
BugHint: A Visual Debugger Based on Graph Mining

Jennifer L. Leopold
Missouri University of Science

and Technology
Department of Computer Science

Rolla, MO, USA
leopoldj@mst.edu

Nathan W. Eloe
Northwest Missouri State University

School of Computer Science and
Information Systems
Maryville, MO, USA

nathane@nwmissouri.edu

Patrick Taylor
Missouri University of Science

and Technology
Department of Computer Science

Rolla, MO, USA
taylor@mst.edu

Abstract– Why doesn’t my code work? Instructors for in-
troductory programming courses frequently are asked that
question. Often students understand the problem they are
trying to solve well enough to specify a variety of input and
output scenarios. However, they lack the ability to identify
where the bug is occurring in their code. Mastering the use
of a full-feature debugger can be difficult at this stage in
their computer science education. But simply providing a
hint as to where the problem lies may be sufficient to guide
the student to add print statements or do a hand-trace fo-
cusing on a certain section of the code. Herein we present
a software tool which, given a C++ program, some sample
inputs, and respective expected outputs, uses graph mining
to identify which lines in the program are most likely the
source of a bug. The tool includes a visual display of the
control flow graph for each test case, allowing the user to
step through the statements executed. Experimental results
from a group of CS 1 students show that practice with this
method: (1) makes students faster at finding bugs, (2) im-
proves the way students test a program, and (3) improves
program comments by students.

1 INTRODUCTION

As discussed in [1], instructors and teaching assistants for
introductory programming courses frequently are asked by
their students: why doesn’t my program work? Often the
students understand the problem they are trying to solve
well enough to articulate a variety of input and output sce-
narios. For example, if they are trying to find the sum of all
even values in a list of numbers, they know that the input
list {1, 2, 3, 4, 5} should produce a result of 6, and the in-
put list {1, 3, 5, 7} should produce a result of 0. However,
they frequently lack the ability to identify, or even narrow
down, where a bug is occurring in their code when it does
not produce the correct results. The recommendation to add
print statements, although easy for experienced program-
mers, can require some skill and practice to master, and the
use of a full-feature debugger can be cumbersome and in-
timidating to a novice programmer.

Herein we present BugHint, a software tool which,
given a C++ program, some sample inputs, and respective
outputs, uses graph mining to identify which lines in the

C++ program are most likely causing the erroneous results.
The tool includes a visual display of the control flow graph
for each test case (i.e., sample input), allowing the user to
step through the statements as they are executed. The goal
is that the student will take the bug hint and subsequently
scrutinize the logic in the identified section of the program,
thereby finishing the debugging process on his/her own. Ex-
perimental results with a group of CS1 students have shown
that practice with this tool not only makes students find bugs
faster after training, but also improves the way students test
their programs and comment their programs. The organiza-
tion of this paper is as follows. Section II provides a brief
overview of related work in debugging experiences with be-
ginning programmers and the use of visualization in debug-
ging. Section III discusses the foundation for and imple-
mentation of our software tool, including the graph mining
analysis and the graphic user interface. The experimental
design and results are presented in Section IV. Future work
is discussed in Section V. A summary and conclusions are
given in Section VI.

2 RELATED WORK

2.1 Debugging Experiences with Beginning
Programmers

Several studies (e.g., [1], [2], and [3]) have identified prob-
lems that students experience with coding in introductory
computer science courses, resulting in a proliferation of
program bugs. Debugging strategies such as strategically
placed print statements can be difficult to teach [1]. There
are full-feature debugging tools such as GDB, which allow
one to set breakpoints in the code and/or watch the val-
ues of variables change during execution of the program.
However, for some novice programmers these tools can be
too cumbersome and/or intimidating to use. After years of
study, there is no consensus as to whether beginning pro-
grammers should be exposed to a full-feature debugger.

