -h
;;
c|c) if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*
else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"
fi
;;
*) echo "Invalid entry" >&2
exit 1
r

esac

Here, we modify the case -menu program to use letters instead of digits for menu selec-
tion. Notice how the new patterns allow for entry of both uppercase and lowercase letters.

Performing Multiple Actions

In versions of bash prior to 4.0, case allowed only one action to be performed on a

successful match. After a successful match, the command would terminate. Here we see
a script that tests a character:

#!/bin/bash
case4-1: test a character

read -r -n 1 -p "Type a character > "

echo

case "$REPLY" in
[[:upper:]]) echo "'$REPLY' is upper case." ;;
[[:lower:]1]) echo "'$REPLY' is lower case."
[[:alpha:]]) echo "'$REPLY' is alphabetic." ;;

471

31 — Flow Control: Branching with case

[[:digit:]]) echo "'$REPLY' is

[[:graph:]]) echo "'$REPLY' 1is

[[:punct:]]) echo "'$REPLY' 1is

[[:space:]]) echo "'$REPLY' 1is

[[:xdigit:]]) echo "'$REPLY' 1is
esac

digit." ;;

visible character." ;;
punctuation symbol." ;;
whitespace character." ;;
hexadecimal digit." ;;

DO D D D

Running this script produces this:

[me@linuxbox ~]$ case4-1
Type a character > a
'a' is lower case.

The script works for the most part but fails if a character matches more than one of the
POSIX character classes. For example, the character "a" is both lowercase and alpha-
betic, as well as a hexadecimal digit. In bash prior to version 4.0 there was no way for
case to match more than one test. Modern versions of bash add the ; ; & notation to
terminate each action, so now we can do this:

#!/bin/bash
case4-2: test a character

read -r -n 1 -p "Type a character > "

echo

case "$REPLY" in
[[:upper:]11) echo "'$REPLY' is upper case." ;;&
[[:Llower:]]) echo "'$REPLY' is lower case." ;;&
[[:alpha:]]) echo "'$REPLY' is alphabetic." ;;&
[[:digit:]]) echo "'$REPLY' is a digit." ;;&

[[:graph:]]) echo "'$REPLY' is a visible character." ;;&

[[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;&

[[:space:]]) echo "'$REPLY' is a whitespace character." ;;&

[[:xdigit:]1]) echo "'$REPLY' is a hexadecimal digit." ;;&
esac

When we run this script, we get this:

[me@linuxbox ~]$ case4-2

472

case

Type a character > a

'a' is lower case.

'a' is alphabetic.

is a visible character.
is a hexadecimal digit.

D O Q@

The addition of the ; ; & syntax allows case to continue to the next test rather than sim-
ply terminating.

Summing Up

The case command is a handy addition to our bag of programming tricks. As we will
see in the next chapter, it’s the perfect tool for handling certain types of problems.

Further Reading

e The Bash Reference Manual section on Conditional Constructs describes the
case command in detail:
http:/tiswww.case.edu/php/chet/bash/bashref.html#SEC21

e The Advanced Bash-Scripting Guide provides further examples of case applica-
tions:

http://tldp.org/I.DP/abs/html/testbranch.html

473

http://tldp.org/LDP/abs/html/testbranch.html
http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

32 — Positional Parameters

32 - Positional Parameters

One feature that has been missing from our programs so far is the ability to accept and
process command line options and arguments. In this chapter, we will examine the shell
features that allow our programs to get access to the contents of the command line.

Accessing the Command Line

The shell provides a set of variables called positional parameters that contain the individ-
ual words on the command line. The variables are named © through 9. They can be
demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "

\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9

This is a simple script that displays the values of the variables $0-$9. When executed
with no command line arguments, the result is this:

[me@linuxbox ~]$ posit-param

474

Accessing the Command Line

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9 =

/home/me/bin/posit-param

Even when no arguments are provided, $0 will always contain the first item appearing on
the command line, which is the pathname of the program being executed. When argu-
ments are provided, we see these results:

[me@linuxbox ~]$ posit-param a b c d

$0
$1
$2
$3
$4
$5 =
$6
$7
$8
$9

/home/me/bin/posit-param
a

b
c
d

Note: You can actually access more than nine parameters using parameter expan-
sion. To specify a number greater than nine, surround the number in braces as in

${10}, ${55}, ${211}, and so on.

Determining the Number of Arguments

The shell also provides a variable, $#, that contains the number of arguments on the com-
mand line:

475

32 — Positional Parameters

#!/bin/bash

posit-param: script to view command line parameters

echo "
Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9

This is the result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4

$0 /home/me/bin/posit-param
$1 = a

$2
$3
$4
$5
$6
$7
$8
$9

b
c
d

shift — Getting Access to Many Arguments

But what happens when we give the program a large number of arguments such as the
following?

[me@linuxbox ~]$ posit-param *

476

Accessing the Command Line

Number of arguments: 82

$0 = /home/me/bin/posit-param

$1 = addresses. ldif

$2 = bin

$3 = bookmarks.html

$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz

$8 = Desktop

$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments. How can we process
that many? The shell provides a method, albeit a clumsy one, to do this. The shift
command causes all the parameters to “move down one” each time it is executed. In fact,
by using shift, it is possible to get by with only one parameter (in addition to $0,
which never changes).

#!/bin/bash
posit-param2: script to display all arguments
count=1

while [[$# -gt 0]]; do
echo "Argument $count = $1"
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of $3 is moved
to $2 and so on. The value of $# is also reduced by one.

In the posit-param2 program, we create a loop that evaluates the number of argu-
ments remaining and continues as long as there is at least one. We display the current ar-
gument, increment the variable count with each iteration of the loop to provide a run-
ning count of the number of arguments processed, and, finally, execute a shift to load
$1 with the next argument. Here is the program at work:

477

32 — Positional Parameters

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1 = a

Argument 2 = b
Argument 3 = c
Argument 4 = d

Simple Applications

Even without shift, it’s possible to write useful applications using positional parame-
ters. By way of example, here is a simple file information program:

#!/bin/bash
file-info: simple file information program
PROGNAME="$(basename "$0")"

if [[-e "$1"]]; then
echo -e "\nFile Type:"

file "$1"
echo -e "\nFile Status:"
stat "$1"
else
echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command) and the file sta-
tus (from the stat command) of a specified file. One interesting feature of this program
is the PROGNAME variable. It is given the value that results from the basename "$0"
command. The basename command removes the leading portion of a pathname, leav-
ing only the base name of a file. In our example, basename removes the leading portion
of the pathname contained in the $0 parameter, the full pathname of our example pro-
gram. This value is useful when constructing messages such as the usage message at the
end of the program. By coding it this way, the script can be renamed, and the message au-
tomatically adjusts to contain the name of the program.

Using Positional Parameters with Shell Functions

Just as positional parameters are used to pass arguments to shell scripts, they can also be

478

Accessing the Command Line

used to pass arguments to shell functions. To demonstrate, we will convert the
file_info script into a shell function.

file_info () {
file_info: function to display file information

if [[-e "$1"]]; then
echo -e "\nFile Type:"

file "$1"
echo -e "\nFile Status:"
stat "$1"
else
echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1
fi

Now, if a script that incorporates the file_1info shell function calls the function with a
filename argument, the argument will be passed to the function.

With this capability, we can write many useful shell functions that not only can be used in
scripts, but also can be used within our . bashrc files.

Notice that the PROGNAME variable was changed to the shell variable FUNCNAME. The
shell automatically updates this variable to keep track of the currently executed shell
function. Note that $0 always contains the full pathname of the first item on the com-
mand line (i.e., the name of the program) and does not contain the name of the shell func-
tion as we might expect.

Handling Positional Parameters en Masse

It is sometimes useful to manage all the positional parameters as a group. For example,
we might want to write a “wrapper” around another program. This means we create a
script or shell function that simplifies the invocation of another program. The wrapper, in
this case, supplies a list of arcane command line options and then passes a list of argu-
ments to the lower-level program.

The shell provides two special parameters for this purpose. They both expand into the
complete list of positional parameters but differ in rather subtle ways. They are described
in Table 32-1.

479

32 — Positional Parameters

Table 32-1: The * and @ Special Parameters

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double-
quoted string containing all of the positional parameters, each
separated by the first character of the IFS shell variable (by default
a space character).

$@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each positional
parameter into a separate word as if it was surrounded by double
quotes.

Here is a script that shows these special parameters in action:

#!/bin/bash
posit-params3: script to demonstrate $* and $@

print_params () {
echo "\$1 = $1"
echo "\$2 = $2"
echo "\$3 = $3"
echo "\$4 = 34"

3

pass_params () {
echo -e "\n" '$* :'; print_params $*
echo -e "\n" '"$*" :'; print_params "$*"
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass_params "word" "words with spaces"

In this rather convoluted program, we create two arguments: word and words with
spaces, and pass them to the pass_params function. That function, in turn, passes
them on to the print_params function, using each of the four methods available with
the special parameters $* and $@. When executed, the script reveals the differences.

480

Handling Positional Parameters en Masse

[me@linuxbox ~]$ posit-param3

$*
$1 = word
$2 = words
$3 = with
$4 = spaces

ll$*ll o
$1 = word words with spaces
$2 =
$3 =
$4 =

$@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

||$@n
$1 = word
$2 = words with spaces
$3 =
$4 =

With our arguments, both $* and $@ produce a four-word result.

word words with spaces

"$*" produces a one-word result:

"word words with spaces"

"$@" produces a two-word result:

"word" "words with spaces"

This matches our actual intent. The lesson to take from this is that even though the shell
provides four different ways of getting the list of positional parameters, "$@" is by far
the most useful for most situations because it preserves the integrity of each positional
parameter. To ensure safety, it should always be used, unless we have a compelling rea-
son not to use it.

481

32 — Positional Parameters

A More Complete Application

After a long hiatus, we are going to resume work on our sys_info_page program,
last seen in Chapter 27. Our next addition will add several command line options to the

program as follows:

e Output file. We will add an option to specify a name for a file to contain the pro-
gram’s output. It will be specified as either - fileor --file file.

e Interactive mode. This option will prompt the user for an output filename and
will determine whether the specified file already exists. If it does, the user will be
prompted before the existing file is overwritten. This option will be specified by

either -ior --interactive.

e Help. Either -h or - -help may be specified to cause the program to output an

informative usage message.

Here is the code needed to implement the command line processing:

usage () {

return

}

interactive=
filename=

_fl

-1|

_hl

*)

esac
shift
done

while [[-n "$1"]]; do
case "$1" in

--file)

--interactive)

--help)

echo "$PROGNAME: usage: $PROGNAME [-f file |

process command line options

shift
filename="$1"
Y
interactive=1
Y

usage

exit

usage >&2
exit 1

rs

482

A More Complete Application

First, we add a shell function called usage to display a message when the help option is
invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the positional parameter
$1 is not empty. At the end of the loop, we have a shift command to advance the posi-
tional parameters to ensure that the loop will eventually terminate.

Within the loop, we have a case statement that examines the current positional parame-
ter to see whether it matches any of the supported choices. If a supported parameter is
found, it is acted upon. If an unknown choice is found the usage message is displayed and
the script terminates with an error.

The -f parameter is handled in an interesting way. When detected, it causes an additional
shift to occur, which advances the positional parameter $1 to the filename argument
supplied to the - f option.

The getopts Option

The positional parameter parsing code above is a good solution to the task at hand but it’s
not the only approach we can take. There is a shell builtin called getopts (not to be
confused with the similarly named external command getopt) that can do some of the
work for us. Each time getopts is called (usually in a loop) it returns the current argu-
ment in a specified variable and increments the counter OPTIND to point to the next po-
sitional parameter. If an option requires an argument, the argument is returned in the vari-
able OPTARG.

The getopts syntax looks like this:

getopts optstring var [arg ...]

The optstring argument is a string consisting of the single character option names.
getopts does not (easily) support long-format options. In addition, if an option name is
followed by a colon character it means that the option requires an argument.

While getopts only supports single character option names, it does allow multiple op-
tions to be strung together without intervening hyphens, as we have seen with many com-
mands such as Ls:

1s -1la

If the optstring begins with a colon getopts will silence its own error messages
when there is an invalid option or missing required argument.

483

32 — Positional Parameters

The var argument is the name of a variable that will hold the current option name.

Normally, getopts processes positional parameters but it may also process any addi-
tional arguments listed after var.

The getopts builtin returns a successful exit status until it runs out of arguments to
process.

Yes, this seems a little complicated but it becomes clearer when we see it in action. Using
getopts, we can code a short demo of this alternative technique:

#!/bin/bash
getopts-test: process command line options using getopts

PROGNAME="$(basename "$0")"
interactive=
filename=

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"

return

3

while getopts :f:ih opt; do
case "$opt" in
f) filename="$0PTARG" ;;
i) interactive=1 ;;
h) usage ;;
\?) echo "option '$OPTARG' invalid" ;;
:) echo "option '$OPTARG' missing argument";;
esac
done
echo "interactive = '$interactive' filename = '$filename'"

Let’s take a look at this code in detail. We start with our usual variable definitions and a
function definition for a usage message. Next, we get to the fun part by placing the
getopts command in a while loop. Our optstring starts with a colon which will
suppress error messages. The colon is followed by our option letters. The f option re-
quires an argument (a file name in this case) so that option letter is followed by a colon.
Lastly, we specify a variable (opt) to hold our result. The while loop continues until
getopts runs out of parameters to process.

Within the while loop we have a case statement to process the result returned in opt.

484

A More Complete Application

This all looks pretty much as expected except for the last two patterns in the case state-
ment. The ? is returned by getopts when an invalid option (that is, a letter not in the
list) is detected. Notice that in a case statement we must escape the question mark be-
cause the shell interprets it as a file wildcard character otherwise. Next, we have the :
which is returned by getopts when an option is missing a required argument. When-
ever either of these two error conditions occurs, getopts places the offending option

letter in OPTARG.

Let’s watch this demo in action:

[me@linuxbox ~]$ getopts-test

interactive = '' filename = ''

[me@linuxbox ~]$ getopts-test -i

interactive = '1' filename = ''

[me@linuxbox ~]$ getopts-test -f foo.html
interactive = '' filename = 'foo.html'
[me@linuxbox ~]$ getopts-test -if foo.html
interactive = '1' filename = 'foo.html'
[me@linuxbox ~]$ getopts-test -i -f foo.html
interactive = '1' filename = 'foo.html'

[me@linuxbox ~]$ getopts-test -a
option 'a' invalid

interactive = '' filename = "'
[me@linuxbox ~]$ getopts-test -f
option 'f' missing argument
interactive = '' filename = "'

So which technique should we use, while / shift or getopts? It all comes down to
our needs. The while / shift method affords the most control (including easy imple-
mentation of long option names) while getopts needs less code and supports single-

hyphen multi-option syntax.

Interactive Mode

With the positional parameter code in place, let’s implement the interactive mode.

interactive mode

if [[-n "$interactive"]]; then
while true; do
read -r -p "Enter name of output file: " filename

485

32 — Positional Parameters

if [[-e "$filename"]]; then
read -r -p "'$filename' exists. Overwrite? [y/n/q] > "
case "$REPLY" in
Y|y) break
Q|qg) echo "Program terminated."
exit
*) continue

rs

esac
elif [[-z "$filename"]]; then
continue
else
break
fi
done

fi

If the interactive variable is not empty, an endless loop is started, which contains
the filename prompt and subsequent existing file-handling code. If the desired output file
already exists, the user is prompted to overwrite, choose another filename, or quit the
program. If the user chooses to overwrite an existing file, a break is executed to termi-
nate the loop. Notice how the case statement detects only whether the user chooses to
overwrite or quit. Any other choice causes the loop to continue and prompts the user
again.

File Output

To implement the output filename feature, we must first convert the existing page-writing
code into a shell function, for reasons that will become clear in a moment.

write_html_page () {
cat << _EOF_
<html>
<head>
<title>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)

486

A More Complete Application

$(report_disk_space)
$(report_home_space)
</body>
</html>
EOF
return

b

output html page

if [[-n "$filename"]]; then
if touch "$filename" && [[-f "$filename"]]; then
write_html_page > "$filename"

else
echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1
fi
else

write_html_page
fi

The code that handles the logic of the - f option appears at the end of the previous listing.
In it, we test for the existence of a filename and, if one is found, a test is performed to see
whether the file is indeed writable. To do this, a touch is performed, followed by a test
to determine whether the resulting file is a regular file. These two tests take care of situa-
tions where an invalid pathname is input (touch will fail), and, if the file already exists,
that it’s a regular file.

As we can see, the write_html_page function is called to perform the actual gener-
ation of the page. Its output is either directed to standard output (if the variable file-
name is empty) or redirected to the specified file. Since we have two possible destina-
tions for the HTML code, it makes sense to convert the write_htm1l_page routine to
a shell function to avoid redundant code.

Summing Up

With the addition of positional parameters, we can now write fairly functional scripts.
For simple, repetitive tasks, positional parameters make it possible to write very useful
shell functions that can be placed in a user’s . bashrc file.

Our sys_info_page program has grown in complexity and sophistication. Here is a
complete listing, with the most recent changes highlighted:

487

32 — Positional Parameters

#!/bin/bash
sys_info_page: program to output a system information page

PROGNAME="$(basename "$0")"

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
cat << _EOF_
<h2>System Uptime</h2>
<pre>$(uptime)</pre>
EOF
return

}

report_disk_space () {
cat << _EOF_
<h2>Disk Space Utilization</h2>
<pre>$(df -h)</pre>
EOF
return

}

report_home_space () {
if [["$(id -u)" -eq 0]]; then
cat << _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>
EOF
else
cat << _EOF_
<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh "$HOME")</pre>

EOF
fi
return
}
usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return
}

488

Summing Up

write_html_page () {
cat << _EOF_
<html>
<head>
<tit1le>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)
</body>
</htm1>
EOF
return

}

process command line options

interactive=
filename=

while [[-n "$1"]]; do
case "$1" in
-f | --file) shift
filename="$1"

rs

-i | --interactive) interactive=1
-h | --help) usage
exit
r
*) usage >&2
exit 1
r
esac
shift
done

interactive mode

if [[-n "$interactive"]]; then

489

32 — Positional Parameters

while true; do
read -r -p "Enter name of output file: " filename
if [[-e "$filename"]]; then
read -r -p "'$filename' exists. Overwrite? [y/n/q] > "
case "SREPLY" in
Y|y) break
Q|q) echo "Program terminated."
exit
*) continue

rr

esac
elif [[-z "$filename"]]; then
continue
else
break
fi

done
fi

output html page

if [[-n "$filename"]]; then
if touch "$filename" && [[-f "$filename"]]; then
write_html_page > "$filename"
else
echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1
fi
else
write_html_page
fi

We’re not done yet. There are still a few more things we can do and improvements we
can make.

Further Reading

e The Bash Reference Manual has an article on the special parameters, including

$* and $@:

http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters

490

http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters

33 — Flow Control: L.ooping with for

33 - Flow Control: Looping with for

In this final chapter on flow control, we will look at another of the shell’s looping con-
structs. The for loop differs from the while and until loops in that it provides a means of
processing sequences during a loop. This turns out to be very useful when programming.
Accordingly, the for loop is a popular construct in bash scripting.

A for loop is implemented, naturally enough, with the for compound command. In
bash, for is available in two forms.

for: Traditional Shell Form

The original for command’s syntax is as follows:

for variable [in words]; do

commands
done
where variab le is the name of a variable that will increment during the execution of
the loop, words is an optional list of items that will be sequentially assigned to vari -
able, and commands are the commands that are to be executed on each iteration of the
loop.

The for command is useful on the command line. We can easily demonstrate how it
works.

[me@linuxbox ~]$ for i in A B C D; do echo $i; done
A

B
C
D

In this example, for is given a list of four words: A, B, C, and D. With a list of four
words, the loop is executed four times. Each time the loop is executed, a word is assigned
to the variable i. Inside the loop, we have an echo command that displays the value of i
to show the assignment. As with the while and until loops, the done keyword closes

491

33 — Flow Control: Looping with for

the loop.

The really powerful feature of for is the number of interesting ways we can create the
list of words. For example, we can do it through brace expansion, like so:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A

B
C
D

or we could use pathname expansion, as follows:

[me@linuxbox ~]$ for i in distros*.txt; do echo "$i"; done
distros-by-date. txt

distros-dates.txt

distros-key-names.txt

distros-key-vernums.txt

distros-names. txt

distros.txt

distros-vernums. txt

distros-versions.txt

Pathname expansion provides a nice, clean list of pathnames that can be processed in the
loop. The one precaution needed is to check that the expansion actually matched some-
thing. By default, if the expansion fails to match any files, the wildcards themselves
("distros*.txt" in the example above) will be returned. To guard against this, we would
code the example above in a script this way:

for i in distros*.txt; do
if [[-e "$i"]]; then
echo "$i"
fi
done

By adding a test for file existence, we will ignore a failed expansion.

Another common method of word production is command substitution.

#!/bin/bash

492

for: Traditional Shell Form

longest-word: find longest string in a file

while [[-n "$1"]]; do
if [[-r "$1"]]; then

max_word=

max_len=0

for i in $(strings "$1"); do
len="$(echo -n "$i" | wc -c)"

if ((len > max_1len)); then
max_len="$len"
max_word="$i"

fi
done
echo "$1: '$max_word' ($max_len characters)"
fi
shift
done

In this example, we look for the longest string found within a file. When given one or
more filenames on the command line, this program uses the Strings program (which is
included in the GNU binutils package) to generate a list of readable text “words” in each
file. The for loop processes each word in turn and determines whether the current word
is the longest found so far. When the loop concludes, the longest word is displayed.

One thing to note here is that, contrary to our usual practice, we do not surround the com-
mand substitution $(strings "$1") with double quotes. This is because we actually
want word splitting to occur to give us our list. If we had surrounded the command sub-
stitution with quotes, it would produce only a single word containing every string in the
file. That’s not exactly what we are looking for.

If the optional 1n words portion of the for command is omitted, for defaults to pro-
cessing the positional parameters. We will modify our Llongest -word script to use this
method:

#!/bin/bash
longest-word2: find longest string in a file
for i; do

if [[-r "$i"]]; then
max_word=

493

33 — Flow Control: Looping with for

max_len=0
for j in $(strings "$i"); do
len="$(echo -n "$j" | wc -c)"

if ((len > max_len)); then
max_len="$len"
max_word="%$j"
fi
done
echo "$i: '$max_word' ($max_len characters)"
fi
done

As we can see, we have changed the outermost loop to use for in place of while. By
omitting the list of words in the for command, the positional parameters are used in-
stead. Inside the loop, previous instances of the variable 1 have been changed to the vari-

able j. The use of shift has also been eliminated.

Why i?

You may have noticed that the variable 1 was chosen for each of the previous
for loop examples. Why? No specific reason actually besides tradition. The vari-
able used with for can be any valid variable, but i is the most common, fol-

lowed by j and K.

The basis of this tradition comes from the Fortran programming language. In For-
tran, undeclared variables starting with the letters I, J, K, L, and M are automati-
cally typed as integers, while variables beginning with any other letter are typed
as reals (numbers with decimal fractions). This behavior led programmers to use
the variables I, J, and K for loop variables since it was less work to use them

when a temporary variable (as loop variables often are) was needed.
It also led to the following Fortran-based witticism:

“GOD is real, unless declared integer.”

for: C Language Form

Recent versions of bash have added a second form of for command syntax, one that
resembles the form found in the C programming language. Many other languages support

this form, as well.

494

for: C Language Form

for ((expressionl; expression2; expression3)); do
commands
done
Here expressionl, expressionZ2, and expressiona3 are arithmetic expressions
and commands are the commands to be performed during each iteration of the loop.

In terms of behavior, this form is equivalent to the following construct:

((expressionl))
while ((expression2)); do
commands
((expression3))
done

expressionl is used to initialize conditions for the loop, expression?2 is used to
determine when the loop is finished, and expressiona3 is carried out at the end of each
iteration of the loop.

Here is a typical application:

#!/bin/bash
simple_counter: demo of C style for command
for ((i=0; i<5; i=i+1)); do

echo $i
done

When executed, it produces the following output:

[me@linuxbox ~]$ simple_counter

A WDNPREO

In this example, expressionl initializes the variable 1 with the value of zero, ex-
pression2 allows the loop to continue as long as the value of i remains less than 5,
and expression3 increments the value of i by 1 each time the loop repeats.

The C language form of for is useful anytime a numeric sequence is needed. We will see
several applications for this in the next two chapters.

495

33 — Flow Control: Looping with for

Summing Up

With our knowledge of the for command, we will now apply the final improvements to
our sys_info_page script. Currently, the report_home_space function looks
like this:

report_home_space () {
if [["$(id -u)" -eq 0]]; then
cat << _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>
EOF
else
cat << _EOF_
<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh "$HOME")</pre>
EOF
fi
return

Next, we will rewrite it to provide more detail for each user’s home directory and include
the total number of files and subdirectories in each.

report_home_space () {

local format="%8s%10s%10s\n"
local i dir_1list total_files total_dirs total_size user_name

if [["$(id -u)" -eq 0@]]; then
dir_list=/home/*
user_name="All Users"

else
dir_list="$HOME"
user_name="$USER"

fi

echo "<h2>Home Space Utilization ($user_name)</h2>"
for i1 in $dir_list; do

total_files="$(find "$i" -type f | wc -1)"

496

Summing Up

total_dirs="$(find "$i" -type d | wc -1)"
total _size="$(du -sh "$i" | cut -f 1)"

echo "<H3>$i</H3>"
echo "<pre>"
printf "$format" "Dirs" "Files" "Size"
printf "$format" "----" "----- mro..n
printf "$format" "$total dirs" "$total files" "$total size"
echo "</pre>"
done
return

This rewrite applies much of what we have learned so far. We still test for the superuser,
but instead of performing the complete set of actions as part of the if, we set some vari-
ables used later in a for loop. We have added several local variables to the function and
made use of printf to format some of the output.

Further Reading

e The Advanced Bash-Scripting Guide has a chapter on loops, with a variety of ex-
amples using for:
http://tldp.org/L.DP/abs/html/loops1.html

e The Bash Reference Manual describes the looping compound commands, includ-
ing for:
http://www.gnu.org/software/bash/manual/bashref.html#I.ooping-Constructs

497

http://www.gnu.org/software/bash/manual/bashref.html#Looping-Constructs
http://tldp.org/LDP/abs/html/loops1.html

34 — Strings and Numbers

34 - Strings and Numbers

Computer programs are all about working with data. In past chapters, we have focused on
processing data at the file level. However, many programming problems need to be
solved using smaller units of data such as strings and numbers.

In this chapter, we will look at several shell features that are used to manipulate strings
and numbers. The shell provides a variety of parameter expansions that perform string
operations. In addition to arithmetic expansion (which we touched upon in Chapter 7,
“Seeing the World as the Shell Sees It”), there is a well-known command line program
called bc, which performs higher-level math.

Parameter Expansion

Though parameter expansion came up in Chapter 7, we did not cover it in detail because
most parameter expansions are used in scripts rather than on the command line. We have
already worked with some forms of parameter expansion, for example, shell variables.
The shell provides many more.

Note: It's always good practice to enclose parameter expansions in double quotes
to prevent unwanted word splitting, unless there is a specific reason not to. This
is especially true when dealing with filenames since they can often include em-
bedded spaces and other assorted nastiness.

Basic Parameters

The simplest form of parameter expansion is reflected in the ordinary use of variables.
Here’s an example:

$a

When expanded, this becomes whatever the variable a contains. Simple parameters may
also be surrounded by braces.

${a}

This has no effect on the expansion, but is required if the variable is adjacent to other

498

Parameter Expansion

text, which may confuse the shell. In this example, we attempt to create a filename by ap-
pending the string _f1ile to the contents of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a file"

If we perform this sequence of commands, the result will be nothing because the shell
will try to expand a variable named a_f1ile rather than a. This problem can be solved
by adding braces around the “real” variable name.

[me@linuxbox ~]$ echo "${a} file"
foo_file

We have also seen that positional parameters greater than nine can be accessed by sur-
rounding the number in braces. For example, to access the eleventh positional parameter,
we can do this:

${11}

Expansions to Manage Empty Variables

Several parameter expansions are intended to deal with nonexistent and empty variables.
These expansions are handy for handling missing positional parameters and assigning de-
fault values to parameters.

${parameter:-word}

If parameter is unset (i.e., does not exist) or is empty, this expansion results in the value
of word. If parameter is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=

[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset

[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar

[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
bar

[me@linuxbox ~]$ echo $foo

499

34 — Strings and Numbers

bar

${parameter:=word}

If parameter is unset or empty, this expansion results in the value of word. In addition,
the value of word is assigned to parameter. If parameter is not empty, the expansion re-
sults in the value of parameter.

[me@linuxbox ~]$ foo=

[me@linuxbox ~]$ echo ${foo:="default value if unset"}
default value if unset

[me@linuxbox ~]$ echo $foo

default value if unset

[me@linuxbox ~]$ foo=bar

[me@linuxbox ~]$ echo ${foo:="default value if unset"}
bar

[me@linuxbox ~]$ echo $foo

bar

Note: Positional and other special parameters cannot be assigned this way.

${parameter:?word}

If parameter is unset or empty, this expansion causes the script to exit with an error, and
the contents of word are sent to standard error. If parameter is not empty, the expansion
results in the value of parameter.

[me@linuxbox ~]$ foo=

[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty

[me@linuxbox ~]$ echo $?

1

[me@linuxbox ~]$ foo=bar

[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar

[me@linuxbox ~]$ echo $?

0

500

Parameter Expansion

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If parameter is not
empty, the value of word is substituted for parameter; however, the value of parameter is
not changed.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}
substitute value if set

Expansions That Return Variable Names

The shell has the ability to return the names of variables. This is used in some rather ex-
otic situations.

${'prefix*}

${!prefix@}

This expansion returns the names of existing variables with names beginning with prefix.

According to the bash documentation, both forms of this expansion perform identically.
Here, we list all the variables in the environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}

BASH BASH_ARGC BASH_ARGVY BASH_COMMAND BASH_COMPLETION
BASH_COMPLETION_DIR BASH_LINENO BASH_SOURCE BASH_SUBSHELL
BASH_VERSINFO BASH_VERSION

String Operations

There is a large set of expansions that operate on strings. Many of these expansions are
particularly well suited for operations on pathnames.

${#parameter}

expands into the length of the string contained by parameter. Normally, parameter is a
string; however, if parameter is either @ or *, then the expansion results in the number of
positional parameters.

501

34 — Strings and Numbers

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
'This string is long.' is 20 characters long.

${parameter:offset}
${parameter:offset:length}

These expansions are used to extract a portion of the string contained in parameter. The
extraction begins at offset characters from the beginning of the string and continues until
the end of the string, unless length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo:5}

string is long.

[me@linuxbox ~]$ echo ${f00:5:6}

string

If the value of offset is negative, it is taken to mean it starts from the end of the string
rather than the beginning. Note that negative values must be preceded by a space to pre-
vent confusion with the ${parameter: -word} expansion. length, if present, must not
be less than zero.

If parameter is @, the result of the expansion is length positional parameters, starting at
offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}

long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

${parameter#pattern}

${parameter##pattern}

These expansions remove a leading portion of the string contained in parameter defined
by pattern. pattern is a wildcard pattern like those used in pathname expansion. The dif-
ference in the two forms is that the # form removes the shortest match, while the ## form

removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip

502

Parameter Expansion

[me@linuxbox ~]$ echo ${foo#*.}
txt.zip

[me@linuxbox ~]$ echo ${foo##*.}
zip

${parameter%pattern}
${parameter%%pattern}

These expansions are the same as the previous # and ## expansions, except they remove
text from the end of the string contained in parameter rather than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]1$ echo ${foo0%.*}
file.txt

[me@linuxbox ~]$ echo ${foo%%.*}
file

${parameter/pattern/string}

${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

This expansion performs a search-and-replace operation upon the contents of parameter.
If text is found matching wildcard pattern, it is replaced with the contents of string. In the
normal form, only the first occurrence of pattern is replaced. In the // form, all occur-
rences are replaced. The /# form requires that the match occur at the beginning of the
string, and the /% form requires the match to occur at the end of the string. In every form,
/string may be omitted, causing the text matched by pattern to be deleted.

[me@linuxbox ~]$% foo=JPG.JPG
[me@linuxbox ~1$ echo ${foo/JPG/jpg}
jpg.JPG

[me@linuxbox ~]$ echo ${foo//JPG/jpg}
jpg.Jpg

[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg.JPG

[me@linuxbox ~]$ echo ${foo/%JPG/jpg}
JPG. jpg

Parameter expansion is a good thing to know. The string manipulation expansions can be
used as substitutes for other common commands such as sed and cut. Expansions can

503

34 — Strings and Numbers

improve the efficiency of scripts by eliminating the use of external programs. As an ex-
ample, we will modify the Longest -word program discussed in the previous chapter
to use the parameter expansion ${#7j} in place of the command substitution $(echo -
n $j | wc -c) and its resulting subshell, like so:

#!/bin/bash

longest-word3: find longest string in a file

for i; do
if [[-r "$i"]]; then
max_word=
max_len=0
for j in $(strings $i); do
1en=ll${#j }ll
if ((len > max_len)); then
max_len="$len"
max_word="$j"
fi
done
echo "$i: '$max_word' ($max_len characters)"
fi
done

Next, we will compare the efficiency of the two versions by using the time command.

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real Om3.618s

user Oml.544s

Sys Oml.768s

[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real OmO.060s
user OmO.056s
Sys OmO.008s

504

Parameter Expansion

The original version of the script takes 3.618 seconds to scan the text file, while the new
version, using parameter expansion, takes only 0.06 seconds—a significant improve-
ment.

Case Conversion

bash has four parameter expansions and two declare command options to support
the uppercase/lowercase conversion of strings.

So what is case conversion good for? Aside from the obvious aesthetic value, it has an
important role in programming. Let's consider the case of a database lookup. Imagine
that a user has entered a string into a data input field that we want to look up in a data-
base. It's possible the user will enter the value in all uppercase letters or lowercase letters
or a combination of both. We certainly don't want to populate our database with every
possible permutation of uppercase and lowercase spellings. What to do?

A common approach to this problem is to normalize the user's input. That is, convert it
into a standardized form before we attempt the database lookup. We can do this by con-
verting all the characters in the user's input to either lower or uppercase and ensure that
the database entries are normalized the same way.

The declare command can be used to normalize strings to either uppercase or lower-
case. Using declare, we can force a variable to always contain the desired format no
matter what is assigned to it.

#!/bin/bash
ul-declare: demonstrate case conversion via declare

declare -u upper
declare -1 lower

if [[$1]1]; then
upper="$1"
lower="$1"
echo "$upper"
echo "$lower"
fi

In the preceding script, we use declare to create two variables, upper and lower.
We assign the value of the first command line argument (positional parameter 1) to each
of the variables and then display them on the screen.

505

34 — Strings and Numbers

[me@linuxbox ~]$ ul-declare aBc
ABC
abc

As we can see, the command line argument (aBcC) has been normalized.

In addition to declare, there are four parameter expansions that perform upper/lower-
case conversion as described in Table 34-1.

Table 34-1: Case Conversion Parameter Expansions

Format Result

${parameter, ,pattern} Expand the value of parameter into all lowercase.
pattern is an optional shell pattern (for
example, [A-F]) that will limit which characters
are converted. See the bash man page for a full
description of patterns.

${parameter,pattern} Expand the value of parameter, changing only the
first character to lowercase.

${parameterr\pattern} Expand the value of parameter into all uppercase
letters.

${parameternpattern} Expand the value of parameter, changing only the
first character to uppercase (capitalization).

Here is a script that demonstrates these expansions:

#!/bin/bash
ul-param: demonstrate case conversion via parameter expansion

if [["$1"]]; then
echo "${1,,}"

echo "${1,3}"
echo "${1AA}"
echo "${1A}"

fi

Here is the script in action:

506

Parameter Expansion

[me@linuxbox ~]$ ul-param aBc
abc
aBc
ABC
ABC

Again, we process the first command line argument and output the four variations sup-
ported by the parameter expansions. While this script uses the first positional parameter,
parameter may be any string, variable, or string expression.

Arithmetic Evaluation and Expansion

We looked at arithmetic expansion in Chapter 7. It is used to perform various arithmetic
operations on integers. Its basic form is as follows:

$((expression))
where expression is a valid arithmetic expression.

This is related to the compound command (()) used for arithmetic evaluation (truth
tests) we encountered in Chapter 27.

In previous chapters, we saw some of the common types of expressions and operators.
Here, we will look at a more complete list.

Number Bases

In Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16) numbers. In arith-
metic expressions, the shell supports integer constants in any base. Table 34-2 lists the
notations used to specify bases.

Table 34-2: Specifying Different Number Bases

Notation Description

number By default, numbers without any notation are treated as decimal
(base 10) integers.

Onumber In arithmetic expressions, numbers with a leading zero are
considered octal.

Oxnumber Hexadecimal notation.

base#number number is in base

Here are some examples:

507

34 — Strings and Numbers

[me@linuxbox ~]$ echo $((0xff))

255

[me@linuxbox ~]$ echo $((2#11111111))
255

In the previous examples, we print the value of the hexadecimal number T (the largest
two-digit number) and the largest eight-digit binary (base 2) number.

Unary Operators

There are two unary operators, + and -, which are used to indicate whether a number is
positive or negative, respectively. An example is - 5.

Simple Arithmetic

The ordinary arithmetic operators are listed in Table 34-3.

Table 34-3: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Integer division

*x Exponentiation

% Modulo (remainder)

Most of these are self-explanatory, but integer division and modulo require further dis-
cussion.

Since the shell’s arithmetic operates only on integers, the results of division are always
whole numbers.

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation more important.

508

Arithmetic Evaluation and Expansion

[me@linuxbox ~]$ echo $((5 % 2))
1

By using the division and modulo operators, we can determine that 5 divided by 2 results
in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be performed at
specified intervals during the loop's execution. In the following example, we display a
line of numbers, highlighting each multiple of 5:

#!/bin/bash
modulo: demonstrate the modulo operator

for ((i =0; 1i<=20; i=1+1)); do
remainder=$((i % 5))

if ((remainder == 0)); then
printf "<%d> " "$i"
else
prlntf ll%d n ll$ill
fi
done
printf "\n"

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<> 1 2 34 <5>6 7 8 9 <10> 11 12 13 14 <15> 16 17 18 19 <20>

Assignment

Although its uses may not be immediately apparent, arithmetic expressions may perform
assignment. We have performed assignment many times, though in a different context.
Each time we give a variable a value, we are performing assignment. We can also do it
within arithmetic expressions.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

509

34 — Strings and Numbers

[me@linuxbox ~]$ if ((foo = 5)); then echo "It is true."; fi
It is true.

[me@linuxbox ~]$ echo $foo

5

In the preceding example, we first assign an empty value to the variable foo and verify
that it is indeed empty. Next, we perform an 1f with the compound command ((foo
= 5)). This process does two interesting things: it assigns the value of 5 to the vari-
able 00, and it evaluates to true because f00 was assigned a non-zero value.

Note: It is important to remember the exact meaning of = in the previous expres-
sion. A single = performs assignment. foo = 5 says “make f00 equal to 5,”
while == evaluates equivalence. foo == 5 says “does f00 equal 5?” This is a
common feature in many programming languages. In the shell, this can be a little
confusing because the test command accepts a single = for string equivalence.
This is yet another reason to use the more modern [[]] and (()) compound
commands in place of test.

In addition to the = notation, the shell also provides notations that perform some very
useful assignments as shown in Table 34-4.

Table 34-4: Assignment Operators

Notation Description

parameter = value Simple assignment. Assigns value to parameter.

parameter += value Addition. Equivalent to parameter = parameter +
value.

parameter -= value Subtraction. Equivalent to parameter = parameter —
value.

parameter *= value Multiplication. Equivalent to parameter = parameter
* value.

parameter /= value Integer division. Equivalent to parameter =
parameter / value.

parameter %= value Modulo. Equivalent to parameter = parameter %
value.

parameter++ Variable post-increment. Equivalent to parameter =
parameter + 1 (however, see the following

510

Arithmetic Evaluation and Expansion

discussion).

parameter—— Variable post-decrement. Equivalent to parameter =
parameter — 1.

++parameter Variable pre-increment. Equivalent to parameter =
parameter + 1.

--parameter Variable pre-decrement. Equivalent to parameter =
parameter — 1.

These assignment operators provide a convenient shorthand for many common arithmetic
tasks. Of special interest are the increment (++) and decrement (——) operators, which in-
crease or decrease the value of their parameters by one. This style of notation is taken
from the C programming language and has been incorporated into a number of other pro-
gramming languages, including bash.

The operators may appear either at the front of a parameter or at the end. While they both
either increment or decrement the parameter by one, the two placements have a subtle
difference. If placed at the front of the parameter, the parameter is incremented (or decre-
mented) before the parameter is returned. If placed after, the operation is performed after
the parameter is returned. This is rather strange, but it is the intended behavior. Here is a
demonstration:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((foo++))
1

[me@linuxbox ~]$ echo $foo

2

If we assign the value of one to the variable f00 and then increment it with the ++ opera-
tor placed after the parameter name, 00 is returned with the value of one. However, if
we look at the value of the variable a second time, we see the incremented value. If we
place the ++ operator in front of the parameter, we get the more expected behavior.

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((++foo0))
2

[me@linuxbox ~]$ echo $foo

2

511

34 — Strings and Numbers

For most shell applications, prefixing the operator will be the most useful.

The ++ and -- operators are often used in conjunction with loops. We will make some im-
provements to our modulo script to tighten it up a bit.

#!/bin/bash
modulo2: demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do
if (((1i % 5) == 0)); then
printf "<%d> " "$i"
else
printf "%d " "$i"
fi
done
printf "\n"

Bit Operations

One class of operators manipulates numbers in an unusual way. These operators work at
the bit level. They are used for certain kinds of low-level tasks, often involving setting or
reading bit-flags. The bit operators are listed in Table 34-5.

Table 34-5: Bit Operators

Operator Description

~ Bitwise negation. Negate all the bits in a number.

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two
numbers.

A Bitwise XOR. Perform an exclusive OR operation on all the
bits in two numbers.

Note that there are also corresponding assignment operators (for example, <<=) for all
but bitwise negation.

512

Arithmetic Evaluation and Expansion

Here we will demonstrate producing a list of powers of 2, using the left bitwise shift op-
erator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1

2

4

8

16

32

64

128

Logic

As we discovered in Chapter 27, the (()) compound command supports a variety of
comparison operators. There are a few more that can be used to evaluate logic. Table 34-6
provides the complete list.

Table 34-6: Comparison Operators

Operator Description

<= Less than or equal to.

>= Greater than or equal to.

< Less than.

> Greater than.

== Equal to.

I= Not equal to.

&& Logical AND.

| | Logical OR.

expri?expr2:expr3 Comparison (ternary) operator. If expression expri
evaluates to be non-zero (arithmetic true), then expr2;
else expr3.

When used for logical operations, expressions follow the rules of arithmetic logic; that is,
expressions that evaluate as zero are considered false, while non-zero expressions are

513

34 — Strings and Numbers

considered true. The (()) compound command maps the results into the shell’s normal
exit codes.

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]1$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This operator (which is
modeled after the one in the C programming language) performs a stand-alone logical
test. It can be used as a kind of 1f/then/else statement. It acts on three arithmetic
expressions (strings won’t work), and if the first expression is true (or non-zero), the sec-
ond expression is performed. Otherwise, the third expression is performed. We can try
this on the command line:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a

1

[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a

0

Here we see a ternary operator in action. This example implements a toggle. Each time
the operator is performed, the value of the variable a switches from zero to one or vice

versd.

Please note that performing assignment within the expressions is not straightforward.
When attempted, bash will declare an error.

[me@linuxbox ~]$ a=0

[me@linuxbox ~]$ ((a<1?a+=1:a-=1))

bash: ((: a<l?at+=1:a-=1: attempted assignment to non-variable (error
token is "-=1")

This problem can be mitigated by surrounding the assignment expression with parenthe-
ses.

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

514

Arithmetic Evaluation and Expansion

Next is a more complete example of using arithmetic operators in a script that produces a
simple table of numbers.

#!/bin/bash
arith-loop: script to demonstrate arithmetic operators

finished=0

a=0

printf "a\ta**2\ta**3\n"
printf "=\t====\t====\n"

until ((finished)); do
b=$((a**2))
c=$((a**3))
printf "%d\t%d\t%d\n" "$a" "$b" "$c"
((a<10?++a: (finished=1)))
done

In this script, we implement an until loop based on the value of the finished variable.
Initially, the variable is set to zero (arithmetic false), and we continue the loop until it be-
comes non-zero. Within the loop, we calculate the square and cube of the counter variable
a. At the end of the loop, the value of the counter variable is evaluated. If it is less than
10 (the maximum number of iterations), it is incremented by one, or else the variable
finished is given the value of one, making finished arithmetically true, thereby
terminating the loop. Running the script gives this result:

[me@linuxbox ~]$ arith-loop
a a**2 a**3
0 (0] (0]

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

515

34 — Strings and Numbers

bc - An Arbitrary Precision Calculator Language

We have seen how the shell can handle integer arithmetic, but what if we need to perform
higher math or even just use floating-point numbers? The answer is, we can’t. At least not
directly with the shell. To do this, we need to use an external program. There are several
approaches we can take. Embedding Perl or AWK programs is one possible solution, but
unfortunately, it’s outside the scope of this book.

Another approach is to use a specialized calculator program. One such program found on
many Linux systems is called bc.

The bc program reads a file written in its own C-like language and executes it. A bc
script may be a separate file, or it may be read from standard input. The bc language sup-
ports quite a few features including variables, loops, and programmer-defined functions.
We won’t cover bc entirely here, just enough to get a taste. bc is well documented by its
man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2.

/* A very simple bc script */

2 + 2

The first line of the script is a comment. bc uses the same syntax for comments as the C
programming language. Comments, which may span multiple lines, begin with /* and
end with */.

Using bc

If we save the previous bc script as f00. bc, we can run it this way:

[me@linuxbox ~]$ bc foo.bc

bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software
Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type “warranty'.

4

If we look carefully, we can see the result at the very bottom, after the copyright message.
This message can be suppressed with the - (quiet) option.

516

bc — An Arbitrary Precision Calculator Language

bc can also be used interactively.