There have been studies that have successfully inte-
grated the teaching of programming and a debugger at the
introductory level. In [2] the authors used a debugger to
demonstrate construction of Java objects and function calls
in addition to using the debugger to find bugs in programs.
Similarly, the authors of [4] used debugging exercises and

simple debugger functions to reinforce programming con-
cepts (e.g., loops) that they were teaching.

However, full-feature debugger tools are not without
criticism. In addition to the complaint that they may fur-
ther confound the debugging experience for novice pro-
grammers who are already dealing with learning about an
editor, operating system commands, compiler error mes-
sages, and programming language syntax, there is the issue
that debuggers can potentially introduce additional bugs. A
heisenbug is a software bug that is introduced when one at-
tempts to study or analyze a program. Running a program
in a debugger can actually modify the original code, chang-
ing memory addresses of variables and the timing of the
execution. Debuggers often provide watches or other user
interfaces that cause additional code to be executed, which,
in turn, modify the state of the program. Time also can be
a factor in heisenbugs, because race conditions may not oc-
cur when the program is slowed down by single-stepping
through lines of code with the debugger.

Herein we do not seek to answer the question of whether
the use of a full-feature debugger should be integrated into
an introductory programming course. Rather, it is our in-
tention to present a simple tool which the student can use
as a debugging aid and training tool. Our aim is similar to
the function of the instructor or teaching assistant who pro-
vides a hint as to where in the student’s code the bug might
be occurring. It is still up to the student to add print state-
ments, do a hand-trace focusing on those particular state-
ments, or use other techniques to try to fix the problem on
his/her own, considering various input-output test cases.

2.2 Visualization in Debugging
Many contemporary debugging tools provide some type of
visual representation of the source code in addition to dis-
playing the program as text. This visual representation
could be in the form of a flow chart (e.g., Visustin [5]), a
control flow graph (e.g. KDevelop [6] and Dr. Garbage
[7]), or UML diagrams (e.g., Eclipse ObjectAid [8]). The
objective of the visualization is to facilitate understanding
of some properties of the program such as the logic and/or
the interactions between code blocks. To this end, anima-
tion (not just a static representation) of program execution
has long been found to be useful.

Just as UML diagrams were deemed to be particu-
larly helpful for object-oriented programming languages
like Java and C++, control flow graphs have been found to
be useful in debuggers for various programming paradigms.
The authors of [9] presented GRASP, a graphical environ-
ment for analyzing Prolog (i.e., logic) programs; the tool
dynamically animates the executed sequence of Prolog sub-
goals as a control flow graph and allows the user to in-
spect instantiation of variables as s/he steps through the ex-
ecution. In [10] the authors introduced a debugging tool
for MPI (i.e., parallel) programs that displays a message-
passing graph of the execution of an MPI application; parts
of the graph are hidden or highlighted based on the se-
quence of MPI calls that occur during a particular execu-
tion. Mochi [11] was created as a visual debugging tool
for Hadoop (i.e., distributed programs); it displays the con-
trol flow of the workloads of each processor as a graph, al-

lowing the user to observe the map and shuffle processing
that takes place, and possibly identify erroneous sequencing
and/or data partitioning.

3 IMPLEMENTATION

3.1 Discriminative Graph Mining
Our tool, BugHint, was motivated by the work presented
in [12] for identifying bug signatures using discriminative
graph mining. The basic idea is to first produce a control
flow graph for a program written in a procedural program-
ming language (in our case, this is C++). In brief, a control
flow graph is a directed graph made up of nodes represent-
ing basic blocks. Each basic block contains one or more
statements from the program. There is an edge from basic
block Bi to basic block B j if program execution can flow
from Bi to B j. For more information on control flow graphs
and determination of basic blocks, see [13]. For C and C++
programs, a control flow diagram can be generated by com-
piling the program with clang and opt (we specify no op-
timization), and then creating the graph as a dot graph de-
scription language file using dot.