[me@linuxbox ~]$ bc -q
2 + 2

4

quit

When using bc interactively, we simply type the calculations we want to perform, and
the results are immediately displayed. The bc command quit ends the interactive ses-
sion.

It is also possible to pass a script to bc via standard input.

[me@linuxbox ~]%$ bc < foo.bc
4

The ability to take standard input means that we can use here documents, here strings,
and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ bc <<< "2+2"
4

An Example Script

As a real-world example, we will construct a script that performs a common calculation,
monthly loan payments. In the script below, we use a here document to pass a script to
bc:

#!/bin/bash
loan-calc: script to calculate monthly loan payments

PROGNAME="${0##*/}" # Use parameter expansion to get basename

usage () {
cat << _EOF_
Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

517

34 — Strings and Numbers

Where:

PRINCIPAL is the amount of the loan.
INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF
b

if (($# != 3)); then
usage
exit 1

fi

principal=%$1
interest=%$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12
p = $principal
n $months
a=p* ((1*((2+1)rn))/ (((L+1)Arn)-1))
print a, "\n"
EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180
1270.7222490000

This example calculates the monthly payment for a $135,000 loan at 7.75 percent APR
for 180 months (15 years). Notice the precision of the answer. This is determined by the
value given to the special scale variable in the bc script. A full description of the bc
scripting language is provided by the bc man page. While its mathematical notation is
slightly different from that of the shell (bc more closely resembles C), most of it will be
quite familiar, based on what we have learned so far.

Summing Up

In this chapter, we learned about many of the little things that can be used to get the “real

518

Summing Up

work” done in scripts. As our experience with scripting grows, the ability to effectively
manipulate strings and numbers will prove extremely valuable. Our loan-calc script
demonstrates that even simple scripts can be created to do some really useful things.

Extra Credit

While the basic functionality of the Loan-calc script is in place, the script is far from
complete. For extra credit, try improving the Loan-calc script with the following fea-

tures:
[]

Full verification of the command line arguments

A command line option to implement an “interactive” mode that will prompt the
user to input the principal, interest rate, and term of the loan

A better format for the output

Further Reading

The Bash Reference Manual has a good discussion of parameter expansion:
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expan-
sion

The Wikipedia has a good article describing bit operations:
http://en.wikipedia.org/wiki/Bit operation

and an article on ternary operations:
http://en.wikipedia.org/wiki/Ternary operation

as well as a description of the formula for calculating loan payments used in our
loan-calc script:
http://en.wikipedia.org/wiki/Amortization calculator

519

http://en.wikipedia.org/wiki/Amortization_calculator
http://en.wikipedia.org/wiki/Ternary_operation
http://en.wikipedia.org/wiki/Bit_operation
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion

35 — Arrays

35 - Arrays

In the previous chapter, we looked at how the shell can manipulate strings and numbers.
The data types we have looked at so far are known in computer science circles as scalar
variables; that is, they are variables that contain a single value.

In this chapter, we will look at another kind of data structure called an array, which holds
multiple values. Arrays are a feature of virtually every programming language. The shell
supports them, too, though in a rather limited fashion. Even so, they can be very useful
for solving some types of programming problems.

What Are Arrays?

Arrays are variables that hold more than one value at a time. Arrays are organized like a
table. Let’s consider a spreadsheet as an example. A spreadsheet acts like a two-dimen-
sional array. It has both rows and columns, and an individual cell in the spreadsheet can
be located according to its row and column address. An array behaves the same way. An
array has cells, which are called elements, and each element contains data. An individual
array element is accessed using an address called an index or subscript.

Most programming languages support multidimensional arrays. A spreadsheet is an ex-
ample of a multidimensional array with two dimensions, width and height. Many lan-
guages support arrays with an arbitrary number of dimensions, though two- and three-di-
mensional arrays are probably the most commonly used.

Arrays in bash are limited to a single dimension. We can think of them as a spreadsheet
with a single column. Even with this limitation, there are many applications for them. Ar-
ray support first appeared in bash version 2. The original Unix shell program, sh, did
not support arrays at all.

Creating an Array

Array variables are named just like other bash variables, and are created automatically
when they are accessed. Here is an example:

520

Creating an Array

[me@linuxbox ~]$ a[1]=foo
[me@linuxbox ~]$ echo ${a[1]}
foo

Here we see an example of both the assignment and access of an array element. With the
first command, element 1 of array a is assigned the value “foo”. The second command
displays the stored value of element 1. The use of braces in the second command is re-
quired to prevent the shell from attempting pathname expansion on the name of the array
element.

An array can also be created with the dec lare command.

[me@linuxbox ~]$ declare -a a

Using the - a option, this example of declare creates the array a.

Assigning Values to an Array

Values may be assigned in one of two ways. Single values may be assigned using the fol-
lowing syntax:

name[subscript]=value

where name is the name of the array and subscript is an integer (or arithmetic ex-
pression) greater than or equal to zero. Note that the first element of an array is subscript
zero, not one. value is a string or integer assigned to the array element.

Multiple values may be assigned using the following syntax:

name=(valuel value2 ...)

where name is the name of the array and va lue placeholders are values assigned se-

quentially to elements of the array, starting with element zero. For example, if we wanted
to assign abbreviated days of the week to the array days, we could do this:

[me@linuxbox ~]$ days=(Sun Mon Tue Wed Thu Fri Sat)

It is also possible to assign values to a specific element by specifying a subscript for each
value.

[me@linuxbox ~]$ days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu
[5]=Fri [6]=Sat)

521

35 — Arrays

Accessing Array Elements

So what are arrays good for? Just as many data-management tasks can be performed with
a spreadsheet program, many programming tasks can be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We will construct a
script that examines the modification times of the files in a specified directory. From this
data, our script will output a table showing at what hour of the day the files were last
modified. Such a script could be used to determine when a system is most active. This
script, called hours, produces this result:

[me@linuxbox ~1$ hours .
Hour Files Hour Files
00 0 12 11
01 1 13 7

02 0 14 1

03 0 15 7

04 1 16 6

05 1 17 5

06 6 18 4

07 3 19 4

08 1 20 1

09 14 21 0

10 2 22 0

11 5 23 0
Total files = 80

We execute the hours program, specifying the current directory as the target. It pro-
duces a table showing, for each hour of the day (0-23), how many files were last modi-
fied. The code to produce this is as follows:

#!/bin/bash

hours: script to count files by modification time

usage () {
echo "usage: ${0##*/} directory" >&2

3

Check that argument is a directory

522

Accessing Array Elements

if [[! -d "$1"]],; then
usage
exit 1

fi

Initialize array
for 1 in {0..23}; do hours[i]=0; done

Collect data

for 1 in $(stat -c %y "$1"/* | cut -c 12-13); do
j:|l${i#0}ll
((++hours[j]))
((++count))

done

Display data
echo -e "Hour\tFiles\tHour\tFiles"
echo -e "----\t----- \t----\t----- "
for 1 in {0..11}; do
J=$((1 + 12))
printf "%02d\t%d\t%02d\t%d\n" \
ll$i|l \
"${hours[i]}" \
"$3" N\
"${hours[j]}"
done
printf "\nTotal files = %d\n" "$count"

The script consists of one function (Uusage) and a main body with four sections. In the
first section, we check that there is a command line argument and that it is a directory. If
it is not, we display the usage message and exit.

The second section initializes the array hours. It does this by assigning each element a
value of zero. There is no special requirement to prepare arrays prior to use, but our script
needs to ensure that no element is empty. Note the interesting way the loop is con-
structed. By employing brace expansion ({@. .23}), we are able to easily generate a se-
quence of words for the for command.

The next section gathers the data by running the stat program on each file in the direc-
tory. We use cut to extract the two-digit hour from the result. Inside the loop, we need to
remove leading zeros from the hour field, since the shell will try (and ultimately fail) to
interpret values 00 through 09 as octal numbers (see Table 34-2). Next, we increment the
value of the array element corresponding with the hour of the day. Finally, we increment

523

35 — Arrays

a counter (count) to track the total number of files in the directory.

The last section of the script displays the contents of the array. We first output a couple of
header lines and then enter a loop that produces four columns of output. Lastly, we output
the final tally of files.

Array Operations

There are many common array operations. Such things as deleting arrays, determining
their size, sorting, and so on, have many applications in scripting.

Outputting the Entire Contents of an Array

The subscripts * and @ can be used to access every element in an array. As with posi-
tional parameters, the @ notation is the more useful of the two. Here is a demonstration:

[me@linuxbox ~]$ animals=("a dog" "a cat" "a fish")
[me@linuxbox ~]$ for i in ${animals[*]}; do echo $i; done
a

dog

a

cat

a

fish

[me@linuxbox ~]$ for i in ${animals[@]}; do echo $i; done
a

dog

a

cat

a

fish

[me@linuxbox ~]$ for i in "${animals[*]}"; do echo $i; done
a dog a cat a fish

[me@linuxbox ~]$ for i in "${animals[@]}"; do echo $i; done
a dog

a cat

a fish

We create the array animals and assign it three two-word strings. We then execute four
loops to see the effect of word splitting on the array contents. The behavior of notations $
{animals[*]} and ${animals[@]} is identical until they are quoted. The * nota-
tion results in a single word containing the array’s contents, while the @ notation results

524

Array Operations

in three two-word strings, which matches the array's “real” contents.

Determining the Number of Array Elements

Using parameter expansion, we can determine the number of elements in an array in
much the same way as finding the length of a string. Here is an example:

[me@linuxbox ~]1$ a[100]=fo0

[me@linuxbox ~]$ echo ${#a[@]} # number of array elements
1

[me@linuxbox ~]$ echo ${#a[100]} # length of element 100
3

We create array a and assign the string 00 to element 100. Next, we use parameter ex-
pansion to examine the length of the array, using the @ notation. Finally, we look at the
length of element 100, which contains the string f00. It is interesting to note that while
we assigned our string to element 100, bash reports only one element in the array. This
differs from the behavior of some other languages in which the unused elements of the ar-
ray (elements 0-99) would be initialized with empty values and counted. In bash, array
elements exist only if they have been assigned a value regardless of their subscript.

Finding the Subscripts Used by an Array

As bash allows arrays to contain “gaps” in the assignment of subscripts, it is sometimes
useful to determine which elements actually exist. This can be done with a parameter ex-
pansion using the following forms:

${tarray[*]}
${!array[@]}

where array is the name of an array variable. Like the other expansions that use * and @,
the @ form enclosed in quotes is the most useful, as it expands into separate words.

[me@linuxbox ~]$ foo=([2]=a [4]=b [6]=c)

[me@linuxbox ~]$ for i in "${foo[@]}"; do echo $i; done
a

b

c

[me@linuxbox ~]$ for i in "${!foo[@]}"; do echo $i; done
2

4

525

35 — Arrays

Assigning Array Elements with read -a

The read builtin has an option (-a) to place words into an indexed array rather than a
series of variables as we have done before. Here is an example:

[me@linuxbox ~]$ declare -a foo

[me@linuxbox ~]$ read -a foo <<< "Oth 1st 2nd 3rd 4th"
[me@linuxbox ~]$ for i in "${foo[@]}"; do echo "$i"; done
0th

1st

2nd

3rd

4th

Adding Elements to the End of an Array

Knowing the number of elements in an array is no help if we need to append values to the
end of an array since the values returned by the * and @ notations do not tell us the maxi-
mum array index in use. Fortunately, the shell provides us with a solution. By using the
+= assignment operator, we can automatically append values to the end of an array. Here,
we assign three values to the array T00 and then append three more.

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
abc

[me@linuxbox ~1$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcdef

Reading a File Into an Array

Recent versions of bash include a new builtin named mapfile which can read standard
input directly into an indexed array. Its syntax looks like this:

mapfile -options array

526

Array Operations

The mapfile command has some interesting options some of which are shown in table

35-1.

Table 35-1: mapfile options

Option
-d delim
-n count

-0 origin

-S count
-t

Description

Use de 1im to terminate lines rather than a newline.
Only read count lines.

Begin assigning array elements at index origin rather than
index 0.

Skip count lines at the beginning of the file.

Trim trailing delimiter from each line.

To demonstrate mapfile in action, we’ll create a short script that produces random
four-word passphrases. These are useful as alternatives to conventional passwords be-
cause they are long and yet easy to remember (provided you know how to spell ;-).

#!/bin/bash

array-mapfile - demonstrate mapfile builtin

DICTIONARY=/usr/share/dict/words
WORDLIST=~/wordlist.txt
declare -a words

create filtered word list
grep -v \' < "$DICTIONARY" \
-v "[[:upper:]]" \
| shuf > "$WORDLIST"

| grep

read WORDLIST into array
mapfile -t -n 32767 words < "$WORDLIST"

create four word passphrase
while [[-z $REPLY]]; do
echo "${words[$RANDOM]}" \

527

35 — Arrays

"${words[SRANDOM]}" \
"${words[$RANDOM]}" \

"${words[$RANDOM]}"
echo
read -r -p "Enter to continue, gq to quit > "
echo
done

This script uses the /usr/share/dict/words file filtered to remove apostrophes
and uppercase letters. We use the shuf command to shuffle the word list to get a nice
random order.

We next load the first 32767 words in the file into the words array. Why 327677 It’s be-
cause we are going to use the RANDOM variable to choose random elements from the ar-
ray and each time the RANDOM variable is referenced it returns a random integer between
0 and 32767.

[me@linuxbox ~]$./array-mapfile
conversions slumbers appendages metastasizing

Enter to continue, q to quit >

kettles rhinestones unused demagnetizes
Enter to continue, q to quit >

wear conveys characterizing extrusion

Enter to continue, g to quit > q

Here we see the output. Each time we press Enter the script displays four random
words.

Slicing an Array

There is a form of parameter expansion we can use to extract a group of contiguous ele-
ments called a slice from an array. This expansion results in array elements from the de-
sired slice of the original array as shown below.

[me@linuxbox ~]$ arr=(0th 1st 2nd 3rd 4th)

528

Array Operations

[me@linuxbox ~]$ echo "${arr[@]:2:3}"
2nd 3rd 4th

In this example we create an array with five elements. Next, we extract the three elements
from the array starting at index two. By specifying a negative index value we count frome
the end of the array rather than the beginning. In the example below we extract the final
two elements of the array. Notice the required leading space before the minus sign.

[me@linuxbox ~]$ echo "${arr[@]: -2:2}"
3rd 4th

We can also easily create an array containing the elements of a slice.

[me@linuxbox ~1$ arr2=("${arr[@]:2:3}")
[me@linuxbox ~]$ echo "${arr2[@]}"
2nd 3rd 4th

Here we created an array arr2 and populated it with three elements from arr.

Sorting an Array

Just as with spreadsheets, it is often necessary to sort the values in a column of data. The
shell has no direct way of doing this, but it's not hard to do with a little coding.

#!/bin/bash
array-sort: Sort an array

a=(f edc b a)

echo "Original array: " "${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo "$i"; done | sort))
echo "Sorted array: " "${a_sorted[@]}"

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: f ed c b a

529

35 — Arrays

Sorted array: abcdef

The script operates by copying the contents of the original array (@) into a second array
(a_sorted) with a tricky piece of command substitution. This basic technique can be
used to perform many kinds of operations on the array by changing the design of the
pipeline.

Deleting an Array

To delete an array, use the unset command.

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcdef

[me@linuxbox ~]%$ unset foo
[me@linuxbox ~]$ echo ${foo[@]}

[me@linuxbox ~]$

unset may also be used to delete single array elements.

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]1$ echo ${foo[@]}
abcdef

[me@linuxbox ~]$ unset 'foo[2]'
[me@linuxbox ~]1$ echo ${foo[@]}
abdef

In this example, we delete the third element of the array, subscript 2. Remember, arrays
start with subscript zero, not one! Notice also that the array element must be quoted to
prevent the shell from performing pathname expansion.

Interestingly, the assignment of an empty value to an array does not empty its contents.

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ foo=

[me@linuxbox ~]$ echo ${foo[@]}
bcdef

530

Array Operations

Any reference to an array variable without a subscript refers to element zero of the array.

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcdef

[me@linuxbox ~]$ foo=A
[me@linuxbox ~]$ echo ${foo[@]}
Abcdef

Associative Arrays

bash versions 4.0 and greater support associative arrays. Associative arrays use strings
rather than integers as array indexes thus creating key-value pairs much alike a dictionary
or hash table. This capability allows interesting new approaches to managing data. For
example, we can create an array called colors and use color names as indexes.

declare -A colors
colors["red"]="#ff0000"
colors["green"]="#00ff00"
colors["blue"]="#0000ff"

Unlike integer indexed arrays, which are created by merely referencing them, associative
arrays must be explicitly created with the dec lare command using the -A option. As-
sociative array elements are accessed in much the same way as integer indexed arrays.

echo ${colors["blue"]}

We can use the key-value pair characteristic of associative arrays to perform lookup
tasks. An associative array allows us to directly access the desired data rather than having
to sequentially search for it as with an indexed array. In the program below, we read the
names of all files in the /usr/bin directory along with their respective sizes into an ar-

ray and then perform lookups based on user input.

#!/bin/bash
array-lookup - demonstrate lookup using associative array

declare -A cmds

531

35 — Arrays

fill array with commands and file sizes
cd /usr/bin || exit 1
echo "Loading commands..."
for i in ./*; do
cmds["$i"]=$(stat -c "%s" "$i")
done
echo "${#cmds[@]} commands loaded"

perform lookup
while true; do
read -r -p "Enter command (empty to quit) -> "
[[-z $REPLY]] && break
if [[-x $REPLY]]; then
echo "S$REPLY" "${cmds[./$REPLY]}" "bytes"
else
echo "No such command '$REPLY'."
fi
done

When we run the program we get the following:

[me@linuxbox ~]$./array-lookup
Loading commands. . .

2329 commands loaded

Enter command (empty to quit) -> 1s
1s 138216 bytes

Enter command (empty to quit) -> cp
cp 141832 bytes

Enter command (empty to quit) -> mv
mv 137752 bytes

Enter command (empty to quit) -> rm
rm 59912 bytes

Enter command (empty to quit) ->
[me@linuxbox ~]$%$

In the next chapter, we will look at a script that makes good use of associative arrays to
produce an interesting report.

Using Associative Arrays to Simulate Multiple Dimensions

While it’s true bash only directly supports single dimension arrays, it’s not hard to

532

Associative Arrays

“fake” multi-dimensional arrays by using an associative array and creating index strings
that look like multi-dimensional array addresses. Here’s an example:

#!/bin/bash
array-multi - simulate a multi-dimensional array
declare -A multi_array

Load array with a sequence of numbers
counter=1
for row in {1..10}; do
for col in {1..5}; do
address="$row, $col"
multi_array["$address"]=$counter
((counter++))
done
done

Output array contents
for row in {1..10}; do
for col in {1..5}; do
address="$row, $col"
echo -ne "${multi_array["$address"]}" "\t"
done
echo
done

Running this program results in the following:

[me@linuxbox ~]$./array-multi
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50

533

35 — Arrays

Summing Up

If we search the bash man page for the word array, we find many instances of where
bash makes use of array variables. Most of these are rather obscure, but they may pro-
vide occasional utility in some special circumstances. In fact, the entire topic of arrays is
rather under-utilized in shell programming owing largely to the fact that the traditional
Unix shell programs (such as sh) lacked any support for arrays. This lack of popularity is
unfortunate because arrays are widely used in other programming languages and provide
a powerful tool for solving many kinds of programming problems.

Arrays and loops have a natural affinity and are often used together. The following form
of loop is particularly well-suited to calculating indexed array subscripts:

for ((expr; expr; expr))

Further Reading

e A couple of Wikipedia articles about the data structures found in this chapter:
http://en.wikipedia.org/wiki/Scalar (computing)

http://en.wikipedia.org/wiki/Associative array

534

http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Scalar_(computing)

36 — Exotica

36 - Exotica

In this, the final chapter of our journey, we will look at some odds and ends. While we
have certainly covered a lot of ground in the previous chapters, there are many bash fea-
tures that we have not covered. Most are fairly obscure and useful mainly to those inte-
grating bash into a Linux distribution. However, there are a few that, while not in com-
mon use, are helpful for certain programming problems. We will cover them here.

Group Commands and Subshells

bash allows commands to be grouped together. This can be done in one of two ways, ei-
ther with a group command or with a subshell. We introduced group commands back in
Chapter 6, “Redirection” and as we recall, a group command uses this syntax:

{ commandl; command2; [command3; ...] }

Subshells use a similar syntax:
(commandl1; command2; [command3;...])

A group command surrounds its commands with braces and a subshell uses parentheses.
It is important to note that, because of the way bash implements group commands, the
braces must be separated from the commands by a space and the last command must be
terminated with either a semicolon or a newline prior to the closing brace.

So, what are group commands and subshells good for? While they have an important dif-
ference (which we will get to in a moment), they both can be used to manage redirection.
Let’s consider a script segment that performs redirection on multiple commands.

1s -1 > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward. Three commands have their output redirected to a file
named output. txt. Using a group command, we could code this as follows:

535

36 — Exotica

{ 1s -1; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar.

(ls -1; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique we have saved ourselves some typing, but where a group command
or subshell really shines is with pipelines. When constructing a pipeline of commands, it
is often useful to combine the results of several commands into a single stream. Group
commands and subshells make this easy.

{ 1s -1, echo "Listing of foo.txt"; cat foo.txt; } | 1lpr

Here we have combined the output of our three commands and piped them into the input
of 1pr to produce a printed report.

While group commands and subshells look similar and can both be used to combine
streams for redirection, there is an important difference between the two. Whereas a
group command executes all of its commands in the current shell, a subshell (as the name
suggests) executes its commands in a child copy of the current shell. This means the envi-
ronment (including things like shell functions, aliases, and variables) is copied and given
to a new instance of the shell. This copy of the environment is different from the way a
child process ordinarily works in that the subshell inherits an entire copy of the parent’s
environment whereas a child process only inherits exported variables from the parent
shell. When the subshell exits, its copy of the environment is lost, so any changes made to
the subshell’s environment (including variable assignments) are lost as well.

Most importantly, subshells, like child processes and unlike group commands, cannot al-
ter the parent shell’s environment. Let’s demonstrate; first with a group command:

[me@linuxbox ~]$ foo="Original Value"

[me@linuxbox ~]%$ { foo="Altered Value"; echo $foo; }
Altered Value

[me@linuxbox ~]$ echo $foo

Altered Value

Next, we’ll do the same steps with a subshell:

536

Group Commands and Subshells

[me@linuxbox ~]$ foo="Original Value"

[me@linuxbox ~]$ (foo="Altered Value"; echo $foo)
Altered Value

[me@linuxbox ~]$ echo $foo

Original Value

As we can see, the group command is able to modify the value of 00 in the current shell
while the subshell cannot. This characteristic of subshells is handy when we want to do
something like change directories. When we perform a cd command in a subshell the
current working directory is altered for the duration of the subshell, but after returning to
the parent shell the current working directory is unchanged.

[me@linuxbox ~]$ pwd

/home/me

[me@linuxbox ~1$ (cd /usr/bin; pwd)
/usr/bin

[me@linuxbox ~]$ pwd

/home/me

In general however, unless a script requires a subshell, group commands are preferable to
subshells. Group commands are both faster and require less memory.

In the script that follows, we will use group commands and look at several programming
techniques that can be employed in conjunction with associative arrays. This script,
called array-2, when given the name of a directory, prints a listing of the files in the
directory along with the names of the file's owner and group owner. At the end of the
listing, the script prints a tally of the number of files belonging to each owner and group.
Here we see the results (condensed for brevity) when the script is given the directory /
usr/bin:

[me@linuxbox ~]$ array-2 /usr/bin

/usr/bin/2to3-2.6 root root
/usr/bin/2to3 root root
/usr/bin/a2p root root
/usr/bin/abrowser root root
/usr/bin/aconnect root root
/usr/bin/acpi_fakekey root root
/usr/bin/acpi_listen root root
/usr/bin/add-apt-repository root root

537

36 — Exotica

/usr/bin/zipgrep root root

/usr/bin/zipinfo root root
/usr/bin/zipnote root root
/usr/bin/zip root root
/usr/bin/zipsplit root root
/usr/bin/zjsdecode root root
/usr/bin/zsoelim root root

File owners:
daemon : 1 file(s)
root : 1394 file(s)

File group owners:

crontab 1 file(s)
daemon 1 file(s)
lpadmin 1 file(s)
mail 4 file(s)
mlocate 1 file(s)
root : 1380 file(s)
shadow 2 file(s)
ssh : 1 file(s)
tty : 2 file(s)
utmp 2 file(s)

Here is a listing (with line numbers) of the script:

1 #!/bin/bash

2

3 # array-2: Use arrays to tally file owners
4

5 declare -A files file_group file_owner groups owners
6

7 if [[! -d "$1"]]; then

8 echo "Usage: array-2 dir" >&2

9 exit 1

10 fi

11

12 for i in "$1"/*; do

13 owner="$(stat -c %U "$i")"

14 group="$(stat -c %G "$i")"

15 files["$i"]="$i"

16 file owner["$i"]="$owner"

538

Group Commands and Subshells

17 file_group["$i"]="$group"

18 ((++towners[$owner]))

19 ((++groups[$group]))

20 done

21

22 # List the collected files

23 { for i in "${files[@]}"; do

24 printf "%-40s %-10s %-10s\n" \

25 "$i" "${file_owner["$i"]}" "${file_group["$i"]}"
26 done } | sort

27 echo

28

29 # List owners

30 echo "File owners:"

31 { for 1 in "${'!'owners[@]}"; do

32 printf "%-10s: %5d file(s)\n" "$i" "${owners["$i"]}"
33 done } | sort

34 echo

35

36 # List groups

37 echo "File group owners:"

38 { for i in "${!'groups[@]}"; do

39 printf "%-10s: %5d file(s)\n" "$i" "${groups["$i"]}"
40 done } | sort

Let's take a look at the mechanics of this script:

Line 5: Associative arrays must be created with the declare command using the -A
option. In this script we create five arrays as follows:

- files contains the names of the files in the directory, indexed by filename
- file_group contains the group owner of each file, indexed by filename

- file_owner contains the owner of each file, indexed by file name

- groups contains the number of files belonging to the indexed group

- owners contains the number of files belonging to the indexed owner

Lines 7-10: These lines check to see that a valid directory name was passed as a posi-
tional parameter. If not, a usage message is displayed and the script exits with an exit sta-
tus of 1.

Lines 12-20: These lines loop through the files in the directory. Using the stat com-
mand, lines 13 and 14 extract the names of the file owner and group owner and assign the
values to their respective arrays (lines 16 and 17) using the name of the file as the array

539

36 — Exotica

index. Likewise, the file name itself is assigned to the files array (line 15).

Lines 18-19: The total number of files belonging to the file owner and group owner are
incremented by one.

Lines 22-27: The list of files is output. This is done using the "${array[@]}" pa-
rameter expansion which expands into the entire list of array elements with each element
treated as a separate word. This allows for the possibility that a filename may contain
embedded spaces. Also note that the entire loop is enclosed in braces thus forming a
group command. This permits the entire output of the loop to be piped into the sort
command. This is necessary because the expansion of the associative array elements is
not sorted.

Lines 29-40: These two loops are similar to the file list loop except that they use the "$
{!array[@]}" expansion which expands into the list of array indexes rather than the
list of array elements.

Process Substitution

We saw an example of the subshell environment problem in Chapter 28, “Reading Key-
board Input,” when we discovered that a read command in a pipeline does not work as
we might intuitively expect. To recap, if we construct a pipeline like this:

echo "foo" | read
echo $REPLY

the content of the REPLY variable is always empty because the read command is exe-
cuted in a subshell, and its copy of REPLY is destroyed when the subshell terminates.

Because commands in pipelines are always executed in subshells, any command that as-
signs variables will encounter this issue. Fortunately, the shell provides an exotic form of
expansion called process substitution that can be used to work around this problem.

Process substitution is expressed in two ways.

For processes that produce standard output, it looks like this:
<(list)

or, for processes that intake standard input, it looks like this:
>(list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution like this:

540

Process Substitution

read < <(echo "foo")
echo $REPLY

Process substitution allows us to treat the output of a subshell as an ordinary file for pur-
poses of redirection. In fact, since it is a form of expansion, we can examine its real
value.

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output of the subshell
is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an example of a
read loop that processes the contents of a directory listing created by a subshell:

#!/bin/bash
pro-sub: demo of process substitution

while read -r attr 1links owner group size date time filename; do

cat << _EOF_
Filename: $filename
Size: $size
owner: $owner
Group: $group
Modified: $date $time
Links: $links

Attributes: $attr

EOF
done < <(1ls -1 --time-style="+%F %H:%m"| tail -n +2)

The loop executes read for each line of a directory listing. The listing itself is produced
on the final line of the script. This line redirects the output of the process substitution into
the standard input of the loop. The tail command is included in the process substitution
pipeline to eliminate the first line of the listing, which is not needed.

When executed, the script produces output like this:

541

36 — Exotica

[me@linuxbox ~]$ pro-sub | head -n 20

Filename: addresses. ldif
Size: 14540

Owner: me

Group: me

Modified: 2009-04-02 11:12
Links: 1

Attributes: -rw-r--r--
Filename: bin

Size: 4096

Owner: me

Group: me

Modified: 2009-07-10 07:31
Links: 2

Attributes: drwxr-xr-x
Filename: bookmarks.html
Size: 394213

Owner: me

Group: me

Constructing Commands with eval

The eval builtin is a strange and mysterious command. Simply described, it takes a list
of arguments, combines them into a string and passes it to the shell to execute. So the
question naturally becomes what’s this for? Why would we use this?

There are certain cases in shell scripting where we need to construct a command dynami-
cally at run-time and eval allows us to do that. Let’s perform an experiment. While we
didn’t cover it explicitly, it’s possible to place a command in a string variable and then
rely on parameter expansion to expand the variable into a command:

[me@linuxbox ~]$ cmd="echo foo"
[me@linuxbox ~]$ $cmd

foo

[me@linuxbox ~]$%$

Now let’s look at what happens when we include a variable in our command:

542

Constructing Commands with eval

[me@linuxbox ~]$ str=abcde
[me@linuxbox ~]1$ cmd="echo $str"
[me@linuxbox ~]$ $cmd

abcde

[me@linuxbox ~]$

That does what we expect, but let’s see what happens when we assign a new value to
str.

[me@linuxbox ~]$ str=ABCDE
[me@linuxbox ~]$ $cmd
abcde

[me@linuxbox ~]$

The results didn’t change. This makes sense because we already performed parameter ex-
pansion on $str when we assigned cmd. But what if we wanted to have the variable ex-
panded later? We could enclose our command in single quotes to suppress parameter ex-
pansion during the initial variable assignment.

[me@linuxbox ~1$ cmd='echo $str'
[me@linuxbox ~]$ $cmd

$str

[me@linuxbox ~1$

Though we didn’t get the parameter expansion during the assignment of cmd, we didn’t
get it when we executed cmd either. The reason for this is the shell only performs expan-
sion once even when the expansion ($cmd) results in something that could be further ex-
panded ($str).

If we use eval we get the additional level of expansion.

[me@linuxbox ~]$ str=abcde
[me@linuxbox ~1$ cmd='echo $str'
[me@linuxbox ~]$ eval "$cmd"
abcde

[me@linuxbox ~]$ str=ABCDE
[me@linuxbox ~]$ eval "$cmd"
ABCDE

[me@linuxbox ~]$%$

543

36 — Exotica

This shows us what eval does. It joins its arguments into a single string, performs tilde,
parameter, and pathname expansion on the contents of the string, then passes the string to
the current shell (no subshell is created) for execution.

Be Careful with eval

The eval command has a bad reputation. This stems from concern over how
easy it is to add security vulnerabilities to a shell script with eval. If the string
given to eval comes from an external source (i.e., user input), care must be
taken to ensure that there are no unauthorized commands embedded in the string
(called a code injection attack). Always verify the contents of the string given to
eval.

A Wordle Helper

In the script that follows, we will use eval to help find possible answers to a Wordle
puzzle.

For those unfamiliar with this popular game, Wikipedia describes it this way:

Wordle is a web-based word game created and developed by Welsh software
engineer Josh Wardle. Players have six attempts to guess a five-letter word,
with feedback given for each guess in the form of colored tiles indicating
when letters match or occupy the correct position.

Basically, when we make a guess the game will tell us if any of the letters in the guess are
present in the secret word and if a letter in the guess matches the position in the secret
word. So each time we make a guess, we learn more about the secret word until we
(hopefully) can figure out its identity. The goal of the game is to guess the word in the
fewest number of tries.

The helper script outputs a list of words that match what is known from the guesses so
far. To do this, the script is given a simple regular expression that tells the script what let-
ters are known and in what positions they occupy in the secret word. In addition we also
provide a list of letters that are known to be contained within the secret word, and letters
that are known not to appear in the secret word.

Let’s say that the secret word is “about” and we guessed “bloat.” Wordle would tell us
the “0” and “t” appear in the word in their respective positions and that the word also
contains an “a” and a “b” in unknown positions and further, the secret word does not con-
tain an “l.” In this situation, we would invoke the script this way:

544

Constructing Commands with eval

[me@linuxbox ~]$ eval-wordle ..o.t +a +b -1

{3
t

The first argument is a five-character regular expression with the “0” and “t” in their re-
spective positions. Next are the known characters present in the secret word and the let-
ters known not to be the secret word. The script responds with:

abort
about
2

Showing that only two words in the dictionary meet the selection criteria.

The script works by filtering a dictionary (/usr/share/dict/words) according to
the selection criteria and then displaying what’s left. To do this, we need to construct a
long multi-part pipeline that varies in length depending on how many positional parame-
ters are provided on the command line. By doing it this way we eliminate the need for
temporary files to hold intermediate results.

1 #!/bin/bash
2 # eval-wordle - demonstrate eval by solving wordle puzzles

3 PROGNAME=${0##*/}

4 DICTIONARY=/usr/share/dict/words

5 usage() {

6 printf "%s\n" "Usage: ${PROGNAME} [-h]|--help]"

7 printf "%s\n" " ${PROGNAME} regex +-char..."
8 }

9 help_message() {

10 cat << _EOF_

11 $PROGNAME - Wordle Helper
12 $(usage)

13 Options:
14 -h, --help Display this help message and exit.

15 Arguments:

545

36 — Exotica

16
17
18
19
20
21
22

23

24

25
26
27

28
29

30
31

32
33
34

35
36

37
38
39

40

41
42
43
44

45
49

The first argument must be a five character regular
expression at minimum of '..... ' representing five
unknown characters in the answer. This is followed by
zero or more character known to be either present or
absent from the answer. These are expressed as either
+char for letters known to be present or -char for
letters known to not be in the answer.

Example:
$PROGNAME a.... +0 -V

This means we know that the answer starts with 'a' in
the first postion and also contains an 'o' but does
not contain a 'v'.

EOF

return

3

add_plus() { # Add a letter
local char="$1"

echo " | grep $char"
return

3

add_minus() { # Sutraact a letter
local char="$1"

echo " | grep -v $char"
return

3

Parse command-1line

lf [[ll$1ll == ll_hll || ll$1ll == ll__he'Lpll]]; then
help_message
exit 0

fi

if (("${#1}" == 5)); then

known_chars="$1"

546

Constructing Commands with eval

50 shift

48 else

46 echo "First argument must be a 5 character regex." >&2
a7 exit 1

51 fi

52 cmd="LANG=C grep 'A..... $' $DICTIONARY \

53 | grep -v '"[[:punct:]]"' \

54 | grep -v "[[:upper:]]' \

55 | grep '$known_chars'"

56 while [[-n "$1"]]; do

57 case "$1" in

58 -[[:alpha:]])

59 cmd="${cmd}$(add_minus "${1:1}")"
60 i

61 +[[:alpha:]])

62 cmd="${cmd}$(add_plus "${1:1}")"
63 i

64 &)

65 echo "Invalid argument '$1'" >&2
66 exit 1

67 T

68 esac

69 shift

70 done

71 eval "$cmd | tee >(wc -1)"

Let’s go over the interesting features of the script.

Lines 30-39: Defines two functions that are used to create single elements of the final
pipeline. One function adds a filter that requires the specified letter and the other function
adds a filter that excludes any word that contains the specified letter.

Lines 40-51: Begins our processing of the positional parameters starting with the first
one. We check if the first command line argument is the help option or the required five-
character regular expression.

Line 52: We create the beginning of the pipeline. The first step is to filter the dictionary
removing all words that are not exactly five characters long. Further we filter out out any
word that contains a punctuation symbol (usually apostrophes) as well uppercase letters
since Wordle never uses proper nouns.

Line 56: Begins a loop that processes the rest of the command line arguments. Each time

547

36 — Exotica

a “+letter” or “-letter” is found we remove the leading plus or minus sign and call the re-
spective function to add the next element of the pipeline to the command string.

Line 71: Here is where the actual work is performed. In order to get a count of the total
number of words, we pipe the filtered word list into tee which passes the list on to stan-
dard output (so that it gets displayed on the screen) and to a “file” which is actually the
WC program running in a process substitution. Tricky.

Traps

In Chapter 10, “Processes,” we saw how programs can respond to signals. We can add
this capability to our scripts, too. While the scripts we have written so far have not
needed this capability (because they have very short execution times, and do not create
temporary files), larger and more complicated scripts may benefit from having a signal
handling routine.

When we design a large, complicated script, it is important to consider what happens if
the user logs off or shuts down the computer while the script is running. When such an
event occurs, a signal will be sent to all affected processes. In turn, the programs repre-
senting those processes can perform actions to ensure a proper and orderly termination of
the program. Let’s say, for example, that we wrote a script that created a temporary file
during its execution. In the interests of good design, we would have the script delete the
file when the script finishes its work. It would also be smart to have the script delete the
file if a signal is received indicating that the program was going to be terminated prema-
turely.

bash provides a mechanism for this purpose known as a trap. Traps are implemented
with the appropriately named builtin command, trap. trap uses the following syntax:

trap argument signal [signal...]

where argument is a string that will be read and treated as a command and signal is the
specification of a signal that will trigger the execution of the interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo: simple signal handling demo

trap "echo 'I am ignoring you.''" SIGINT SIGTERM
for i in {1..5}; do

echo "Iteration $i of 5"
sleep 5

548

Traps

done

This script defines a trap that will execute an echo command each time either the SIG-
INT or SIGTERM signal is received while the script is running. Execution of the pro-
gram looks like this when the user attempts to stop the script by pressing Ctr 1-c:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5

Iteration 2 of 5

ACI am ignoring you.
Iteration 3 of 5

ACI am ignoring you.
Iteration 4 of 5

Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program, the message is
printed instead.

Constructing a string to form a useful sequence of commands can be awkward, so it is
common practice to specify a shell function as the command. In this example, a separate
shell function is specified for each signal to be handled:

#!/bin/bash
trap-demo2: simple signal handling demo

exit_on_signal SIGINT () {
echo "Script interrupted." 2>&1
exit ©

}

exit_on_signal SIGTERM () {
echo "Script terminated." 2>&1
exit O

}

trap exit_on_signal_SIGINT SIGINT
trap exit_on_signal SIGTERM SIGTERM

for 1 in {1..5}; do
echo "Iteration $i of 5"
sleep 5

549

36 — Exotica

done

This script features two trap commands, one for each signal. Each trap, in turn, speci-
fies a shell function to be executed when the particular signal is received. Note the inclu-
sion of an exit command in each of the signal-handling functions. Without an exit,
the script would continue after completing the function.

When the user presses Ctr1-c during the execution of this script, the results look like
this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5

Iteration 2 of 5

ACScript interrupted.

Besides the signals that are available to all programs, the trap builtin also supports sev-
eral internal and bash-specific ones. Of particular interest are EXIT and ERR. As one
might expect, the EXIT trap is activated when a script terminates. The ERR trap activates
whenever a command (with certain exceptions) exits with a non-zero exit status. This
works like a more useful version of the set -e option we looked at Chapter 30. Below
we have a short demonstration script of the EXIT and ERR traps. Notice the deliberate
error on line number 5.

1 #!/bin/bash
2 # trap-demo3 - demonstrate ERR and EXIT signal handling

3 trap "echo \"There is an error.\"" ERR
4 trap "echo \"The program has ended.\"" EXIT

5 echox "Running..."

6 read -r -p "Say something... " something
7 echo "$something"

This script defines the traps and then tries to display a line of text but the echo command
is misspelled. The script moves on to the next line where it waits for user input. Finally, it
displays whatever the user entered.

When we run this script, we get the following.

550

Traps

[me@linuxbox ~]$ trap-demo3

./trap-demo3: line 8: echox: command not found
There is an error.

Say something...

The program has ended.

The first thing we get is an error message from the shell about our misspelled command.
Next is the message from the ERR trap showing that it was activated. The read prompt
appears next, and if we press ENTER, a blank line is output and the EXIT trap message
announces that the program has ended.

Temporary Files

One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There is
something of an art to naming temporary files. Traditionally, programs on Unix-
like systems create their temporary files in the /tmp directory, a shared directory
intended for such files. However, since the directory is shared, this poses certain
security concerns, particularly for programs running with superuser privileges.
Aside from the obvious step of setting proper permissions for files exposed to all
users of the system, it is important to give temporary files nonpredictable file-
names. This avoids an exploit known as a temp race attack. One way to create a
nonpredictable (but still descriptive) name is to do something like this:

tempfile=/tmp/$(basename $0).$%.$RANDOM

This will create a filename consisting of the program’s name, followed by its
process ID (PID), followed by a random integer. Note, however, that the $RAN -
DOM shell variable returns only a value in the range of 1-32767, which is not a
large range in computer terms, so a single instance of the variable is not sufficient
to overcome a determined attacker.

A better way is to use the mktemp program (not to be confused with the mktemp
standard library function) to both name and create the temporary file. The mk -
temp program accepts a template as an argument that is used to build the file-
name. The template should include a series of “X” characters, which are replaced
by a corresponding number of random letters and numbers. The longer the series
of “X” characters, the longer the series of random characters. Here is an example:

tempfile=$(mktemp /tmp/foobar.$s. XXXXXXXXXX)

551

36 — Exotica

This creates a temporary file and assigns its name to the variable tempfile.
The “X” characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded
value of the special parameter $$ to obtain the PID) might be something like this:

/tmp/foobar.6593.U0ZuvM6654

For scripts that are executed by regular users, it may be wise to avoid the use of
the /tmp directory and create a directory for temporary files within the user’s
home directory, with a line of code such as this:

[[-d $HOME/tmp]] || mkdir $HOME/tmp

Asynchronous Execution

It is sometimes desirable to perform more than one task at the same time. We have seen
how all modern operating systems are at least multitasking if not multiuser as well.
Scripts can be constructed to behave in a multitasking fashion.

Usually this involves launching a script that, in turn, launches one or more child scripts to
perform an additional task while the parent script continues to run. However, when a se-
ries of scripts runs this way, there can be problems keeping the parent and child coordi-
nated. That is, what if the parent or child is dependent on the other and one script must
wait for the other to finish its task before finishing its own?

bash has a builtin command to help manage asynchronous execution such as this. The
wait command causes a parent script to pause until a specified process (i.e., the child
script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two scripts. First
a parent script.

#!/bin/bash

async-parent: Asynchronous execution demo (parent)
echo "Parent: starting..."

echo "Parent: launching child script..."

async-child &
pid=$!

552

Asynchronous Execution

echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..."
wait "$pid"

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

The second is a child script.

#!/bin/bash
async-child: Asynchronous execution demo (child)
echo "Child: child is running..."

sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is simple. The real action is being performed
by the parent. In the parent script, the child script is launched and put into the back-
ground. The process ID of the child script is recorded by assigning the pid variable with
the value of the $! shell parameter, which will always contain the process ID of the last
job put into the background.

The parent script continues and then executes a wait command with the PID of the child
process. This causes the parent script to pause until the child script exits, at which point
the parent script concludes.

When executed, the parent and child scripts produce the following output:

[me@linuxbox ~]$ async-parent

Parent: starting...

Parent: launching child script...

Parent: child (PID= 6741) launched.

Parent: continuing...

Child: child is running. ..

Parent: pausing to wait for child to finish...
Child: child is done. Exiting.

553

36 — Exotica

Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes

In most Unix-like systems, it is possible to create a special type of file called a named
pipe. Named pipes are used to create a connection between two processes and can be
used just like other types of files. They are not that popular, but they’re good to know
about.

There is a common programming architecture called client-server, which can make use of
a communication method such as named pipes, as well as other kinds of interprocess
communication such as network connections.

The most widely used type of client-server system is, of course, a web browser communi-
cating with a web server. The web browser acts as the client, making requests to the
server, and the server responds to the browser with web pages.

Named pipes behave like files but actually form first-in first-out (FIFO) buffers. As with
ordinary (unnamed) pipes, data goes in one end and emerges out the other. With named
pipes, it is possible to set up something like this:

processl > named_pipe

and this:
process2 < named_pipe

and it will behave like this:
processl | process2

Setting Up a Named Pipe

First, we must create a named pipe. This is done using the mkfifo command.

[me@linuxbox ~]$ mkfifo pipel
[me@linuxbox ~]$ ls -1 pipe1l
prw-r--r-- 1 me me 0 2009-07-17 06:41 pipel

Here we use mkfifo to create a named pipe called pipel. Using 1S, we examine the
file and see that the first letter in the attributes field is “p”, indicating that it is a named
pipe.

554

Named Pipes

Using Named Pipes

To demonstrate how the named pipe works, we will need two terminal windows (or alter-
nately, two virtual consoles). In the first terminal, we enter a simple command and redi-
rect its output to the named pipe.

[me@linuxbox ~]$ 1s -1 > pipel

After we press the Enter key, the command will appear to hang. This is because there is
nothing receiving data from the other end of the pipe yet. When this occurs, it is said that
the pipe is blocked. This condition will clear once we attach a process to the other end
and it begins to read input from the pipe. Using the second terminal window, we enter
this command:

[me@linuxbox ~]$ cat < pipel

The directory listing produced from the first terminal window appears in the second ter-
minal as the output from the cat command. The 1S command in the first terminal suc-
cessfully completes once it is no longer blocked.

Summing Up

Well, this completes our journey. The only thing left to do now is practice, practice, prac-
tice. Though we covered a lot of ground in our trek, there is so much more to explore.
There are thousands of command line programs waiting to be discovered and enjoyed.
Start digging around in /usr/bin and see!