As an example, consider the C++ program shown in Fig.
1 which is supposed to replace only the first occurrence of
either x or y in an array a with the value of z. This program
does not perform that task correctly; it contains a bug. For
simplicity, the code to output the final values of the array is
commented out in this program since it is not where the bug
occurs.

int main() // line 1

{

// inputs to the program

int x = 1;

int y = 7;

int z = 0;

int a[2] = {1, 2};

int arraySize = 2;

for(int i = 0; i < arraySize; i++) // line 2

{

if(a[i] == x) // line 3

{

a[i] = z; // line 4

} // line 5

if(a[i] ==) // line 6

{

a[i] = z; // line 7

} // line 8

} // line 9

// code to output a[]...

return 0; // line 10

}

Figure 1: Example C++ program

An example of a control flow graph for this program is
shown in Fig. 2. In this graph there are eight blocks; the fig-
ure shows which lines of code are contained in each block.

After constructing a control flow graph for the program
to be analyzed, our tool needs to consider test cases. These
need to be specified in terms of sample input and expected
output. The test cases should be as representative as possi-
ble of all boundary conditions for the program. However,
a novice programmer may be unfamiliar with that notion.
At the very least, the user must specify at least one input
sample that is known to produce correct output and at least
one input sample that is known to produce incorrect output;
the user must distinguish these as ‘correct’ and ‘incorrect.’
In Table 1 we list some sample test cases for the example
program shown in Fig. 1.

For each sample case, our tool produces a code trace in
terms of the lines executed for the specified input. The code
traces for the four sample cases shown in Table 1 are listed
in Table 2. It should be noted that if there is an infinite loop
(which is a common bug) during execution of one of the
sample input cases, the output from the code trace should
be sufficient to identify the line(s) where the bug is occur-
ring and no further analysis should be necessary. From each
code trace, we also generate a control flow graph for that
sequence. The control flow graphs for code traces 1 and 2
from Table 2 are shown in Fig. 3; the control flow graphs
for code traces 3 and 4 are the same as the graph shown in
Fig. 2.

Figure 2: Control flow graph for the example program

Table 1: Sample Test Cases for the Example Program

Table 2: Code Traces for the Example Program

The collection of graphs for the sample cases are next
analyzed to identify non-discriminative edges. A non-
discriminative edge is an edge that appears in every graph
that is in the collection of execution graphs. Such edges are
removed from each graph in the collection since they are the
same in each execution, and, as such, are not informative in
distinguishing where the bug occurs. The collection of con-
trol flow graphs with non-discriminative edges removed for
our running example is shown in Fig. 4.

Finally, the collection of graphs is analyzed to deter-
mine what subgraph is common to the faulty (i.e., incorrect
output) execution graphs, but not common to the correct
execution graphs. This corresponds to the section of code
where the bug likely occurs. For our running example, such
a discriminative control flow graph is shown in Fig. 5. It
tells us that the bug involves blocks B4, B6, and B7, which
correspond to lines 4-8 in the program. The hope is that the
student will use this information to realize that, after chang-
ing the value to z in line 4, the program should not proceed
to lines 6-8 since the specifications of the problem were to
change either, not both, the occurrence of x or y to z.

Figure 3: Control flow graphs for (a) trace 1 and (b) trace 2
from Table 2

Figure 4: Control flow graphs with non-discriminative
edges removed for (a) trace 1, (b) trace 2, and (c) traces
3 and 4 from Table 2

Figure 5: Discriminative control flow graph for the example
program

The discriminative graph, and hence the bug in the pro-
gram, may not consist of lines that are executed in the in-
correct cases, but not executed in the correct cases (as was
the situation in this example program); it could be the re-
verse situation. Or it could be the case that we cannot find
a subgraph that is common to all faulty (or correct) execu-
tion graphs, but not common to the correct (or faulty) exe-
cution graphs. The algorithms we utilize for identifying the
“best” discriminative graph are explained next. These differ
slightly from those proposed in [12] and [14] for discrim-
inative graph mining. Let C+ and C- represent the sets of
control flow graphs for the sample test cases producing cor-
rect and incorrect results, respectively; there must be at least
one graph in each such set. The function FindDiscrimina-
tiveGraph (Alg. 1) first removes non-discriminative edges
from the graphs in both sets. It then calls CreateDiscrimina-
tiveGraph (Alg. 2) to try to find a subgraph that is common
to all faulty execution graphs, but not common to all the cor-
rect execution graphs. If we are unable to find such a graph,
then the function RelaxedCreateDiscriminativeGraph (Alg.
3) is called, which relaxes the requirement that the subgraph
we seek not be present in all of the correct execution graphs;
instead the subgraph only has to not be present in α ∗ |C+ |
of the correct execution graphs, where α is a user-specified
parameter (our default is α = 0.5).