For readers still hungry for more, check out my followup book, “Adventures with the
Linux Command Line” available for free download at LinuxCommand.org.

Further Reading

e The “Compound Commands” section of the bash man page contains a full de-
scription of group command and subshell notations.

e The EXPANSION section of the bash man page contains a subsection covering
process substitution.

e The Advanced Bash-Scripting Guide also has a discussion of process substitution:
http://tldp.org/L.DP/abs/html/process-sub.html

e Linux Journal has two good articles on named pipes. The first, from September

555

http://tldp.org/LDP/abs/html/process-sub.html

36 — Exotica

1997:
http://www.linuxjournal.com/article/2156

e and the second, from March 2009:

http://www.linuxjournal.com/content/using-named-pipes-fifos-bash

556

http://www.linuxjournal.com/content/using-named-pipes-fifos-bash
http://www.linuxjournal.com/article/2156

Index

Index

A
a2ps COMIMANG........cccveruerrvererrrerareeesreessneeeseeens 361
absolute pathnames...........ccccoeeveeverceerercveenceeennenns 9
alias command..........ccccoeeuvvvvveiieniinn. 52, 136
ALTASES...eveei e 44,52, 134
American National Standards Institute (see ANSI)
.. 176
American Standard Code for Information
Interchange (see ASCII)......cocevevererenienvenieneennen. 18
Y1 (ol 110 =P 270
anonymous FTP servers........ccccceevveeecevneeeeeenn. 221
ANST e 176
ANSI escape Codes.......ceevveeerreerreveesveennnes 176, 180
ANSLSY Sttt 176
Apache Web Server........ccoceverervienersieneennieenne 126
Applmage package format.........ccceceevvereerruvennns 190
apropos COMMANC........ceevverueriuererreeneeseeerreeennne 50
apt COMMANG.......cceerrerrerreeierrereeneereseesnreeeeeas 185
apt COMMANG.......cceerrerrerreeeerrereeneeeeseenneeeeneeas 185
apt-get COMMANd.........coeevvereenrerreenerseenenseenneees 185
aptitude command............ccevevervveneereenieenreeennn 185
ATChL .o 182
ArChIVING...coveereirieierieenteseete et 253
arithmetic expansion.............. 74,79, 393, 498, 507
arithmetic expressions.................. 74, 495, 507, 509
arithmetic Operators..........ccoeevveeevveerveennnnnns 74, 508
arithmetic truth testS.......ooeevvvveeervvvnreeeennnn. 420, 507
AITAYS e veveerereertensereereesetetentesteueeseesessessessessessessesns
append values to the end...........c.cccevvereureennes 526
assigning values........cccceeeeveerienieneenienneennenn. 521
ASSOCIALIVE..evvvveeieeeeeeieeeeeeeeeeieee e eeaaaen 531, 537
CTALINE..ceeuveerueeereerieerreeeteerreeeeeesrreeeeenaeeens 520
deleting.......cceeveeverienieeieneeieneee e 530
determine number of elements..................... 525
finding used subscripts........ccceevveveeerverennnnne 525
INAEX ettt 520
multidimensional..........ccccceeveveeveereecreeennenns 520
reading variables into..........cccceevueerniennieenne 430

SOTTIMG .. eeveeeureenmeeereeneerreeeeeeereesreesreesenneees 529
SUDSCIIPL. ..ottt 520
two-dimensional.........cccecceveeveriineriniennen. 520
ASClIL.cveieiiiinieereennene 82, 86, 244, 274, 287, 361
bell character..........cocceeveeeveeveecerereeecneeeeeans 173
CaITIAZe TEUIML. ceeureerrreeearnreereeeeeeeannnnereeeeens 291
collation order.......cccceeeeeeeeeennenn... 274,276, 417
control codes........ccovuvvvereeeieieeeinnnnes 82, 274, 355
groff output driver..........ceceevevereereeniieneenns 348
linefeed character...........cccooeveevieeneeneeneenne 291
null character.........coccevvevvereenenieee e, 244
printable characters.........c.cceeeverrvieerreeennnnen. 274
EEXEeeeeueeeeerureeeereeesreeeesiteeeeneeesneeesmeeesemnnnreeees 18
aspell command..........cccecveveererncieeriieerieeeeeens 326
ASSEIMDIET....couteueetirieeeeeeete et 368
assembly 1anguage.........ccceeveveeviereeeveeereeennnenns 368
asSigNMeNnt OPETALOLS. ...ccceerveerueerrueereerseeenreenaans 510
ASSOCIALIVE AITAYS..cccvverrrerreerirreeranrneeesannes 531, 537
asynchronous execution............ceceeveerverrveennnnen. 552
AUdIO CDS...ueeuieniriiriiereniereeiereeeteteeeeeee e 211
Automatic Private IP Addressing...........ccccveene. 220
AWK programming language.................... 326, 516
B
back references........ccccceveeevieeiiiiiiiiniinnnnn, 287, 321 f.
backslash escape sequences..........ccccecceveeereennenne 83
backslash-escaped special characters................. 172
backups, incremental............ccceeeverierceerereeenennns 257
basename command.........cc.ceeereererseenueennueennnne 478
DASH. e 2,134
INAN PABE...eeeuveernrerreerreesreeneeeeeareeessasseeeessnnes 50
basic regular expressions 277, 286 f., 319, 323, 333
bc command........cocceeeeeinineniee 516
Berkeley Software Distribution...........cccceeueen. 359
bg command..........c.cceeeeevereecieneenieeeere e 123
bINary.....ccceveeevereeeeeee e 98, 103, 368, 508
DIt MAaSK....eeiereieieeeeeeeeeeeeeeeeee e 102

Index

Dit OPerators.......cocvevveeienieeieneecieeeee et 512
Bourne, SteVe.......uueveeeeeeeiiiiiiiieeeeeeeeee e 2,6
brace expansion..........ccceceeeereverernvennnen. 75,79, 492
branching........ccceceevereienerrenieenieeeeeeeeene 410
break command............ccoeevvveeveiiiieeeeeeeen. 443, 486
broken links........ccccceeevieeciieneeciieseeece e 41
BSD Style....cooieieeeieeeeeeeee e 117
DUFFErING. ...eveeeeieieieeee e 199
DUES. ettt 460 f
build environment............cccccveeeeieeeeiiireeeeeeeenn. 373
bzip2 command...........cccceeereieriiininiineeee e 252
C

C programming language........... 368, 494, 511, 514
[U PRRRURSRN 368
cancel command...........cocveeeeveeeerueeeeeeeeenreeeennnes 366
carriage return..18, 82 f., 173, 274 f., 290, 325, 358
case compound command...........cceeeverveerrneerrnnen. 467
CASE CONVETSION....uuurreereeiirreeeeeeeiirreeeeeeeeeeeeeanenns 505
cat command...........eeevveeeevreeereeeeeeeeenneeenns 61, 290
cd COMMANd......coeevverreieeiiereeee e 9,11
CD-ROMS....uvieteeerreeteeeereeeeeeereeeveeeerereeennveees 211
cdrecord command..............eeeevveeeeineeeenreeeeninnnns 212

325

character ranges.........cceevveeeevveecueennne 28,272 1., 325
checksum file.......cccovveeeveeieieeieceeceeeee, 213
chgrp command...........ccceeeeciereerienreereseeeree s 110
Child Process.......cceeveerernienersienieeeeeeeeeeeene 115
chmod command.........cccceeevereeeerrrernnnns 97, 111, 382
chown command...........ceeeeveeereeeiieeeieeenennns 108, 110
CRIOME......oiiceieeieetecteeee et 387
chronological Sorting..........cccceeveevveeeceerreeennnnn. 298
(o (= 1<)« S 221, 225
client-server architecture...........cccceeveevvereecvennnen. 554
COBOL programming language.............c.......... 368
code injection attack.........cccceeveeerieeriieiniennnenn. 544
collation order.................... 137, 274, 276, 316, 417
ASCIL.eviieeeiereeieeeeeeee e 276, 417
diCtioNATIY...c.cevveeierierieieeeeeeee et 275
traditional........ccceceeeiereeerenee e 276
COMM COMMANG......ccerrerrerrerrerreneerrereesreesneees 310
command hiStory.........cccceeveeveereenerceeresreneeene 3, 88
command line..........ccceevevieeeeneniere e
ATGUIMIEIILS. ...eeuveeureeieerreeniteeeeeeenreeeeeerreeenas 474
edItiNG...coueereerieeeteeeeeeeee e 3,84
EXPANSION...ceuvierureeieenrerseeeneeeereessreesreessreeenne 71
RISTOTY ettt 3,89
INEEITACES...coiveeeeeeeeeeeeeeeeeeeeees xvii, 29
coMMANd OPHONS.cecververrerreerereeeeeeeneeeseeenane 14

command Substitution..........ccccceeeeeeeennn. 77,79, 492
COMMANAS....c..eeveriereerienierteneeteneertesreeesireesabee e
ATGUITIENIES. c..veeeeuereeeneeeeneeeeeeeennnereeeeeens 14, 474
determining type......ccceeveeververeerverveneereenneens 45
doCUMEeNtation.........coevveeereereeenrereenie e 46
executable program files........................ 44, 368
executing as another user............cccccceeveeennne 105
long Options.......cccceveeveereesienenieneeee e 14
OPLIONS. .cevterurteeieeeieennteerreeneeeereeeeeesesareeeeeanae 14
COMMENTS....ccoeveeeeeerrrrrennnnns 139, 147, 325, 381, 462
Common Unix Printing System................. 357, 366
COMPAriSOMN OPETALOTS. ..ccouverreerrrerrreenreerennrerensnnne 513
(al0) 111 031 1<) VS 368
[al0) 0] 031 11 oY S0 367
COMPLEtIONS.cevuieiirieienieeeeeeceeeee e 86
compound COMMANAS.......ccovverrrerreerrrreeressrreeeesnneens
CASE...eeeueerreenureereesteenreeeseeeareestesaseeeesenraeens 467
BT e 491
e 410
UNL e 448
WHile..oieee 441
() U 420, 436, 507
LT 419, 436
compression algorithms..........cccceeveervieennecennneen. 250
conditional expressions...........cecceeeereeennne. 426, 455
configuration files.........cccoevervuervuennnns 18, 21, 134
configure command...........cccceeereveeereernieeennnnnn. 373
COMSLANLS. c..enveneenrenneerenneereereereeetesneeeesaeenesneees 392
continue comMmand..........cecevveeveereereeseessneennnnens 443
CONtrol CharaCters.........evvvveeveeeeereeereeeeeeeenns 173, 290
CONLIOl COAES.....cccuvvvereiieiireeeeeeeee 82, 274
CONLTOl OPETALOTS. ... eeveruereivenienieniereeeeeeee e enieenieenae
K&ttt e 424, 436
[[++eneemeeneereeerie sttt 424
controlling terminal..........cccecevverrienieenerieenieennns 115
COPYING. ..ottt 372
copying and PastiNg..........cceeeevverreereeesreeesreesveeennns
IN VI et 160
on the command line.........c.ccceeeenieenncennnnenn. 85
with X Window System..........cceccevereeneencenuene 3
coreutils package..........ccoceeenenee. 48, 51 f., 304, 330
counting words in a file........ccccecevereneneneniennenne. 66
Cp COMMANG......ccvrrererrrererrerarennne 30, 36, 144, 229
CPU. ettt 114 f., 367
Lad o) 1 15 o] T 234
CTrOSSWOTA PUZZIES......ecevereeerereeeereeereeeeeeeeneens 271
csplit command..........ceceevereeneniieneenee e 331
CUPS .ttt 357, 366
curl command...........cceverveererrieniennieneeeneeeneen 224
CUIL PrOZIamL....ccveeueeeeeienieeeenieeienieeee st eseee e 370
current working directory.........cccceeeveeeveercreeennnenns 8

558

CUI'SOI MOVEIMENL......vvviieeeerireeeeeenrreeeeenirreeeeeeenns 84
cut COMMANG......uvveeiieinrreeeieirieeeeeeeeeeeeeenns 301, 503
D
daemon Programs..........cceceeveereerverveensveens 115, 126
data COMPIeSSION.cccuerueereereeieneenierieneeeeenaeeen 249
data redundancy..........ccoeceeeererrieneeniieeeeeeeeens 249
data validation..........ccccoeveeeeiveeeecnieeeiee e 419
date command..........ccceeveeevieenieeeceenireeceeeeeeereee e 4
date fOrmats.......c..ecveeeueereeeieeeeee e ecreesae e 297
dd command.............cceeeieeirienieeie e 210
DeEbian....cccvieeieciieeee e e 182
Debian Style (.deb)......ccceeveemerviniiiiiiiiiieneen, 183
debugging.........cecveeeeeenernieninieneeieeeee 406, 461
declare command.........c.cccoeeevveereeeirreeeencreeeeennne 505
defensive programming...............cccceeueenee. 456, 461
AelimMIterS....ccovveerieeeeeiereeeeeeeenreeeeerennes 80, 295, 298
dependencies.........ccoeerevererriererneeeeeeesnnes 184, 376
4 [T 78 o RSP RRPN 460 f
device drivers.......ooovveeveveeveeeeeeeeeeeeeeens 191, 368
deViCe NAMES.......veeeevieeeiieeeree e ee e 199
device NOES.......ccveieeiieeeiieeeiee e 21
df command........ccceeeeieeiiiiiiiiiiiiiiieeeeeeeeeeeees 4,408
QICHION. ceeeereeeereeeeiee ettt 369
dictionary collation order..........cccecvveverevrrvernnen. 275
diff command........c.cccoveeeieeiieeiiiiee e, 311
Digital Restrictions Management (DRM).......... 184
QIr@CtOTIES. . ecuveevreereeereecreeeree et et re e e re e e enaeas
arChiving......coceeeevienieiieniereeteseetee e 253
Changing.......ccceeueeeevienieninieerceee e 9
COPYING.eeeurieeuierreenieenreeeeeesreestessreesesareeeeennns 30
CTEALNE..ceuveeeeeeeerrreeeteecreeeeeesreeeeeneeeeenas 29, 36
current WOrking.......coevevveeeerenreereesssieessenennns 8
deleting.......ccceeveveeiereeieneeeesee e 33, 41
hierarchical.........cccoeeveeviieeieeciecieececcee e, 7
[170) 13 LT 21, 95, 408
LISHNG. .ottt 13
INOVINE...eevierreeeeenieenieeneeeeneesressreesreeenns 31, 38
NAVIGALNE...eeveeenrerrreeneerireereenieeseeeeeeeeenreeeeas 7
OLD_PWD variable........cccccoevuvvieviivciiinnnnne. 137
PATENL..ceiiieiiierreeeeeeteenieeereesiresaeesreesreeessnneees 8
PATH variable........cccccovevvveevieeeeiieeeecrieenn, 137
PWD variable.......c..cccovevveeiieiieeiieeeeeineee, 137
TEIMOVING..eeerureeeeureeenreernneeeasreeessreeesseeess 33,41
TENAMINE. ..ccuveerureerreenieeneeneeeareesrreesreeeeenns 31, 38
TOOL. . utteeeeeeitreeeeeeirteeeeeecraaeeeeeeaaaeaaaaaaaaaaaaaaaaans 7
Shared......cueeceeeieeeeeee e 110
SHCKY Diti.eeeieiieiiieieneeeeeeeec e 104
SYNChronizing..........cceeveevveeveervenseeessierneeennns 261
transferring over a network..........cc..ccecueneen. 261

VIEWING CONLENLS...cuverereerieerieeneeerreeeeeesreeneeees 8
disk partitions.........cceceeveererneerernienieeneneeee e 194
DISPLAY variable.......ccccccevrvrenienienieneeneenns 136
dnf command.......cccceeeeeeeerenenienieneeeeee 185
| T0] 13 11 PR USRNY 29
dos2unix command..........cocecuereereeneereeneenneenneenns 291
double QUOLES......c..covuereeieeeiereeeeee e 79
dpkg command.......ccccceceerernienernenenieneeee e 185
du command........cccceeeeeeeviiieeiiiiieeeeeeeeee 293, 408

Dynamic Host Configuration Protocol (DHCP) 220

E
echo command........ccocevveeeeeieiiieeenennnns 71, 136, 388
=€ OPUOM. ceueeeieeiieeieeiee et 83
V0] 015 70) 1 KO PP OPRPPORPIO 429
edge and COIMET CaSeS.......coceeveererreererreenreeeennees 461
EDITOR variable.........cccccevireienerceeneeeeeeneenns 137
effective group ID.......cccevvevvevcienieieeneeeeeeeeeene 104
effective user ID........coovveveveeeveereieeeeeeenen. 104, 115
elif Statement........cceceeeerveeeerreeeeneeee e seeee e 417
EMAIL..euiiieeieneeeee e 289
embedded SYStemS.......c.cevuererreeenieeniiieenieeeen. 368
eMPLY Variables........c.ceceverienirnienieerieeeeeeeeens 499
encrypted tunnels.........cooceeveeveevieneensieenneeeneenn. 229
ENCTYPLION. .eeuueeeeureeeeeeeenieeeenreeeeeeeeeeeannereeeeess 316
1< 00 o) i] (< 62, 396
endless 100P......ccceeveciereeieeeeeee e 444
enscript CoMmMANd..........cccvevereervesreesveessnveesnnens 364
ENVIFONMENt......cceeeiiiiieierriiiieeeeeerennnn. 106, 134, 434
AlIASES..ceuvenieieeteeee e 134
establishing.........cocceeveevenieninieeeeeeieee 137
EXAMUNINEG. ..eeoveeeveerieereenieeireeeeeesreeeeeenreeess 134
login shell........ccccoevievieierieereeee e 137
shell functions.........ceccevevereeneenicniennieneenns 134
shell variables........c.ccevveverceeverieeereeeeene 134
Startup files......eceeveeveeceereeeereee e 137
SUDShelIS......coerieiirieieeeeec e 536
variables........coceveeieniiniencee 134
eqn COMMAN.......cecvererrrererrrenreerreneesreesaeeeseeens 346
ERR rap..ccceeeieiiieeeeeeeneeceeeeeeeeeeeeceeeeeeae 550
eval builtin......cccoceeveeneneninrneeccee 542
executable files.......ccccoevrvnvenrncnininnecen 375
executable program files..........ccccceeeruveennenn. 44, 368
executable Programs...........cccceeereereeeceeesneenneennnnn.
determining location..........ccccceceeveereenecncenneen. 45
PATH variable........cccoceevenenneiiiiiiiieeneeene 137
exit command........ccccceeevvvreeeeeiiiinnrienans 5, 415, 438
EXIL STALUS...eeeeiereeeeirererrrrrrrrererreererereeeeeeeees 411, 415
EXIT tTaD. .. cvevereeeeeeeereeeeeeeeeeiee st s e eeens 550
expand command..........ccceevververrieneeerveenseeenneens 304

Index

EXPANSIONS. c..veeeurerreerreeeieerttesteereeeseessreeseeesennnes 71
arithmetic........cccceveveruennee. 74, 79, 393, 498, 507
) [l < 75,79, 492
command substitution...................... 77,79, 492
delimiters......coeruereeneeieieeeeeteeeeeeee e 80
errors resulting from...........cccecveveevvesersnnenns 453
RIStOTY.cmeiieeieeecee e 89, 91
Parameter........cceeeuveeeeeennn. 76, 79, 391, 398, 498
pathname........ccccoeceeveeniiiniennniennne. 72,79, 492
L. e 73,79
WOTd-SPIIttNgG.....ceovvrrerieriereeieree e 79

EXPIESSIONS. .ceuveereerreerreereeesreenterareeseessreesssaesssneees
arithmetic........cccceceeennen. 74, 495, 507, 509, 521
conditional.......ceeeeveeeevevieneeeeenrernenennnnnns 426, 455

EXT ittt 207

extended regular expressions.......c..cecceeeveeenneeen. 277

Extensible Markup Language............cceceeeunen. 289

F

false command..........coceeereenienienienieneeneeneeeeee 412

fg command.........cccceeeeieiniinienieniee e 123

FIFO..cuiiiiieieeeeeeeeee ettt 554

file command.......cccceeeeveeeererenenieneenicne e 17

file deSCIIPLOT...ccveveeeeeeeieieeeeie et 59

file system COITUPION......cccvvecvereieeereereeeeeeeeens 199

File Transfer Protocol (FTP).......ccccecvevvrcverrnnnn. 221

filenames......cocceeruereenienieneneeee e 244
CASE SENSItIVE...cuviieieieriierieeeeneeee e 11
embedded spaces in.........ccccceceeveeenueeennne. 12, 284
EXLENSIONS. ..ceiuierrierieeieeete et eeree e enreeee e 12
hidden......ccooevieninnniiececee 11
leading hyphens..........ccocevvienervienenienieneen. 458
POSIX Portable Filename Character Set.....459
problems wWith.........ccccovveiiriininereeieeen, 458

BB, e
ACCESS. e uveereerrtenireereesreereesaeeereessneeaneesreesnnne 94
archiving......c.ccceveeveneesienieneneeneeneeens 253, 259
AtTIDULeS. .. 95
block special........ccceeveeierrieneerienieieneeeeeee 96
block special device........cccceevverriiirniennnnen. 235
changing file mode........cccccevvvrvvervvrcereciennnnen. 97
changing owner and group owner................ 108
character special.........ccceeeeveevenieenreesieeeenenn 96
character special device.........ccceeeverververnnnn. 235
COMPIESSION. ...eerurerreernrerreeneeenreeneeeareessveeess 249
configuration.........cecceeceeveereennenne. 18, 134, 288
COPYING.eeeuveeueenieenreentenireeereeenreeeeenreeeenas 30, 36
copying over a network.........cceceveeeueennenne 221
Creating emPLY......cocueereerreerreenreerseessnveeeeennns 58
Db 182

deleting........ccoeveereervenierienierienieeeenn 33,41, 241
determining CONeNts.........c.ceceevveereeersveennunenn. 17
device NOdes.......c.ccevuereeneeneenenenenecnee e 21
€XECULION ACCESS....veerurerreenreeerreenreeesesreeessnnnes 95
EXPIESSIONS. ...ceeerreeerureerrreeenrreeeeeesaaneereeeeeens 413
fINAING....ccveeeieeeeeeeee e 232
hidden......coeoveeiininiiee 11
ISO Image.....ccooeevieniiieneieeeeecee, 211
LiSHNG. ettt 8, 13
INOAE. ittt ettt et 96
IMOVING...eeieureereenierireenreesreesseeesseesseessneess 31, 37
OWIIET..c.eeemeinrenrenrenneereeneesreseeesaesenesneenneesanees 97
PEITISSIONS. .cceuvveeeieeeeiieeeereeeereeeesneeeeeaeeeeees 94
TEAA ACCESS...cveveererrerienrenierieneentenreneeeeneeseeenane 95
FEGUIAT.....ciiieiieeeeeeeete e 235
TEMOVING. .. .veiuieriiirienieereeneeesreenreesneenas 33,41
TENAMING....eeoueerrreeneerrreenreesreesreesreesarneess 31, 37
1) 10 SRR P PP PP PPPOPPRO 182
shared library.........ccoceeveveecenerrieneeereeeeenn 21
SEATTUD. c.veeeuveeereeeeeeteenreeseeeereeereesreeeesemneeess 137
ol 7 o) | SRS 104
Symbolic linKs.......cceeeveveeveerieeecieseiee e 235
SYNChronizing........ccccceeeveeneeneniecinieenieennne 261
LEIMPOTAIY ...eeeuverreerreereerreeereeeeeenreeeeemneees 551
EEX L. uteeieeeeeeeieerre et et et ettt ste s e e 17
transferring over a network.......... 221, 258, 261
(TUNCALING. ...eeeuveereerreereeenreereeeteesreeseesreeeane 58
LY P cnteerteeteeerteetee ettt st e s esaee e s ree e e e e 95
VIEWING CONLENLS......uveeeereeerereenieeeenreenneeeens 17
WIILE ACCESS...utiireiriirriiiieetteeereeeeieee e 95
IIMAZE. c.eeeureeireeteeree et sree e e ereee s emreees 212
FIIEOTS. ettt 65
find command........cccceooveeviveiiiiiiieeeeeeeene 234, 257
findutils package.........ccoeevveveenienienienierieeeeeiee 248
FITefoX...coieerireeerierccececceceeeecee e 387
fIrewalls...c.eoveeeeieieeeeece e 217
first-in first-0Ut.......ccccveveeecerriererreseeeseeeee e 554
flatpak package format..........cccceevvervrcvervrcvennnen. 190
floppy disKS....c.coeruerereniinieieeeeeete e 200
flow CONLTOL....c..eeiieieieieieetete e
branching.........cocceveeveneeneniienenieneeieeeeen 410
case compound command...........ccecceeereeenne 467
elif statement..........coevveveenueneeneneeneenieneenne 417
endless 100P.......ooeevereerienieeneee e 444
for compound command............ccccerveevennenn. 491
10) gl 10T) USRS 491
function statement...........c.ceceveereeneeneeneenns 401
if compound command...........ccccceevveereennennns 410
100PING.c..eiverieieeteeeeteete e 440
MENU-AIVeN.....ooirieriieienieriee et esiee e 436
multiple-choice decisions.........c.cceceerveernnenn. 467