FindDiscriminativeGraph and CreateDiscriminativeG-
raph use a function called Augment; this function takes the
subgraph G and adds to it an edge (and possibly a node)
such that the source vertex exists in G, and the edge (and
destination node) exists in all graphs in S1. In this way, a
subgraph with an additional edge that exists in all elements
of S1 is created and considered by the algorithm.

If we still fail to find a discriminative subgraph, then the
bug likely does not involve code that is executed in all faulty
cases and not in correct cases, but rather involves code that
is executed in correct cases and not in faulty cases. Thus,
we again call CreateDiscriminativeGraph, but reverse the
order of the parameters (C+ and C-) from our previous call.
If we still fail to find a discriminative subgraph, we again
call RelaxedCreateDiscriminativeGraph and look for a sub-
graph that only has to not be present in β ∗ |C+ | of the cor-
rect execution graphs, where β is a user-specified parame-
ter (our default is β = 0.5). It is possible that the resulting
discriminative graph will be disconnected. We output the
smallest connected component in that graph using the as-
sumption that a novice programmer will want to focus on a
single, sequential section of his/her program for scrutiniz-
ing the bug, rather that examining multiple, “fragmented”
sections of code.

Algorithm 1 FindDiscriminativeGraph(C+, C-, α , β)
Require: C+: set of control flow graphs for inputs producing correct output
Require: C-: set of control flow graphs for inputs producing incorrect output
Require: α: percentage of graphs that discriminative subgraph need not be present

in C+ when relaxing conditions
Require: β : percentage of graphs that discriminative subgraph need not be present

in C- when relaxing conditions
1: remove non-discriminative edges from graphs in C+ and C-
2: G = CreateDiscriminativeGraph(C-, C+)
3: if G is empty then
4: G = RelaxedCreateDiscriminativeGraph(C−, C+, |C+ | ∗α)
5: if G is empty then
6: G =CreateDiscriminativeGraph(C+, C−);
7: if G is empty then
8: G = RelaxedCreateDiscriminativeGraph(C+, C−, |C−|∗β)
9: end if

10: end if
11: end if
12: G’ = smallest connected component in G;
13: output G’

Algorithm 2 CreateDiscriminativeGraph(S1, S2)
Require: S1: set of control flow graphs
Require: S2: set of control flow graphs
1: FreqSG = queue of 1-edge subgraphs in S1
2: while F doreqSG is not empty do
3: G = FreqSG.dequeue()
4: if G is not in any graph in S2 then
5: return(G)
6: end if
7: NewGraphs = Augment(G)
8: for each graph G’ in NewGraphs do
9: FreqSG.enqueue(G’)

10: end for
11: end while
12: return (empty graph)

Algorithm 3 RelaxedCreateDiscriminativeGraph(S1, S2, γ)
Require: S1: set of control flow graphs
Require: S2: set of control flow graphs
Require: γ: threshold for number of graphs discriminative subgraph must be present

in
1: FreqSG = queue of 1-edge subgraphs in S1
2: while FregSG is not empty do
3: G = FreqSG.dequeue()
4: if G is in ¡ γ graphs in S2 then return (G)
5: end if
6: NewGraphs = Augment(G);
7: for each graph G’ in NewGraphs do
8: FreqSG.enqueue(G’)
9: end for

10: end while
11: return (empty graph)

It should be noted that it is possible that our algorithm
will not find any graph that meets the discriminative condi-
tions; this is largely dependent upon the specified test cases.
If the resulting discriminative graph is empty, the user will
be told that no hint can be provided and that specification of
additional test cases (that produce both correct and incorrect
output) might help.

3.2 Graphic User Interface

Some of the tools used to generate the information needed
for the GUI are not easily installable on all platforms
(specifically, clang/LLVM). To make BugHunt available to
a broad range of novice programmers, a primary concern
was making the tool platform-independent. The GUI for
BugHunt is a web application written in Node.JS, using
vis.js for the visualization of the control flow graphs. The
web application is integrated with various utilities written in
Python, and makes the necessary system calls to add code to
display basic block information, compile, and run the var-
ious traces, as well as to analyze the correct and incorrect
execution traces to provide the bug hint. Hence the tool
can be run from any type of computer but can be deployed
using emerging technologies such as Docker or the Linux
Subsystem for Windows.

Fig. 6 shows a screenshot of the BugHunt GUI with
the example program from Fig. 1 and the test cases from
Table 1. The arrow buttons in the GUI allow the user to
step forwards and backwards through a selected execution
case; both the corresponding nodes and (text) lines in the
program subsequently will be highlighted. Any particular
block in an execution sequence (listed below the graph dis-
play) also can be selected (i.e., clicked-on) with the mouse.

Figure 6: Control flow graphs for (a) trace 1 and (b) trace 2
from Table 2

4 EXPERIMENTS

To test the hypothesis that experience with BugHint im-
proves debugging skill, we tested training with the software
using students who had just recently completed CS1. No-
tably, we did not merely test whether BugHint made it faster
to find the bug in a program where a hint was given, but in-
stead whether experience with BugHint would actually im-
prove debugging skill such that students would be better at
debugging new programs without BugHint.

4.1 Experimental Design

We employed a between-subjects design, as this is usually
less confounded by the design itself, and stronger, when n is
sufficiently large to accommodate two groups. Two groups
of subjects experienced different pre-training, with identi-
cal post-training testing. The human subjects were tested in
four sections of a CS2 laboratory class during the second
week of the semester (immediately following their recent
completion of CS1); two sections were the treatment condi-
tion, and two were the control. A total of 163 students par-
ticipated in this study. All experiments were performed in
accord with human subjects and institutional review board
guidelines. The two groups of subjects are categorized as
follows (Fig. 7):

1. Treatment pre-training - This group was introduced
to BugHint and instructed how to use it. They completed
a pre-training exercise using BugHint on three small pro-
grams that contained bugs.

2. Control pre-training - This group was given instruc-
tions and tips on manual debugging. They completed a pre-
training exercise using standard manual debugging meth-
ods (e.g., printing out values in for-loops and binary search
through code with print statements) on the same three small
programs that contained bugs that were given as a practice
exercise to the treatment group.

Treatment group
(BugHint)

Control group
(Manual debug)

Post-training test

Test programs 4-5
(With manual debug)

Test programs 4-5
(With manual debug)

Pre-training

Practice programs 1-3
(with BugHint)

Practice programs 1-3
(With manual debug)

Time

Figure 7: Experimental design. Performance on the Post-
training test is the key indicator of training success.

These two groups of subjects completed identical post-
training debugging testing activities on three more small
programs that contained bugs; neither group received
BugHint help. In addition to being required to fix and docu-
ment a bug, subjects were given the following questions for
subjective evaluation:
– What time did you start this problem?: AM / PM (circle
one)
– What time did you fix the bug? AM / PM (circle one)
– How confident are you that your program works correctly
now? 1-5 Likert
– How difficult was the problem? 1-5 Likert
– How much would comments in the code have helped you
debug it? 1-5 Likert
– How well-written was the code? 1-5 Likert
– What would make informative test cases to test the buggie
program and why? Free response
– What would make have been helpful comments to have
added to the buggie program to have helped find the bug?
Free response

Importantly, during data entry, all answers were scored
and entered by a ‘blind’ grader who did not know the full
study design, intended results, or purpose of the study. All
data processing was entirely automated using the same pro-
cedures for each measure (barring different statistical tests
for binomial versus numerical data).