560

reading files with while and until loops....... 449
terminating a loop........ccceceevervienernienennienne. 443
ETAPS v eeveeeueeerreeeterereesreesreessreesatessnreeesssaneees 548
1800 (u] 1 (0T0) o U S 448
While 100D.....cceeiereeeeeeeee e, 441
fmt command.........cocooeverenenienereneeeeeee 337
fOCUS POLICY ..ottt 4
fold command..........cccceverereneneniinieeieeeeee 336
for compound command...........cceccereerrereennenns 491
fOT 100D .c.veeueeeeeieieeiesteee et 491
Fortran programming language.................. 368, 494
free command..........ooeevvveeeeevecnveeeeeieiieeeeeennnns 5, 198
Free Software Foundation...........cccceeeuveee... Xix, xxi
fsck command.........cocceevererenieneniineniceee 209
ftp command............ccceceeerieeaene 221, 230, 369, 397
FTP SEIVEIS...ciceetvvrrrrerererireeeeeeeeeeeeeeeeeeenenens 221, 397
FUNCNAME variable.........ccccoeverierieecieeieneenns 479
function Statement............oceeververeeriereeneereeseennnn 401
G
BCC e uttermteereeeiteereeete st e st e et e e st e e reesnee s e nreeeeeanee 369
gedit command.......ccceeceerernienieenenennieeenne 121, 143
genisoimage command............cocceevereerrereenreennns 211
GENLOO..ccuueeiiteeierieeeteeste et esite e eeree e e e sneeeeeaas 182
getopts builtin........ccevereeererceererereeeeeeeeen, 483
GhOSESCIIPL. .evveveeereieeieieeeesee e eee e 357
G- et 94
global variables..........cccceeeecieneeciireeee e 403
BlObDING.....eiieiiiiiiee e 27
GNOME........coovirinianianne 2,29, 42,101, 143, 230
gnome-terminal..........cceceveeerierierieniienenee e 2
GNU binutils package..........ccocerveererveneeneennnen. 493
GNU C Compiler.......coceeerienieneenenineeneeneeneenns 369
GNU coreutils package............... 48, 51 f., 304, 330
GNU findutils package........cceeveeveeerreeerveennnns 248
GNU Project.......... 14, xix, xxi, 248, 330, 369, 371
info command..........ccccevevirenininineeeeee, 51
GINU/LINUX..euvvvivererereeieeeeeeeeeeeeeeeeeeseieeeeenenns Xix, xxii
graphical user interfaces..........ccocceeeveerveerneeennns Xvil
grep command.........cccceeeeereeereereeneennnen 66, 266, 433
BIOFF e 346
Group COMMANC......eevverrerrerreererrreeerrreesneeennaeens 425
group Commands.........cceeveevvereeeveeennnns 59, 405, 535
BIOUDS .veeeeuereerureeennreeeareeesreeessnseesaseeessseesssseeeeens 94
effective group ID.......cccocevveenieniiniiiniienienns 104
B et 94
primary group ID......ccccoovierviiniiniiinierieeene 94
SO ettt 104
GUL.coiiiiinienieeeene 3, xvii, 29, 42, 84, 101, 138
guUNZip command.........c.eceevvererreenerreeneeneeennnens 250

8Zip cOomMMAN.......cecveevereeeiereerienierieeeneeens 52, 250
H
halt command...........ccceecveeeecienieereeeese e 130
hard disKS......ceceerieecieiniieiiecieecee e 193
hard HnKS.....cooeveeiieeiieeeceeeee e 25,35
CTEALINE . ceuveeeurerreeeteereeeeeeseeetesereesesareeeeennne 38
LISHNG. ettt 39
head command........c..cccevevenennnnnnnienreeeeeee 67
header files.......ccccoevevenenenieceneeeeee 372
hello world program..........c.ccceeeeevereecreneenrennns 381
help command..........ccceceevueeeevieneereseeeee e 46
here doCUMENtS......ccceeeveerieriierieeeeciieeeeeieeens 395
here Strings........ccoceevereevieneenieneereneeeee e 434
hexadecimal..........ccoovvvvvviiiiiiiiiiiiiiiiiiiiiinnns 98, 507
hidden files......ccccoeveveeeveeiiiiieeeeeeeeeeeeee 11, 28, 73
hierarchical directory structure...........c.ccoeerruvernneen. 7
high-level programming languages.................... 368
Y170) 72
EXPANSION. ...ceeeeurieeeereerieeeeeieeeesreeeseeeeeens 89, 91
SEArChiNg.....coceevieriererieeeceeeeeeeeeeen 89
history command.........cccccecererrienenneniennenenieenne 89
home directories........cceveervereerieneeneneeneeee e 21
TOOt ACCOUNL...eeiuvieererererereernieeesreeeesnnnnnreeees 22
/tC/PASSWA..c.ereeereeeeeeeiereeeee e 95
home directory.........cccccvereuvennee. 8, 11, 73, 106, 137
HOME variable.........cccceeeeienenieneeieseesvee e, 137
hostname..........cceecveeeecieeieeeeeeeee e 173
HTML....ccooieraennne. 289, 326, 346, 387, 398, 400
Hypertext Markup Language..........ccccccevveeneeen. 289
I
I/0O redirection (see redirection).........c.cceeeveernneen. 56
ICMP ECHO_REQUEST.......cceovvveereerereennrnnns 217
id command........ccceeeveeeeeeiieeneeeieerreee e 94
IDE... oottt st 200
if compound command...................... 139, 453, 467
ifconfig command...........cccecvevievieniinieenieee, 219
IFS variable......ccccceeeeieriieieeeceneeeesee e 432
incremental backups........ccccoveevereeniereeneneenennns 257
INfO fileS...icueieiieiececeeeeec e 51
1101 SRRSOt 114
NIt SCIIPLS..eeeuveerieerreeeieerreereeettesee et e e 115
INOAES...eieieeieeeieeceece ettt e e 39
INSTALL....ooieeeeeeeeee ettt 372
installation Wizard.........ccoceevvererrieneenienienieene 183
INEEGBETS. c.uuvieeeeeeeeiteeeerteesireeereeeereeesneeessreeeeeeeaanns
P21 W11 010 01<) 8 (TR 74, 516
AiVISION...eiiieiiriiei et 75, 508

Index

EXPIESSIONS. .ccuvteurereeenreerreeneereneeeeeennreeesnas 417
INEETACHIVILY .eeeueerrierienieeereereeeee e e e eeeee e 427
Internal Field Separator...........ccccocvvercveneevennen. 432
interpreted 1anguages..........ccevverevereereeeenireennnnes 368
interpreted Programs............cceeeeecveseesveesseneennnns 369
INEEIPTOLET...eeouveeeeueeeereeenreeeerieeesrareesenreeeeeeeennns 368
ip command.........ccoeeviereesienienineneeee e 219
SO IMAZES...euveueeieieteeeeeeeeeee e 211f
1SO9660......ccreeeeeeeereeeereeeteeere e et et e enraeees 212
J
o] 03X (o) 113 o) 122
JOD NUMDETS.....eiiieiiiirieiecccctceeeee 122
JODSPEC ettt 123
join command..........cccceeevereerienennienieeieneeeeneens 306
Joliet eXtenSionS.......c..cceevveeeeveeeecreeeeeecnvrreeeeeen. 211
[0/ = 1 | 151
K
kate command............ccceeeeeiiieeiieeeiiee e 143
KDE...oooieieeieeieeeeeiieeene 2,29, 42, 101, 143, 230
kedit command..........cccceevveerieevieenie e 143
kernel......xvi, xix, 21, 49, 114, 127, 191, 200, 314,
377
key fields.....ccevuerierierinineneeeeee e 295
Kill command...........ccoeeevereeieiciieeeciieee e 125
killall command...........cccoceevueeeeeiiniiieeeeeeeeennnnes 129
Killing teXt....eeeueesieeeieierieierteeeeeeeee et 85
Knuth, Donald.........cccooveeuviiiiiiiieeeiiiieeeeeeeees 346
KoONQUETOT.....c..coiviiieiiiieeiiceeeeeeeeeeeee e 29
KONSOIE....c.uvieiieerecteecte ettt e 2
kwrite command..........ooeeeveeeeereevveeeeeeneinnnees 121, 143
L
LANG variable.......ccccoevuvvevvevveneneenn. 137, 275, 277
less command.........cccueeveeveenneeenennees 17, 64, 261, 285
Iftp command..........ccceeevevereeenerieeee e 223
JIDraries.......cccueeeeeecreecreeeeeeee e e e evaee e 368
LibreOffice WIiter........ccoovveveveeeveveeennnes 18, xx, 570
line continuation character.............ccccceeeeeeunnnnnes 385
line editors.......cccuveeeeueeeeereeceieeeeree e e 151
line-continuation character..........cc.ccccceveeeeuveenn.. 325
|11 11 U 368
HNKING...eeveeieieieeieeeeeeeeeee e 368
JINKS . veeteecreeeiee et ettt ee e s e ete e veeaeenareeeeens

DIOKEN....ccviicieeetee ettt 41

CTEALNE...cuveerierreenieeeecte et eeree s enreeeeeane 34

hard......eeeeeiieee e 25,35

SYMDOLIC..c.uiiieriieierieieeiee e 24, 35
Linux COMMUNILY....ccceeveernierreenieeieeeeeeseeeeenns 182
Linux distributions..........cccceeeeveererveeserneeennennn. 182

ATCHL it 182

CentOS....ouirieieieieteteeete ettt 183

Debian.....ccoovvvereeiieiiiieeeeeeeeeeeeeeeeeees 182 f., 367

Fedora......ooovveeeieevneeeeiceieeeee e Xix, 94, 183

GENLOOD.....ueieeeiieeeiieeeieeeeiee et e eeeeeeeeeeees 182

LinUX MiDE.c..ceieieieieeeeeeeeseeeese e seeseeae 183

OpenSUSE........ccoovivenerienienieeeeeeene xix, 183

packaging SYStemS........cceevverrerrverrerrveneerneens 182

Raspbian........cocceveevieneerienieieneeeceeeeene 183

Red Hat Enterprise LinuX..........c.cceeeeeeveruenne 183

S1aCKWare.......ccceeveeereeieceeie e 182

L8]5781 oL R xix, 182 f.

Linux Filesystem Hierarchy Standard...19, 25, 384
Linux kernel...xvi, xix, 21, 49, 114, 127, 191, 200,

314, 377

device drivers.....cc.cocereeerereneenienieneeneenne 191
literal characters..........ceeeecvenerceenersienieenieeenne 269
LiVe CDS..ueenieteieeieeeieeieecseeeeserie e xix
In command.........ceeovveeveeeieneeeeeeeeneereeeneeans 34, 38
local variables........cccceverirnienieiiiiieeeeeeeeee 403
locale......coevereneniieieieeieeee 274,276, 316, 417
locale command.........c..coecerveenerrieneeenieeniee e, 276
10CalNOST..c..ceieiieieeteeeeeeee e 226
locate command.........cooeevveeeeeeeeieeeeeeeenennnns 232,284
logical eITorsS......evcvereeeeereeeieeeee e 455
logical Operations...........ccceeverercvenesseesveeeseeennnns 421
logical Operators.........ccecveeveecveeeerieneereeseeseeennns 238
logical relationships..........cccceeveervieenneennne 237, 241
login Prompt........ceceeverveenerreenerrenenieneeeene 5, 222
login shell........coccevirveninniniieecee, 95, 106, 137
long OPLIONS.......ovieiirieiireerertereeeeseetee e 14
loopback interface.........ccccevveeercieneecienieeieens 220
LOOPING.c..eeveeieieeieeeeeee e 440
10ODS...ceveeieieiereeeeeee 455, 509, 512, 534, 541
lossless COMPIeSSIiON.........ccecveeeeervereerveeneeeennnes 250
l0SSy COMPIeSSION.......cecververeereeieniienieeereeenee 250
lost+found directory.........ccceceeeeeniecenenienienennienns 209
lowercase to uppercase CONVersion.................... 506
Ip command.........ccoeeeveeriineniienenieneeeeee e 360
Ipg command..........ccceeereereriiererieneeeeeee e 365
Ipr command..........coceevveverreneesenrieeeee e 359
Iprm command...........ccceeververerrrerieerreeeee e 366
Ipstat command.............cceeeeevereerreneenseeennneennes 364
Is command..........cooevvveeeeiiiiereeeeieereerrienenaan. 8,13

long format........cceeevienienieneneeceeee e 16

viewing file attributes...........ccccerererrenrernnenne. 95
Isblk command..........ccceeeverernieneenenieneeeieene 202
Lukyanov, Alexander..........cccccoevvrrerrreernveennennns 223

LVM (Logical Volume Manager)..........cccceceu.... 193
M
machine language...........ccceevvevververereeneneenennns 367
MAaiNtenance........cccccvveeeeeeerevnnnnn. 384, 388, 390, 399
make command..........c.ceeeeieeeiiieeiiie e 374
makefile......coeecieeeiieeeeeeeeeeee e, 374
man COMMANd..........covuveerrrereerrreeeeeeeeereeeeeennnnnes 48
INAN PAGES.c.uveerurerrreerrerrreeseessreesaessseesssessses 48, 347
mapfile command..........ccccoeeevvenverenieeneneerenns 526
MarkdOWN.......ccoveeeeerieeieereecre et eeee e e 289
markup 1anguages.........ceeeeeveeecverrevernveennns 289, 346
ITIEITIOTY ...uteuteutenteneeaeeteesesseseestesseseeneesenseesseesseesneenns
assigned to each process.........cccceceeveeuecnne. 115
displaying free........cceceeevereeevieneerieneenieesieeenas 5
Resident set Size.......c..ccevuveeeeeiuveeeeeeeeeeeeeennns 118
segmentation violation...........c.ecceeveeerrveenne 128
USAZL. ceuveereerreerueerreesseeneeessaesssessseesssneeessnee 118
VIEWINEG USAZE...cceuveerurieeniieeeiieerneeeeeeeeenanns 131
VITTUAL vt 118
menu-driven programs...........cocceceeeerveenueeeneens 436
MEta KOY.oooiiriieierieeeeeeeeeeeeeeeeee e 86
IMELA SEQUETICES...c.uuverureernrerreeeneerreenressreessreesseess 269
MetacharacCters..........ooveeeeeeeeeieeeeeireeeeereeeeveeenns 269
101 7= e =1 - DO 183, 185
mkdir command..........oeeevveeeeeriivrerreenreennenne. 29, 36
mkfifo command..........ccceeevieiiieiieniecee e, 554
mkfs command..........cceeevrerieeviienie e 207
mkisofs command............cccceeeeieirienieeeeineeeeenns 212
mktemp command..........cccceeveereniieniennienenneenneen. 551
INIOCALE.....veeveeereeteeere et et ae e e re e e e avree s 233
INNEMOMICS. . uvvveeeeeeirrreeeeeerrreeeeeeeerreeeeeeseeeseeseeees 368
mMOdal editOr......ccccveeeeeeiieereece e 154
monospaced fOnts..........eceeeeevereererieenerceerennns 357
Moolenaar, Bram..........ccoeeeeevueeeieereineeeeeneeeenns 151
MOre COMMANd.......cceveerreerreerreeeeeeireesreeiseeseennnes 19
mount command.........cceeeeeeeevnvreeeeiesrnneeeeens 195, 212
IMOUNE POINTS...ueerreeeeerreerrenreeseeneeenns 22,195, 197
INOUNENG. ..cevteereeenienieeeieerreeseenrreeeereeeessanreeenns 194
IMP3...ceeeeeeeteeete ettt ettt et e 110
MUIti-USET SYStEIMS...c.vveveeerererrenreeereeerneeeeeeennns 93
multiple-choice decisions.........cccceeereverereenuennns 467
multitasking.........ccceeveevereecrenveecienneenns 93, 114, 552
MV COMMANG...uuvreerieriereeeeerenreeeeeeeerereeesennns 31, 37
N
NAMEA PIPES..ceuveerrererrerreriereereeesereesneesaeeensees 554
NAnNo COMMANd.......cceervreerreerreereenreenreeeeserseeenns 150
NAULIUS. ..ccveeeeiie et 29

NEtWOTKING.....eoviriiiiiieeieietee e 216
anonymous FTP servers........ccccoecceeeeenneenn. 221
default route........cccceverereeenerenenerereeee 221
Dynamic Host Configuration Protocol (DHCP)
.. 220
encrypted tunnels..........coceceeevereevereereennnnns 229
examine network settings and statistics....... 219
File Transfer Protocol (FTP)........cccccveevnennne 221
FIreWallS...ccveeveieieieieieieeee e 217
FTP SEIVEIS...ccoviirieeiieeieeeeeieeieeeeee e 221
local area network........ccceeeeeeeveeneenecnncnnnen. 220
loopback interface..........cccoeeveverrceeerceennnnn. 220
man in the middle attacks.........ccceevvevrennennns 225
TOULRTS. ..ceiuveerireeneerreereenreereesneeneessnessnneees 219
secure communication with remote hosts....225
testing if a host is alive.........ccocevevenenennnen. 217
tracing the route to a host.......c..ccceeereeennneen. 218
transferring files........ocovevevercieeciennieenieennen. 261
transporting files.........ccevveveeveerenieenerceennnen. 221
virtual private network..........ccceeeveerreennnnnn. 229

newline character...........cocuveveveecvereeesveescveeennnes 173

NEWIINES. ...eiiiiriiriieeneeteeeserteee e 80

INEWS. .ttt ettt 372

nice COMMANd.....cc.eevveeeerrereeneerreenenreeeeneeeeneeens 124

nl command.........coeceeverieneniieneneneeeeee e 332

nohup command..........ceceeeeveereenenieenenieenieeennne 129

nroff command........cccccevevenennenenieneninenecene 346

Null Character.........coeevevverienieneneereeenereneeeneene 244

NUMDET DASES....c..eouereireienieieieteeeeeeeeeeeeesaeen 507

0)

OCEALL..eeeieeieeeeeieeeee e 98, 507, 523

Ogg VOIDiS.....ccvieeeieeeeceeereeeee e 110

OLD_PWD variable........cccoeeuveeviiveneeiieeiinnenees 137

OpenOffice.org WIiter.........ccceevveeecuveeinnennns xX, 570

OPenSSH......ooiiiiieiieceeeeeee e 225

OPETALOTS. c.eueeneeneeneententeaeeseereeseseesbesseseensessenteneensensenns
arithmetiC......cvevveevveieeieiieeeeec e 74, 508
ASSIGNIMENL....ccveernrerreeereerrreenrerrreesrreeeereeens 510
DINATY...cotiiirieeeieeee e 454
COMPATISOM...eeeurereeureerrnreensreeeeeeemnneereeeeeens 513
EOITIATY . ceeueeeeeieeeeereeeeireeeieeeeenreeeeneeesneeeenes 514

OPTARG variable.........ccceeeevrereerenieceeereeeeeen, 483

OPTIND variable........cccceeeevererrereeireeeieeeeeens 483

OWNINEG fileS.....oiiieieieirieeeeee e, 94

P

package files........ccvvvveveerieneeieneee e 183

package maintainers..........cceceeveereeneneeneeneeennne 183

Index

package management.............cceceeverreereeersueeennne 182
AED.ceeiieee e 182
Debian Style (.deb)......ccceeevervirverviiiieieeene 183
finding packages........ccceceeevererrerernierieenneens 185
high-level tools.........cceeveveevereeieneecree e, 184
installing packages........cceeeeeveerveerseerneeennns 186
Low-level tools........coceverveneeneneinicnieecene 184
package repositories........ccceeveerveeveernueeenneeen. 183
Red Hat Style (.1pm)....ccccoceeveeenieinsieennieenne 183
removing packages..........ccoceevereenerieennneenn. 187
RPM..coiieieieeeeeeeeecrceeececeeeeeeeeeee 182
updating packages........cceeveeeerverrerernneennnnens 187

packaging SYStEIMS........ccuevvereerreerrereerineensnneennnns 182

page description language.................. 289, 348, 356

PAGER variable........ccccocevinieniniininicnieeneens 137

PABETS.c.eeeiureeneertteereereeereesreeeeeereesaeesesnreeeesnnee 19

parameter eXpansion..........cc.......... 76, 79, 498, 528

parent direCtOTY.......cevervuerrerrienrierieneeieeieeeseeeeaeees 8

PAreNL PIOCESS. .cceuvrererereenreerareeeareeeesnreeseeeeeeens 115

parted command...........ccceeeerieneerienieenenieeneeennne 203

passwd COMMANG........c.ceeervererreererrereesreeeeeeens 112

PASSWOIAS. .. veevrereeeeereerreseeesesseesseeseenseessseessseeens 112

paste COMMANA.......cc.uevueeeenrenreeneeneeneeneneeniennee 305

PATA ..ottt sttt 200

patch command...........ceceveerienienienienieeneeenee 314

PALCHES. ...ttt 311

PATH variable.........ccccecueevieeeene 137, 139, 382, 401

pathname expansion...........cccceeeerveennenne 72,79, 492

PaAthNamMes......ccoeeieieeeeeeeeeeeee e 284
abSOIULe. ... 9
COMPLEtion......coeeviirieiieienieceneeecree e 86
FElAtIVE. .t 9

PALLEITL .eiueeeeiieeeeeeeeeeieeeee et st e et reeeareeee e 506

PDF ...ttt 349, 359

Perl programming language. 44, 266, 326, 368, 516

PEITIISSIONS. ...eeuveeeneeerireeieeeeerreeeeeereeeeesneeeeenns 380

PHP programming language...........c.cceeeruveernnnn. 368

ping command...........ccceeeeereeriereesreneereneeeeenns 217

Pipelines.....c.ccoveveriienersienieneeeeeene 63, 434, 540
in command substitution...........cccccueeeveeeneenn. 78