4.2 Experimental Results

We analyzed the proportion of students who found each
bug in post-testing, comparing the group with BugHint pre-
training (the treatment group) to the group with normal de-
bugging pre-training (the control group). As shown in Fig.
8, the left panel represents the results for one test program,
and the right panel represents the results for another test
program. Z-scores for a between-group test for binomial
data indicate the treatment group found more bugs during
post-testing; success or failure finding the bug was encoded
as a boolean, and thus a binomial test was required. Further,
when turned into proportions, t-tests were also significant,
though are not the most appropriate test. The t-statistic is
the difference of means between compared groups, divided
by the standard error of the mean, (u1–u2)/SEM. Gener-
ally with reasonable n, it is necessarily the case that when
SEM error bars are not overlapping, the t-test would be be
significant, with α about p < 0.03 on a 1-tailed test in the
expected direction.

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
op

or
tio

n
of

 c
la

ss
 w

ho
 fo

un
d

bu
g,

 n

 =
 7

5
an

d
88

Binomial between-group z = -1.605,
 p < 0.054

Mean, | SEM

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
op

or
tio

n
of

 c
la

ss
 w

ho
 fo

un
d

bu
g,

 n

 =
 7

5
an

d
88

Binomial between-group z = -1.913,
 p < 0.028

Mean, | SEM

Figure 8: Proportion of students who found each bug for
two test programs

Additionally, we examined how much time the students
spent before they thought they had found a bug. Students
in the treatment group reported finishing searching for the
bugs with non-significantly less time than those in the con-
trol group. These data were not filtered on students actually
having correctly found the bug, and so data merely repre-
sent the duration of time until they found what they thought
was the solution. The comparisons between the treatment
and control groups for two test programs are shown in Fig.
9.

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0

5

10

15

20

25

30

35

40

Du
ra

tio
n

to
 fi

nd
 th

e
bu

g
in

 m
in

ut
es

T = -0.4305, p < 0.6676

Mean, | SEM

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0

5

10

15

20

Du
ra

tio
n

to
 fi

nd
 th

e
bu

g
in

 m
in

ut
es

T = -0.2404, p < 0.8105

Mean, | SEM

Figure 9: Duration of time spent before students thought
they had found the bugs for two test programs

The students were given a few sample test cases (in
terms of input and output) for each program that they were
asked to debug. They were then asked to come up with ad-
ditional informative test cases, and their reasoning for such
test cases. These responses were blindly graded and given
a point value from 1-5, with 5 being correct and good rea-
soning. Students who completed the BugHint pre-training
demonstrated superior ability to come up with and reason
about test cases for debugging. As shown in Fig. 10, t-tests
and SEM bars indicate “significance”, and support the con-
clusion that the BugHint group demonstrated better post-
test performance.

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sc
or

e
(h

ig
he

r b
et

te
r):

 W
ha

t w
ou

ld
 m

ak
e

in
fo

rm
at

iv
e

 te
st

 c
as

es
 to

 te
st

 th
e

bu
gg

ie
 p

ro
gr

am
 a

nd
 w

hy
?

T = 2.8763, p < 0.005

Mean, | SEM

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sc
or

e
(h

ig
he

r b
et

te
r):

 W
ha

t w
ou

ld
 m

ak
e

in
fo

rm
at

iv
e

 te
st

 c
as

es
 to

 te
st

 th
e

bu
gg

ie
 p

ro
gr

am
 a

nd
 w

hy
?

T = 3.2054, p < 0.002

Mean, | SEM

Figure 10: How well students came up with informative test
cases for two test programs

In addition to assessing the importance of test cases, we
sought to evaluate the impact of commenting in relation
to debugging. The students were asked what would have
been helpful comments to have included in each program
they debugged. These comments were manually graded and
evaluated by the blind grader, and given a score from 1-5,
with 5 being best. Again, t-tests and SEM bars tend to-
ward “significance.” As shown in Fig. 11, we found that
the BugHint group appeared to demonstrate better post-test
performance.