PlOCALE. ..ottt 233

POTtability..c.eeveeeeeierierierieiesierieseeeeeae 373, 4009, 424

J010) 721 o) L= 409

Portable Document Format........................ 349, 359

Portable Operating System Interface................. 278

positional parameters...................... 474, 499 f., 502

POSTX ..ottt 274,277 1., 424
character classes.....27 f., 273, 275 f., 280, 316,
325

POSTX .ottt 211

POStSCIIPL....ceveeeeeeeeieeienne 289, 348, 356, 361, 366

poweroff command..........cocceeererierenienienneennenn 130
Pr COMMANA......coeerierierierriieenieeeieenneeenane 340, 357
primary group ID.......ccoceeviiriienienniieeereeeeeee 94
printable characters............cocceveerienienveeencneennnee. 274
printenv command...........cceeeveerveerveeeinnnns 77,134
printer buffers..........ccoevveveeceeveecereeeeeeeee 198
PIINEETS. c.eeiuieeieeeiieereeee e eereeeeeeeree e e 198, 200
buffering output.........cccceceeerererenenerienene 198
CONLTO] COAES....cnviruiiiiiieieieeeiie e 355
daisy-wheel........ccccooveeveniiiinieineeeee 355
device NAMmES.......cc.cevevuereeneereeneeieenreeneeneenne 200
ATIVETS. c.veeieeiereeeteteeeeeteeeee et 357
Fo 7:10)) (o= S 356
IMPACT. . eeeeeteeeieeeereeeeerteeereeeesiteeeeeseennneeees 355
LASET.c..eeteeieeieeteetee e 356
printf command..........cccceeerevereevieneeeeieenns 341, 497
PIINENE. cuvieiteeieeeieeeeete et eree et e seeeseessaeeeeeeanee
determining system Status...........cc.cceeereeenne 364
hiStOry Of....ccvveeieeeeeeeeeee e 354
Internet Printing Protocol...........cccceevveeeenennne 364
monospaced fonts........ccecveevereeeeereerveencennnns 355
Preparing teXlu.....eveeeerueeeeseeeenrveeennneeenaneeennns 357
PIELLY .eeeneeerrieeiteeteeete ettt 361
PIINE QUEUES.eeeeuiieeeereeeireeenieeeeeeeeeeeaneenes 364
proportional fonts...........ccceeveeieveecieriierciennnen. 356
QUEUE.eeeeeneeenteeteeentesreesneeeesemneeeeeearreeenas 365
SPOOLING....ccieiieieeieeeeee et 364
terminate print jobS........ccccevverviererrienernienne. 366
VIEWINg jODS.....cvvveriieieieieeee e 365
Process ID......coooiiiriiiieieeeeeeeeee e 115
Process SUDSHItUtION.cccvereererrienerieneeenieeeae 540
PTOCESSES...ceeeureeeaureeeureeenreeeassreessssannsrreeaeeeesens 114
background........c.cceceverneniineniiie e, 122
Child..ceeceeiee e, 115
CONLTOIIING. ...veeeveeeeeieeeeeeeee e 120
foreground..........ccoceevverieneniinninie e 122
INEETTUPLING..eeeeureeerreeeeeeeeneeeereeeeeeeseeeeeees 122
o]0 (o) 1 (1 o) FE 122
KilliNG. oottt 125
THCE.cceteeieeiteette ettt e e e s 116
PATENL..ceieiiiierieereeeteerneeeeeeereeeeesssreeeesanee 115
PID..oiiieeteeteeeteeteee et 115
Process ID......coooiiieiiiiiiieeercee e, 115
SIGINT .ottt 549
SIGNALS....ccveeiieeeete et 125
SIGTERM......covtriiininininenieeieesee st 549
Sleeping.....cccoveereenienieeeieeeeeee e 116
SEALR. ettt 116
SLOPPING.c.veeeuveeieenereeiteereeeeteereeeeeeeeeereeeeeas 123
VIEWING...eevieieiieienieeieneeeeeee e 115, 118
ZOMDIE. ..ottt 116

564

PrOdUCHION USE.....eoueeeerieierienieeienieeieneeeieeenaee 460
programmable completion..........ccccecveervierneeenne 88
PS COMIMANG.....ccureveerrereerereerreneeenneeessreeenseenns 115
PS1 variable......c...ooevveveeieiiiiiiiieeeeeeeeee, 137,172
PS2 variable........cocevierenininieneeeceeeee 389
ps2pdf command............ccceeeverercieniecenee s 349
PS3 variable.......coccovirniniiiniiee, 445
PS4 variable.......coccooirviniininiiicee 464
PSEUAOCOME.....ceereeeeieeenieeieneeieetesieeee e 410, 440
pstree cOMMANd.........coceevvereererreeneeeneeenieeennes 131
PUTTY et 231
pwd command..........cceeceererrienernieneeenree e 8
PWD variable.......ccccoevenenenienieniieieeceieeene 137
Python programming language...........c.cccvenne... 368
Q
QUOLITIG e envreereeeteeieesteeieesreesreesrreeessnraeessnneeas 78
double qUOLES.........ccereerierieeeieeeeee e 79
escape Character........cccceveevereecvereeceeseeeene. 81
MISSING QUOL.....eeeeereeeeeiieeerreeenreeeeieeeeeaeees 452
SINGle QUOLES......cocvereeeeieienieneereeteree e 81
R
RAID (Redundant Array of Independent Disks)
.. 193
RANDOM variable........cccccveneneneneneienienen. 528
raster image PrOCESSOT.........ceeveerveerrversreersveenneess 357
read command............ 428, 438, 449, 459, 526, 540
Readline.......cceveeverinencninincncncecrcecceeee 84
README.....ccooiiiiiiiineneneeereseeeeaene 52, 372
reboot command........c..cecevvereenierinnenienicnienenenen. 130
TEAITECHION. ..ttt
blocked pipe......cccceevieriiienieriieeeeree e, 555
group commands and subshells.................... 535
here documents.........ccccoeveevieneeneneenenneennnen. 395
here Strings........ccoceeveeieninienieeeiceieeenn 434
standard eITOT.......c.ceceververererienrenreneeeeeeeenees 59
standard iNPUL.........ceceverceerersieerneennnnen. 61, 397
standard OUtPUL........ccveveeeeererreererieeeeeeeenens 57
redirection OPerators..........cceeeeverersverereeeseeeeseeenans
& 60
> e 61
Sttt ettt ettt sttt ettt ettt et e ae bbb steen 63
C(LESE)venrenteneenteeeeteieee ettt 540
Lttt sttt sttt s 395, 397
Lttt sttt ettt ettt ettt s 397
S ettt sttt ettt et 434
D ettt ettt ettt ettt st be e saesre e 57
S(LESE)veuventeneeeeeeeei e 540

>3 ettt sttt et ettt e aeeeaeeenteenrenn 58
[ttt ettt ettt st s 63
regular expressions............... 66, 266, 322, 419, 433
ANChOTS. ..o 270
back references.........cocveeevvvevvuneennnn. 287, 321 f.
basiC...cceererererennenne 277,286 1., 319, 323, 333
extended.......cooereeieniiniene e 277
relational databases.........ccccecceeeerienienieennieennnee. 306
relative pathnames..........c.ccoeceeverieiniieeenieenieennnen. 9
release early, release often..........cccceeeueeieeneennen. 460
removing duplicate lines in a file..........cccceoue.. 65
renice COMMAN........cocverververeerreererseenseeessueeennne 125
REPLY variable......c.ccccecevrenenennenne. 428, 445, 540
TEPOTt GENETALOTeeeeureerrureeeeieeenereesareeeeaeaannnns 387
TEPOSILOTIES. ...eeeieereeiieeieenite ettt e e 183
return COMMANd.........covvvvrreeeieeeiieeeeeneennnnns 402, 415
TEUSADIE. ...ttt 409
eV COMMANG.eervireieeeriierienienieetenieeeenieeseeenaee 309
RIP ottt 357
rlogin command...........ccoecevevererrieneeerieeniee e, 225
TN COMMANG.......eeveerrerererreeeesreereseeeesereenseessseennns 33
Rock Ridge extensions...........coceeeveeeereeseersveennns 211
TOEE e 346
ROT13 encoding.......ccccceeeeenvemeeneenseeneeneeennnen 316
RPM...oiiiiiieiieeeestestesteste ettt 182
I'PIM COMMAN....eveeverneeeeeienreerieerieeeseeeenneeenanes 185
ISYNC COMMAN....cueerverrerreerenreereneenneenneesnnees 261
rsync remote-update protocol..........ccccceeeueennee. 261
Ruby programming language.............ccoeevrvenneen. 368
S
scalar variables..........ccocevverrieninneniiineneeee e, 520
Schilling, JOTg......cccevereerireererieeeeee e 212
SCP COMMANC......eerverierieriereeieeeieeeieeeeeeeaeens 229
SCript COMMANd.......cveeeeererreerenrrereereerreeeeeseeeennns 92
scripting languages...........ccevveeevereeeeneennnen. 44, 368
sdiff command..........ccceverereneneneeeeeeene 331
searching a file for patterns.........c.cceceeerenenueennen. 66
searching history.........ccceceveriieniensenee e 89
Secure Shell........cccoeieviriiininiericeiecee e 225
sed command..........eeeeeeveeeereeneennnnnnnn. 317, 349, 503
select shell builtin.........ceccevevvereenienienncnnenienns 445
ST =B.rrrrrrererreeeeeeeeeeeeeeeeeeeesesnnrsrersrrrraeeeseees 457, 550
set -0 PIPEFAIL.....cccocteveririnenienieieieneeeeeeeene 457
SEE “Ueeuureeneerieeeienireesreeseeeseeesneeseeebeesneseneeeeenns 457
Set COMMANd.........coevuvreeeeeeriiieeeeeeeens 134, 463
SELGIM. . eueieiieieetee et 104
YT U 1T« AT 104, 414
Seward, Julian......ccceeeevveveveeeiinireeeeeeeeeeeeeeeeenn 252
sftp command..........coceeevererrenerrenieeeeeee e, 230

Index

sha256sum command...........ccccceeeevuveeecrereeeennnnnes 213
shared libraries.......cccccuveeiievieeeeiiiiicinnne 21, 184
shebang........ccccovvevevcernineeeecee e 381, 386
shell builtins.........ccceevieeieerieceeceee e, 44
shell functions.........cccevvvveveeeennnne. 44, 134, 401, 479
shell prompts 2, 9, 90, 106, 121, 137, 172, 226, 389
Shell SCriPtS.....coeevierienenieereeeeeeeeeeee, 380
SHELL variable........cccooeeeviieeciiieeeeeeeciieeeen. 137
shell variables...........c.cccovveeeiiieeiieicceeeeeeeeees 134
ShellchecK.......ccveeeiiieieeeeeeeee e 458
shift command........cceeeeeevveevieeiiiiineeeeeennnn. 477, 483
shuf command............cccceeeveeciienieciecieeeieeeae 528
shutdown command.............cccceeeveeecreeeeeeirneeennnns 130
SIGINToetveereeeeeere et eeee e e e vreeeeeraeeas 549
SIGNALS...eeiieieiieieee et 548
SINGLe QUOLES......eeeeeieiereieeenieeieneeeee et seeienae 81
SIACKWATE......cooveeeeieeeeieeeeeeee et 182
sleep command.........ccccceceevernienennenenseneeeen. 443
SHICE. ettt e 528
snap package format..........cccceeerrieerreerneeennnnn. 190
SOft TiNK.ueeiieeiieeie e e 24
SOt COMMAN.....covvveeeeerrerreeeeereinreeeeeneeeeees 65, 292
SOTt KBYS..eieieiieieeienieeee ettt et 295
SOUICe COdE...uvrrrrreiiinrnreeeenee. 182 f., 191, 289, 367
source command...........eceeevevereeieerereeeeeeennn. 148, 383
SOUICE TCE....veeeeeeerrrreeeeeeinrreeeeeeeirrrreeeaeeaaeesaaeeenes 371
special parameters..........cceevverveeverveeneeennnes 479, 500
split command...........ceceveeviereriienienrieneeniee e, 331
SSH. ittt e e 225
ssh command........oeeevveeeeeveeeeeeeeiiirereeeenennns 226, 258
SSh Program........cccceceereevienensieneeicneeieeee e 93
Stallman, Richard........ xvi, Xix, xxii, 144, 278, 369
Standard eITOT.........covveeevereeeeieeeeeceeereeeeens 56, 58 f.

diSpOSING Of......ocveveeieieieieeeeeee e 61

redirecting to a file.......ccceeeeceeeverecieerieeenen, 59
standard inpUt.........cceceevverceererreenneeennne 57, 397, 428

TEAITECHING. . eevveveeeeeieeeese e 61
standard OULPUL........cceeeerrereereereereereereeseeseeennns 56

appending to a file.........coccecevrininiininninnen. 58

diSpOSING Of......cceviereeieieieiereeeeee e 61

redirecting standard error to.........ccecceeeeueennnne. 60

redirecting to a file........coccevevenieneenieniennne 57
Startup fileS.....c.eceevvereerierererereeeee e 137
stat COMMANC........cccveeerveeieeeireeireeeirreeeeerreeeeeanns 246
static linking.........cccevvevvereeceeneeeeeeeseeee e 190
el o) SR 104
StOrage deviCes........cceeeveereeneeneesieneesieeneeeneenn 193

AUAIO CDS. ...ttt e 211

CD-ROMS.....uviireeereiereeeeeeereeeeeeeve e eve e 211

device NAmES.........ccooveeeecveeeecreeeeeeeecnreeeennn. 199

disk partitions.........cccceeeeerverveererreessieenieennne 194

floppy disKS......coevverierieieieiesieeeseeeeeeeae 200
IMOUNE POINTS....eereerrieerireereenreeeieeeeannne 195, 197
PaTtitiONS. ..eeeuveeeeeieeiie ettt 204
reading and writing directly.........cc.cccocuennee. 210
repairing file SyStems........cccvveeevereveercvennnns 209
UNMOUNEING.c..vveeeereeeeieeeeiieeeenreeeseeeessneeeennns 198
USB flash drives.......cccceeevevieeeevieeienieeienneen, 210
Stream €ditor.......ccueevveereerrieeneenieesreeseeeseeeseeenes 317
STIMES. e e euveeneerreenieenteeste et et ste e bt e s sbe e s e e e semeeees
EXPIESSIONS. .ccuvierurerreenrenreeeneerenreeeeesnreeesas 416
extract a portion of..........cccceeeeevieeriiernciennnne 502
length of.......oocvevieiiieeeeeeee, 501
perform search and replace upon................. 503
remove leading portion of...........c.ccecvveennen. 502
remove trailing portion of...............cccccoeeen. 503
${parameter:offset:length}.........cccocureruenen. 502
${parameter:offset}........cccoeerverrirerrrcrernennns 502
strings command............coceeceereriienennieenneeeneenn. 493
STUDS et 406, 460
SVttt 372
SU COMMANG.....c.uerveereerrereeerreeeesseeeeesereeeseeeseeens 105
SUDSHELLS....eeeiiveiiieeeeeeeeeeeeeeeeee e 434, 535
sudo command..........cooeveeeeeeeiiiiieiiiieeeeeennn. 105, 107
Sun MiCTOSYStemS........eeevuereieeriiennieniienreee e 151
SUPEIUSET.....eeeveerureenreennreeeeeanneeesnnnee 3, 95, 106, 130
symbolic links........cceceevereeneniieenneennneen. 24, 35, 39
CIALING..ceuveeeeereeeneeeteereeerieeseeeeeirreeenas 39, 42
LISHNG. c.veeeeeeeeeeeeeeeteee e 40
SYMINK...cueiiecieieieee e 24
SYNLAX EITOTS. ...eeeeureeraureeerreeeasneeesaneeessseessnnnnseees 451
syntax highlighting..........ccccceceeneniincncenne 380, 385
SYSLEIMA. . .eeueeeernieieeienieeieereeteeee e eee e ee e 114
T
1 10] [T 306
tabular data........ceeeveeiveeeeeeeeee e 295, 344
tac cOMMANd.......cccvveevreerreerreenieereenireeeeevneeens 309
tail command.........coceeveerieenieniieenieeeeee e 67
tape archive.......occoceveecieneerienceestee e 254
tar COMMANd.......cccveeereeereeneeeieerreereeeseeesveenseens 254
tarballs......ccevveeiereeeeee e 371
LATZRLS. e euveeeureerneeeeeesiee st eeeesbeesaresreesnreessaneeeeees 375
Task Manager........cccccvevvereerreseeseesseessesseesssessnnes 120
Tatham, SIMON........ccovvuvieerieeeeeeeeeeeeeee e 231
tbl command.........ccceevievevviiiiiieeeees 346, 349
tee COMMANG.......ceevverererrrieereenieereeerreeeesveeeeenanne 69
LELOLY P ettt 115
telnet command...........ceecveevveereeesieeneeeiieeeeenneen. 225
TERM variable........cccccoveeierercienieieneeneseerenns 137
terminal emulators.........cocceeveverirnienneeneeneeneee 2

566

terminal SESSIONS.......c.eeveerverierierienieeieneeeiee e
controlling terminal..........ccccccevveervieiniennnnen. 115
effect of .bashrC.......coceevevereneiencnininiens 383
ENVITONMENLT......ccceerrirrerrerreneereneereneenreeeas 106
EXITING.eeeeuieeeeieeeerteeerreeeeee e et e eseeeesreeeeeeeaas 5
login shell........cccoevvevirceeneeieeeeeeeee 106, 137
TERM variable.......cccccooeevenieninininnieenee. 137
using named Pipes.......co.ceeeeveererieeenneeenneeens 555
VITEUAL ettt 5
with remote SYStemS........ccevereereereereeeneeennne 93

terminals.......ooeevveeeevvennneennn. 86, 92 f., 176, 346, 355

fEIMATY OPETALOL.....eeeeeureerrreeeeieeeeireerereeeeeeeennns 514

EESE CASES...eiueerrierreereerteeeeete et 461

test command.........eeeeeeveveeeeeeeeeeeeeeenns 413, 419, 454

LESE COVEIAZE.veemrerriennteeeeeneeeree e ereesreeaee s 461

EOSHIMEZ. e venveneeeeeetetetete ettt 460 f

TEX eitteterteieteteteteeeee et sttt s s aeneesnee s 346

EEX L. ueeireeeeeetee st et et et et s e e snee sttt e s e e sreesaeee 17
adjusting line length.........ccceeevevvvrniennnen. 336 f
ASClILciiiieeeeeeeereeee e 18
CaITIage TEUIML. ceeureeerreeeerureeeeeeeeeaannnneeeeeeens 291
COMPATING..cceureerrureeearreeensnreeesieeeesreeeseneeeeens 310
converting MS-DOS to UniX.......cccccerverunee. 316
CcouNting Words.......cocceeeeveenerseenennieenneeenneenn. 66
CULEINEG .eeeuveeveerreereeereeeteeee et ssreeeaeessreee e 301
deleting duplicate lines.........cc.cceceeveerernunenne 299
deleting multiple blank lines..........ccc.ccuce... 291
detecting differences.........cccceeeevvereeveeneennne. 311
displaying common lines...........c.ccoeerevenennne 310
displaying control characters..............cceuue... 290
DOS fOrmat......ccvereereeneeneenierienieneenieeneeneenne 291
EDITOR variable........cccceceeveieiieinieenieenne 137
(16 110) &= 143, 288
expanding tabs...........cecveriereriieneniienenieene 304
FH1ES et 17
FIlteTiNg...coveevereeereeeeeceeeee e 65
folding......ceeveveeieieeeereeeere e, 336 f.
formatting........ccccceeeveveecvereeceeeeeeree e 332
formatting for typesetters............cceceereerueenne 346
formatting tables.........ccccecererenenenencneneene 349
JOIMING.ceveeeneieiieeieeceeeeerte ettt 306
linefeed character...........ccoceeeveeneeniernennnen. 291
lowercase to uppercase conversion.............. 315
numbering lines.........ccceeevercueeerneeennne. 291, 332
PAgINALING......eeieiieeriieeerieeeeeeeereeeeeeeeeeeanee 340
PASHING.cueeeiieriierieeeeereerteeireeeesrreesssaaeees 305
preparing for printing...........c.ccecceveerieeneenns 357
removing duplicate lines...........cccecueerueennnnnn. 65
rendering in PoStScript........cccceeveeveervivernnen. 348
ROT13 encoded........ccccevveevuenieneenienieneeaene 316
searching for patterns..........ccccecceercveercneernnnnnns 66

SOTTIMG. .eeeuveeneerreeeeerireenreereesreeneeseneees 65, 292
spell checking.........cccoeceevereenenniencniieeeeenne 326
SUDSHEULING. ...veeeveveeiereeieeeeieeee e 321
substituting tabs for spaces...........cccceeeveneenn. 304
tab-delimited.........ccceceevreeeerereereeeceeeee, 303
transliterating characters.............ccceeeveerunen. 315
Unix format......c.cceeevereevieeeerieeceeeeeeesveeenns 291
viewing with less........cccceveeveeveniennecnnnee. 17,64
L1, <6 10 ¥ TP T 143, 288, 315
BITIACS. ¢eeuuveereereerrnreernreesassneesssseessseesssssnssnnees 144
for writing shell sCTipts.......cccceververrercvennenne 380
Lo L<a L SRS 143, 380
INEETACTIVE. ...eeieieeeeieeeeieeeeeeeesteeeeeeeeeeeees 315
Kate...eeveeeeeeeeeeeeeeteee e 143, 380
Kedit..couieeeieeieieieeee e 143
KWTIR. ettt 143
1 (<SSP 151
10 1 10 OO 143, 150
PICO. ettt 143
SETRAMN.....eeurenrermrereenrereereere et et e sreeeseneeeane 317
syntax highlighting...........ccccecvevvvvennnenn. 380, 385
Vi tteetetetet ettt s 143
VALt 143, 380, 385
VISUAL .eeevierieeieniecee et 151
tilde eXpanSion.......cccceeceeveereenerieeeerieeeeeenne 73,79
tload command.........ccccceevveevieerieenieeieenee e 131
tOp COMMAN.......cuerverrerrererrenrreiereeeeeeeeneeens 118
top-down deSign........c.eecveeveerieneenieneene e 399
Torvalds, Linus........ccoevveeeeveeeeeieneeeeeeeeeenns xvi, xxi
touch command............cuuuu..... 245 1., 262, 376, 487
tr COMMANG......eeeireerreeieenieeieeneeeeeevreeeennreeeens 315
traceroute COMMANc.ceevverrveereerseeniuersiveeenes 218
ETACIIE v eeveerveerieeeeeeste et et sree e e e sarereeesreeee e 462
transliterating characters...........cccceeeevvveersueennnee. 315
ETAPS v eeveeeureenureneeenteesreesteesreessessseessseesseessnnreess 548
troff command..........ccceeeerienerienieenee e 346
true COMMANG.......c.eevverveeeerreerenreereeseesaeseessennns 412
TTY et 115
type COmMAnd........cocueeeereereeneeneeneneenreneeenveeens 45
LY PESELLETS. .cc.uveeureeieeeeeeiereeenreeeeereeeeeneee 346, 356
TZ variable........cccoeoveeeeeeieeciecieecee e, 137
U
UbUNtU....eeeeieieerceeeceene 95, 108, 182, 274, 383
umask command.........ccceeeeeveeiiiieiiiiineeeenens 102, 111
umount COMMANG........eevverreerrrerreerseeenrersreeneeens 198
unalias command...........cceceerverveenveerrveerneeesieeennne 54
unary operator eXpected...........ceceeeeruerreerneeennne 454
UNATY OPETALOTS. .ccuuverreerurerrreenrersrresseeenseessvesnseess 508
unexpand command..........coccevcerevereeereeenneennnnes 304