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sc
or

e
(h

ig
he

r b
et

te
r):

 W

ha
t w

ou
ld

 m
ak

e
ha

ve
 m

ad
e

he
lp

fu
l c

om
m

en
ts

 to

 h
av

e
ad

de
d

to
 th

e
bu

gg
ie

 p
ro

gr
am

 to
 h

av
e

he
lp

ed
 fi

nd
 th

e
bu

g?

T = 0.9375, p < 0.3504

Mean, | SEM

Co
nt

ro
l

Tr
ea

tm
en

t

Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sc
or

e
(h

ig
he

r b
et

te
r):

 W

ha
t w

ou
ld

 m
ak

e
ha

ve
 m

ad
e

he
lp

fu
l c

om
m

en
ts

 to

 h
av

e
ad

de
d

to
 th

e
bu

gg
ie

 p
ro

gr
am

 to
 h

av
e

he
lp

ed
 fi

nd
 th

e
bu

g?

T = 1.7474, p < 0.0839

Mean, | SEM

Figure 11: Helpfulness of comments that students added for
two test programs

Finally, we asked two subjective questions regarding the
students’ overall experience. The first question was whether
they felt that debugging was easier with BugHint. We found
that a majority of students reported that finding bugs was
easier after having done the pre-training with the BugHint
methods than the manual debugging post-test. This is to be
expected since hints (if correct and specific enough) should
make finding bugs easier. The results are shown in Fig. 12
(left panel). Single-group binomial data do not have SEM,
and a single-group binomial test-statistic with expected pro-
portions of 50/50 was performed (as shown on the plot).

1 0

Easier with hint? 1-yes, 0-no
0

10

20

30

40

50

Co
un

t

Binomial t < 0.0827

1 0

Training helpful? 1-yes, 0-no
0

10

20

30

40

50

60

Co
un

t

Binomial t < 0.0001

Figure 12: Left: Was debugging subjectively easier with
BugHint? Right: Did training with BugHint help you learn
to debug even without it?

The second question was whether the students thought
that training with BugHint would help them learn to de-
bug without BugHint later on. Students in the treatment
pre-training condition felt that they benefited from the pre-
training, specifically in regard to their ability to debug later
without its help. Single-group binomial data do not have
SEM, and a single-group binomial test-statistic with ex-
pected proportions of 50/50 was performed as shown on the
plot in Fig. 12 (right panel).

5 FUTURE WORK
The current implementation of BugHint is restricted to pro-
grams that do not contain user-defined functions. Our algo-
rithm for finding a discriminative subgraph, which is based
on analysis of the control flow graphs for correct and incor-
rect test cases, will be easily extendible to additional block
structures. The larger challenge will be accommodating this
additional visual complexity in the graphical user interface.
We intend to perform usefulness and usability studies with
novice programmers to find ways of implementing visual
representation and navigation of the different modules of
the control flow graph in a manner that they (the students)
can best understand.

We also intend to consider using other existing algo-
rithms for finding discriminative subgraphs (e.g., [15] and
[16]) and/or adding other options (in addition to our current
α and β parameters) to our algorithm in order to find the
best discriminative subgraph, and hence provide the best
suggestion for the bug hint. For example, we may priori-
tize subgraphs containing statements with multiple opera-
tors and/or particular operators (e.g., && and ||), which are
the source of common (logic) mistakes for novice program-
mers.