Index

unexpected tOKeN........ccovvceererrieeenieenieeeiee e 453
uniq command..........eeceevereeeneriienenseeneneeens 65, 299
UIIX.tevteeieerieeeieesieeeteeseeesee st e sneeesssareeeessnneeeas xvii
Unix SYStem Vi..ooeevviiriiineenieeneenieeneeeesieeeenn 359
unix2dos command...........ceeeveeeecveseesveeanneennnns 291
unset COMMANG.......ccecvereerrererrreesreeesneeesnreennns 530
until compound command...........ccccerceererieenenne 448
UNEL 100D ..veieieriieieeeceee e 448
unzip command.........coeceererrienenrieneesieneeeneeennee 259
updatedb command.........cc.ceceveeiieniiniieeniiennne. 234
upStream Providers.........eeverveeeereenrvenerieeneeennns 183
UPHIMIE. .eivieeiieeieeeee ettt e e st eeeereeee e 400
uptime comMmand..........cceveeevereecverenseeneennns 4, 407
USB flash drives........cooveevveeeeeiiieieeneeenennnn. 193, 210
USENEL...ceieiieeeieeeiteeniteeeeteeeiveeeee e e e e e s ssieeaees 317
USER variable......ccoovvveiieiiieiiiiiiiiiiiinnnnnn, 135, 137
USEIS.veuteueeueeneeneeseesessessessessessessensansansensessnsesssesssesssens
ACCOUNLS. ..eereuereeeireerrreernirreessreeessseessssaeeeessens 94
changing identity.........cecceevevververeeeniveenneenne 105
changing passwords...........ccceeeveervereeneeennne 112
effective user ID.......uvvevevevveeeieeeeeeeeennn. 104, 115
home direCtory.......cccoveveeeerceenerreereerieseeeenne 95
IAeNEILY . .oeeneeieeieieeeeeeee e 94
PASSWOId...ueeiveeiieeieenienieenieeeteesteesreesaeeeeenns 95
setting default permissions............c.cceeueennee. 102
L1101 [« RSP 104
SUPETUSET....verereeernrevernennennnes 95, 97,104 f., 112
/tC/PASSWA..c.eveeeeeieeeeierteieeeeree e 95
/etC/ShadOW......cevveeeeeieieeeeeeeee e 95
UUID....cotiieirienienenieneeteteeeeeeee e 195
\'%
validating input...........ccceeeeevereeeneeeieeeriee s 435
Variables......ooovuvveeeiiiieeeeeeeeeeeeeeeeeee 77, 390, 498
assigning values..........cceeeeeeverercveneennenn 393, 509
CONSLANTS. c.euvveeeeeeeenreeeneeeeesreeeeseeeeeeesnnneeeees 392
declaring.......ccoceeverveesenienennieenieeeeenn 391, 393
ENVITONIMEN . c...uvteirreeeeiieeerieeesreeessireesseeeees 134
global....cc.ooiiiieieee e 403
10CAL et 403
0 E21 00 LSS 392, 501
SCAlAT.. .ttt 520
] 1T L USSP 134
Vi COMMANG......cueevrieerereeierieeeereereseereseeeeeeene 150
vi-style command line editing...........ccccceceevuennnee 169
vim command........c.eeceeeevveeeeeiniineeeeeeeennnees 286, 385
Virtual CONSOIES.......cceevuereerieriereeeeenieeeeeeseee e 5
virtual private network..........cccceceeeevenieenniennne 229
virtual terminals.........coceeeeveneerirnnnneeneereeneeene 5
Visual editors......ceceeeeerererenienieieieeee e 151

vmstat COMMANd.........ceevvvvrveeeriiiiirreeeeeeereeeeeennens 131
\%%

wait command..........ooeeeeeveereereeeeneeeeeeeeeeeeeennns 552
WC COMMANd....ceeiiiinrieeeiiiireereeeirrrrreeeeeeeeeeeeeeeeees 66
WED PAGES..coueinieiinieieetete ettt 289
wget COMMANC.......cceveerrereeriereeneneereeenaeeenanes 224
What You See Is What You Get..............cceuee.... 355
whatis command............ccocceeeveeieeiieeeeeeeeeeeennes 50
which command.........cceeevveeeiiviiieeeeenieeeenennns 45,77
while compound command...........cc.cceeveerrurennnns 441
wildcards.......ooovevveeiviiiieeeeennn. 27,62, 71, 266, 273
wodim command............eeeeeveveeeeiiiiineeeeeeeeeneens 212
WOTd-SPLitting.......cccevieieirerinerereeeeee e 79 f.
WOTLE......ooeeeeeeeeeee e 544
A7) 4 [« IO SRRt 94
WY SIWYG...ooooeiieeeeeeeeeeeeeeeeee e 355
X

X Window System.......ccccecereenveeriveerneeennnen. 3,229
Xargs COMMAN.......cc.eevvereereerreererieeeneeensueesnnes 243
xload command..........c.c.coeveeerviieniieeeeeeeeeeeenne 131
x10go command..........cceeeeevueeeerersveneesrenneneeennns 120
D€L, I N 289
Y

VaNKING tEXL....ecveeeereereereereenereeseseessesssesesnsenns 85
yUum COmMmMand........cccevuereererreenerreeneeeeneeneeennns 185
Z

Zgrep COMMANG......ccverrervereenrenierieeeereenaeeesneees 286
Zip COMMANA......coeereerieieeieieeieneete e 259
zless command............ooeuveeeveeeeneeeeeieeeereeeeeeen 52
mkfs command..........cocceeeveueieiiiiiiiieeeee e 207
--help OPtiON....cccuieieiieieieeeeeeeee e 47
JCONFIGUTE...c.eeeeieeieieeeeeeeee e 373
.bash_hiStory.......ccceeeeveeeerecieeceeee e, 89
bash_login.......coeeevevieiiieeeee e, 138
bash_profile.........ccoeveneienniniiniieeeeee 138
Jbashrc......oeveeeviiciieeen, 138, 143, 383, 409, 479

568

Index

.ssh/known_hosts

(()) compound command

[[1] compound command

/boot/grub/grub.cfg
/boot/vmlinuz

JUST/LOCAL ..o 23
JAVESy VA LoTal: 1V o) 1o FOR N 23,377, 384
/uSI/10Cal/SDIN.......vveeeeeeeceeeeeeee e 384
JUST/SDANL. ...t 23
JUSI/SNATC.......vveeeeeeceeeeeeee e 23
/USE/Share/diCt.........eeeeeeeeeeeeeeeee e 271
/uST/Share/doC.......coouvveeeiieveeieiieeae 23,52
IVAT e eeeeeeiirirrrererereeeeeeeeeeeeeeesessseeeeessssssnneeeeseees 23
IVAT/LOG ettt 23
/Var/l0g/MmeSSages.coueevereerreererneeneeenaeens 23, 200
/Var/1og/SYSIOE.ceveeueereeeeieeeeieeeeens 23, 68, 200
~).CONFIG. i 24
~LLOCAL e 24
$

] SRS RRRRRRRRR 553
F((EXPreSSiON)).....cucveeereerererrerrererereeeresseseseenenns 507
S{1armray[@]}.ooveeveeeeeeeeeeee e 525
SL1AITaY[*]} 525
SLIPrefiX@}eveeeeeereeerierienieieeeee e 501
SLIPrEfix™ Foreeriieieieeeeeeeeeee e 501
${Hparametery.........ccccevevereveererereeeeeeeeeererenene 501
${parameter,,pattern}........cccccerrerrerrerrerrereervecnnen 506
${parameter,pattern}........ccccecevrerrevrevrerrereerreennen 506
${parameter:-word}.........cccceveeceerirrerreeneeniennnenn 499
${parameter:?word}..........cecererrerrererienienieneennenn 500
${parameter:+word}........cecererrerrerrerreeriersiennieens 501
${parameter:=word}........cecererrerrerrerrernrerriennienns 500
${parameter//pattern/string}.........cccoeevveerreerrenns 503
${parameter/#pattern/string}..........c..cocceevereenene. 503
${parameter/%pattern/string}...........ccceevereeneene. 503
${parameter/pattern/string}.........ccceceerververnenns 503
${parameter##pattern}........ccoceeerereerreruerueruennenn 502
${parameter#pattern}........ccccecererrererierueneeneennenn 502
${parameter%%pattern}........c.coceererrerrererunn 503
${parameter%pattern}..........ccccecevererreereerennenne 503
${parameter \pattern}.........c.ccceeverereveererereereennns 506
${parameter pattern}..........ccceceeereverereeererereennns 506
S@.veeeeeereeeeeeeeeee e 480, 490
K et 480, 490
BBttt eaaees 475
B0 et 479

569

Colophon

Colophon

This book was originally written using OpenOffice.org Writer in Liberation Serif and
Sans fonts on a Dell Inspiron 530N, factory configured with Ubuntu 8.04. The PDF ver-
sion of the text was generated directly by OpenOffice.org Writer. The Second Internet
Edition was produced on the same computer using LibreOffice Writer on Ubuntu 12.04.
The Third and Fourth Internet Editions were produced with LibreOffice Writer on a Sys-
tem76 Ratel Pro computer, factory configured with Ubuntu 14.04. The Fifth and Sixth In-
ternet Editions were produced on the same computer using LibreOffice Writer and
Ubuntu 18.04 and 22.04 respectively. Printed on 100% recycled electrons.

570

	Introduction
	Why Use the Command Line?
	What This Book Is About
	Who Should Read This Book
	What's in This Book
	How To Read This Book
	Prerequisites

	What's New in the Sixth Internet Edition
	Acknowledgments
	Sixth Internet Edition
	Previous Editions

	Your Feedback Is Needed!
	Further Reading

	Part 1 – Learning the Shell
	1 – What Is the Shell?
	Terminal Emulators
	Making Your First Keystrokes
	Command History
	Cursor Movement

	Try Some Simple Commands
	Ending a Terminal Session
	Summing Up
	Further Reading

	2 – Navigation
	Understanding the File System Tree
	The Current Working Directory
	Listing the Contents of a Directory
	Changing the Current Working Directory
	Absolute Pathnames
	Relative Pathnames
	Some Helpful Shortcuts

	Summing Up

	3 – Exploring the System
	Having More Fun with ls
	Options and Arguments
	A Longer Look at Long Format

	Determining a File's Type with file
	Viewing File Contents with less
	Taking a Guided Tour
	Symbolic Links
	Hard Links
	Summing Up
	Further Reading

	4 – Manipulating Files and Directories
	Wildcards
	mkdir – Create Directories
	cp – Copy Files and Directories
	Useful Options and Examples

	mv – Move and Rename Files
	Useful Options and Examples

	rm – Remove Files and Directories
	Useful Options and Examples

	ln – Create Links
	Hard Links
	Symbolic Links

	Let's Build a Playground
	Creating Directories
	Copying Files
	Moving and Renaming Files
	Creating Hard Links
	Creating Symbolic Links
	Removing Files and Directories

	Summing Up
	Further Reading

	5 – Working with Commands
	What Exactly Are Commands?
	Identifying Commands
	type – Display a Command's Type
	which – Display an Executable's Location

	Getting a Command's Documentation
	help – Get Help for Shell Builtins
	--help – Display Usage Information
	man – Display a Program's Manual Page
	apropos – Display Appropriate Commands
	whatis – Display One-line Manual Page Descriptions
	info – Display a Program's Info Entry
	README and Other Program Documentation Files

	Creating Our Own Commands with alias
	Summing Up
	Further Reading

	6 – Redirection
	Standard Input, Output, and Error
	Redirecting Standard Output
	Group Commands
	Redirecting Standard Error
	Redirecting Standard Output and Standard Error to One File
	Disposing of Unwanted Output

	Redirecting Standard Input
	cat – Concatenate Files

	Pipelines
	Filters
	uniq - Report or Omit Repeated Lines
	wc – Print Line, Word, and Byte Counts
	grep – Print Lines Matching a Pattern
	head / tail – Print First / Last Part of Files
	tee – Read from Stdin and Output to Stdout and Files

	Summing Up

	7 – Seeing the World as the Shell Sees It
	Expansion
	Pathname Expansion
	Tilde Expansion
	Arithmetic Expansion
	Brace Expansion
	Parameter Expansion
	Command Substitution

	Quoting
	Double Quotes
	Single Quotes
	Escaping Characters

	Summing Up
	Further Reading

	8 – Advanced Keyboard Tricks
	Command Line Editing
	Cursor Movement
	Modifying Text
	Cutting and Pasting (Killing and Yanking) Text

	Completion
	Using History
	Searching History
	History Expansion

	Summing Up
	Further Reading

	9 – Permissions
	Users, Group Members, and Everybody Else
	Reading, Writing, and Executing
	chmod – Change File Mode
	Setting File Mode with the GUI
	umask – Set Default Permissions

	Changing Identities
	su – Run a Shell with Substitute User and Group IDs
	sudo – Execute a Command as Another User
	chown – Change File Owner and Group
	chgrp – Change Group Ownership

	Exercising Our Privileges
	Changing Your Password
	Summing Up
	Further Reading

	10 – Processes
	How a Process Works
	Viewing Processes
	Viewing Processes Dynamically with top

	Controlling Processes
	Interrupting a Process
	Putting a Process in the Background
	Returning a Process to the Foreground
	Stopping (Pausing) a Process
	Changing Process Priority

	Signals
	Sending Signals to Processes with kill
	Making a Process Hangup Proof
	Sending Signals to Multiple Processes with killall

	Shutting Down the System
	More Process-Related Commands
	Summing Up

	Part 2 – Configuration and the Environment
	11 – The Environment
	What is Stored in the Environment?
	Examining The Environment
	Some Interesting Variables

	How Is The Environment Established?
	What's in a Startup File?
	Exploring How Child Processes Inherit Their Environments
	Launching a Program with a Temporary Environment

	Modifying the Environment
	Which Files Should We Modify?
	Text Editors
	Using a Text Editor
	Activating Our Changes

	Summing Up
	Further Reading

	12 – A Gentle Introduction to vi(m)
	Why We Should Learn vi
	A Little Background
	Starting and Stopping vi
	Editing Modes
	Entering Insert Mode
	Saving Our Work

	Moving the Cursor Around
	Basic Editing
	Appending Text
	Opening a Line
	Deleting Text
	Cutting, Copying, and Pasting Text
	Joining Lines

	Search-and-Replace
	Searching Within a Line
	Searching the Entire File
	Global Search-and-Replace

	Editing Multiple Files
	Switching Between Files
	Opening Additional Files for Editing
	Copying Content from One File into Another
	Inserting an Entire File into Another

	Saving Our Work
	Bash Does vi Too.
	Summing Up
	Further Reading

	13 – Customizing the Prompt
	Anatomy of a Prompt
	Trying Some Alternative Prompt Designs
	Adding Color
	Moving the Cursor
	Saving the Prompt
	Summing Up
	Further Reading

	Part 3 – Common Tasks and Essential Tools
	14 – Package Management
	Packaging Systems
	How a Package System Works
	Package Files
	Repositories
	Dependencies
	High and Low-level Package Tools

	Common Package Management Tasks
	Finding a Package in a Repository
	Installing a Package from a Repository
	Installing a Package from a Package File
	Removing a Package
	Updating Packages from a Repository
	Upgrading a Package from a Package File
	Listing Installed Packages
	Determining Whether a Package is Installed
	Displaying Information About an Installed Package
	Finding Which Package Installed a File

	Summing Up
	Further Reading

	15 – Storage Media
	Mounting and Unmounting Storage Devices
	Viewing a List of Mounted File Systems
	Determining Device Names

	Creating New File Systems
	Manipulating Partitions with parted
	Creating a New File System with mkfs

	Testing and Repairing File Systems
	Moving Data Directly to and from Devices
	Creating CD-ROM Images
	Creating an Image Copy of a CD-ROM
	Creating an Image From a Collection of Files

	Writing CD-ROM Images
	Mounting an ISO Image Directly
	Blanking a Rewritable CD-ROM
	Writing an Image

	Verifying Data
	Summing Up
	Further Reading

	16 – Networking
	Examining and Monitoring a Network
	ping
	traceroute
	ip

	Transporting Files Over a Network
	ftp
	lftp – A Better ftp
	curl - Transfer a URL
	wget - Non-interactive network downloader

	Secure Communication with Remote Hosts
	ssh
	scp and sftp

	Summing Up
	Further Reading

	17 – Searching for Files
	locate – Find Files the Easy Way
	find – Find Files the Hard Way
	Tests
	Operators
	Predefined Actions
	User-Defined Actions
	Improving Efficiency
	xargs
	A Return to the Playground
	Options

	Summing Up
	Further Reading

	18 – Archiving and Backup
	Compressing Files
	gzip
	bzip2

	Archiving Files
	tar
	zip

	Synchronizing Files and Directories
	Using rsync Over a Network

	Summing Up
	Further Reading

	19 – Regular Expressions
	What are Regular Expressions?
	grep
	Metacharacters and Literals
	The Any Character
	Anchors
	Bracket Expressions and Character Classes
	Negation
	Traditional Character Ranges
	POSIX Character Classes

	POSIX Basic vs. Extended Regular Expressions
	Alternation
	Quantifiers
	? - Match an Element Zero or One Time
	* - Match an Element Zero or More Times
	+ - Match an Element One or More Times
	{ } - Match an Element a Specific Number of Times

	Putting Regular Expressions to Work
	Validating a Phone List With grep
	Finding Ugly Filenames with find
	Searching for Files with locate
	Searching for Text with less and vim

	Summing Up
	Further Reading

	20 – Text Processing
	Applications of Text
	Documents
	Web Pages
	Email
	Printer Output
	Program Source Code

	Revisiting Some Old Friends
	cat
	sort
	uniq

	Slicing and Dicing
	cut
	paste
	join
	tac
	rev

	Comparing Text
	comm
	diff
	patch

	Editing on the Fly
	tr
	sed
	aspell

	Summing Up
	Further Reading
	Extra Credit

	21 – Formatting Output
	Simple Formatting Tools
	nl – Number Lines
	fold – Wrap Each Line to a Specified Length
	fmt – A Simple Text Formatter
	pr – Format Text for Printing
	printf – Format and Print Data

	Document Formatting Systems
	groff

	Summing Up
	Further Reading

	22 – Printing
	A Brief History of Printing
	Printing in the Dim Times
	Character-Based Printers
	Graphical Printers

	Printing with Linux
	Preparing Files for Printing
	pr – Convert Text Files for Printing

	Sending a Print Job to a Printer
	lpr – Print Files (Berkeley Style)
	lp – Print Files (System V Style)
	Another Option: a2ps

	Monitoring and Controlling Print Jobs
	lpstat – Display Print System Status
	lpq – Display Printer Queue Status
	lprm / cancel – Cancel Print Jobs

	Summing Up
	Further Reading

	23 – Compiling Programs
	What is Compiling?
	Are All Programs Compiled?

	Compiling a C Program
	Obtaining the Source Code
	Examining the Source Tree
	Building the Program
	Installing the Program

	Summing Up
	Further Reading

	Part 4 – Writing Shell Scripts
	24 – Writing Your First Script
	What are Shell Scripts?
	How to Write a Shell Script
	Script File Format
	Executable Permissions
	Script File Location
	Good Locations for Scripts

	More Formatting Tricks
	Long Option Names
	Indentation and Line-Continuation

	Summing Up
	Further Reading

	25 – Starting a Project
	First Stage: Minimal Document
	Second Stage: Adding a Little Data
	Variables and Constants
	Assigning Values to Variables and Constants

	Here Documents
	Summing Up
	Further Reading

	26 – Top-Down Design
	Shell Functions
	Local Variables
	Shell Functions and Redirection
	Keep Scripts Running
	Summing Up
	Further Reading

	27 – Flow Control: Branching with if
	if
	Exit Status
	test
	File Expressions
	String Expressions
	Integer Expressions

	A More Modern Version of test
	(()) - Designed for Integers
	Combining Expressions
	Control Operators: Another Way to Branch
	Summing Up
	Further Reading

	28 – Reading Keyboard Input
	read – Read Values from Standard Input
	Options
	IFS

	Validating Input
	Menus
	Summing Up
	Extra Credit

	Further Reading

	29 – Flow Control: Looping with while / until
	Looping
	while
	break and continue
	select
	until

	Reading Files with Loops
	Summing Up
	Further Reading

	30 – Troubleshooting
	Syntactic Errors
	Missing Quotes
	Missing or Unexpected Tokens
	Unanticipated Expansions

	Logical Errors
	Defensive Programming
	set -e, set -u, and set -o PIPEFAIL
	ShellCheck is Your Friend
	Watch Out for Filenames
	Verifying Input

	Testing
	Test Cases

	Debugging
	Finding the Problem Area
	Tracing
	Examining Values During Execution

	Summing Up
	Further Reading

	31 – Flow Control: Branching with case
	case
	Patterns
	Performing Multiple Actions

	Summing Up
	Further Reading

	32 – Positional Parameters
	Accessing the Command Line
	Determining the Number of Arguments
	shift – Getting Access to Many Arguments
	Simple Applications
	Using Positional Parameters with Shell Functions

	Handling Positional Parameters en Masse
	A More Complete Application
	The getopts Option
	Interactive Mode
	File Output

	Summing Up
	Further Reading

	33 – Flow Control: Looping with for
	for: Traditional Shell Form
	for: C Language Form
	Summing Up
	Further Reading

	34 – Strings and Numbers
	Parameter Expansion
	Basic Parameters
	Expansions to Manage Empty Variables
	Expansions That Return Variable Names
	String Operations
	Case Conversion

	Arithmetic Evaluation and Expansion
	Number Bases
	Unary Operators
	Simple Arithmetic
	Assignment
	Bit Operations
	Logic

	bc – An Arbitrary Precision Calculator Language
	Using bc
	An Example Script

	Summing Up
	Extra Credit
	Further Reading

	35 – Arrays
	What Are Arrays?
	Creating an Array
	Assigning Values to an Array
	Accessing Array Elements
	Array Operations
	Outputting the Entire Contents of an Array
	Determining the Number of Array Elements
	Finding the Subscripts Used by an Array
	Assigning Array Elements with read -a
	Adding Elements to the End of an Array
	Reading a File Into an Array
	Slicing an Array
	Sorting an Array
	Deleting an Array

	Associative Arrays
	Using Associative Arrays to Simulate Multiple Dimensions

	Summing Up
	Further Reading

	36 – Exotica
	Group Commands and Subshells
	Process Substitution
	Constructing Commands with eval
	A Wordle Helper

	Traps
	Asynchronous Execution
	wait

	Named Pipes
	Setting Up a Named Pipe
	Using Named Pipes

	Summing Up
	Further Reading

	Index
	Colophon