6 SUMMARY AND CONCLU-
SIONS

Herein we have presented a simple debugging tool, which,
given a C++ program that has a logic error just serious
enough to occasionally produce erroneous output while
sometimes producing correct output, and some sample in-
puts with corresponding outputs, uses discriminative graph
mining to identify which lines in the program are most

likely the source of the bug. The tool includes a visual dis-
play of the control flow graph for each test case, allowing
the user to step through the statements executed. Students
who completed pre-training using BugHint did better on
post-testing than students who completed pre-training with-
out BugHint, even though all groups had no help for post-
training. During a post-training exercise where both groups
completed the exact same activity of debugging three more
practice programs, the treatment group found more of the
bugs, self-generated more informative test cases and rea-
soning regarding those test cases, and self-generated more
helpful comments to add to the code itself. In general, it
appears that the extra-formalized method of using BugHint
may improve the way students think about the debugging
practice. We speculate that this may be due to one require-
ment of the BugHint method, which is focused on the spec-
ification of some test cases that generate correct output and
some test cases which produce incorrect output. This exer-
cise itself could be performed to further test that hypothesis.

7 References
[1] C. Lewis and C. Gregg, “How Do You Teach Debug-
ging?: Resources and Strategies for Better Student Debug-
ging”, Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, Memphis, TN, Mar. 2-5,
2016, p. 706.

[2] R.C. Bryce, A. Cooley, A. Hansen, and N.
Hayrapetyan, “A One Year Empirical Study of Student
Programming Bugs”, Frontiers in Education Conference,
Washington, DC, Oct. 27-30, 2010, pp. 1-7.

[3] J.H.I.I. Cross, T.D. Hendrix, and L.A. Barowski,
“Using the Debugger as an Integral Part of Teaching CS1”,
“Frontiers in Education, Boston, MA, Nov. 6-9, 2002. pp.
1-6.

[4] G.C. Lee and J.C. Wu, “Debug It: A Debugging
Practicing System”, Computers & Education, 32, 1999, pp.
165-179.

[5] Visustin, http://www.aivosto.com/visustin.html

[6] KDevelop, https://liveblue.wordpress.com/2009/07/21/3-
visualize-your-code-in-kdevelop/

[7] Dr. Garbage, https://sourceforge.net/projects/drgarbagetools/files/
[8] Eclipse ObjectAid, http://www.objectaid.com/sequence-

diagram
[9] H. Shinomi, “Graphical Representation and Execu-

tion Animation for Prolog Programs”, International Work-
shop on Industrial Applications of Machine Intelligence and
Vision (MIV-89), Tokyo, Apr. 10-12, 1989, pp. 181-186.

[10] B. Schaeli, A. Al-Shabibi, and R.D. Hersch, “Vi-
sual Debugging of MPI Applications”, in Recent Advances
in Parallel Virtual Machine and Message Passing Inter-
face, A. Lastovetsky, T. Kechadi, J. Dongarra (eds)., Eu-
roPVM/MPI, Lecture Notes in Computer Science, vol.
5205, Springer, Berlin, Heidelberg, 2008, pp. 239-247.

[11] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P.
Narasimhan, “Mochi: Visual Log-Analysis Based Tools
for Debugging Hadoop”, CMU-PDL-09-103, Parallel Data
Laboratory, Carnegie Mellon University, Pittsburg, PA,
May 2009.

[12] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan,
“Identifying Bug Signatures Using Discriminative Graph
Mining”, ISSTA, Chicago, IL, Jul. 19-23, 2009, pp. 141-
151.

[13] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman,
Compilers: Principles, Techniques, and Tools, Addison
Wesley, 2nd edition, 2006.

[14] X. Yan, H. Cheng, J. Han, and P.S. Yu, “Min-
ing Significant Graph Patterns by Leap Search”, SIGMOD
2008, Jun. 9-12, 2008, Vancouver, BC, Canada, pp. 433-
444.

[15] N. Jin and W. Wei, “LTS: Discriminative Subgraph
Mining by Learning from Search History”, IEEE 27th In-
ternational Conference on Data Engineering (ICDE), 2011,
pp. 207-218.

[16] M.G.A. El-Wahab, A.E. Aboutabl, and W.M.H. El
Behaidy, “Graph Mining for Software Fault Localization:
An Edge Ranking Based Approach”, Journal of Communi-
cations Software and Systems, Vol. 13. No. 4, Dec. 2017,
pp. 178-188.

