
Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers and functions,
arrays of pointers,
pointers to classes

Comp Sci 1575 Data Structures

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Admin notes

• First assignment is posted. If you have questions after
trying it out this weekend, please come to office hours
early this week (office hours on the site).

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers about arrays: arrays are important

Q: Why did the programmer get fired from his job?

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers about arrays: arrays are important

Q: Why did the programmer get fired from his job?
A: Because he didn’t get arrays.

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers as parameters to functions

#inc lude <i o s t r e a m>
using namespace s t d ;

void s e t V a l t o 5 0 (long ∗ par){
∗ par = 5 0 ;
return ;

}

i n t main (){
long v a l ;
s e t V a l t o 5 0 (& v a l) ;
cout << v a l << e n d l ; // 50

long i n t A r r [5] = {1000 , 2 , 3 , 17 , 5 0} ;
s e t V a l t o 5 0 (i n t A r r) ; // can pas s a r r a y too !
return 0 ;

} // What i s v a l u e o f i n t A r r now?

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers and const

i n t x ;
const i n t z = 1 0 ;
i n t ∗p = &z ; // f a i l s
const i n t ∗pz = &z ; // suc c e ed s
i n t y = 1 0 ;
const i n t ∗p = &y ; // suc c e ed s

x = ∗p ; // g e t s c on t en t s o f p
//∗p = x ; // can ’ t modi fy c on t en t s o f p

//++(∗p) ; // ?
++p ; // ?

• Function receiving a pointer to a non-const as a parameter
can modify the value passed as argument
• Function that takes a pointer to a const as parameter

can’t modify the value

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers and const

i n t x ;

i n t ∗p1 = &x ; // non−con s t p t r to non−con s t i n t
const i n t ∗p2 = &x ; // non−con s t p t r to con s t i n t
i n t const ∗p2 = &x ; // non−con s t p t r to con s t i n t

i n t ∗ const p3 = &x ; // cons t p t r to non−con s t i n t
const i n t ∗ const p4 = &x ; // cons t p t r to con s t i n t

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Void pointers

• Void pointers point to a value that has no type, with
undetermined length and undetermined dereferencing

• Can point to any data type (int, float, char, etc)

• Data pointed to can’t be directly dereferenced

• Void pointer needs to be transformed into some other
pointer type that points to a concrete data type before
being dereferenced

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Void pointers

Pass generic parameters to a function

#inc lude <i o s t r e a m>
using namespace s t d ;

void nextElem (void ∗data , i n t p s i z e){
i f (p s i z e == s i z eo f (char))
{ char ∗ pchar ; pchar =(char ∗) data ; ++(∗pchar) ; }
e l s e i f (p s i z e == s i z eo f (i n t))
{ i n t ∗ p i n t ; p i n t =(i n t ∗) data ; ++(∗p i n t) ; }
return ;

}
i n t main (){

char a = ’ x ’ ;
i n t b = 1 6 0 2 ;
nextElem (&a , s i z eo f (a)) ;
nextElem (&b , s i z eo f (b)) ;
cout << a << ” , ” << b << ‘\n ’ ; // y , 1603
r e t u r n 0 ;

}

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers returned from functions

• C++ does not allow returning an entire array as an
argument to a function.
• Can return a pointer to an array by specifying the array’s

name without an index.

i n t ∗ myFunction (i n t myArray []) {
return myArray ;

}

i n t main (){
i n t myArray [4] ;
i n t ∗p ;
p = myFunction (myArray) ; // no &

// p can now be used l i k e the a r r a y
}

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers returned from functions

• C++ does not allow returning an entire array as an
argument to a function.
• Can return a pointer to an array by specifying the array’s

name without an index.

i n t ∗ myFunction (i n t ∗myArray){
return myArray ;

}

i n t main (){
i n t myArray [4] ;
i n t ∗p ;
p = myFunction (myArray) ; // no &

// p can now be used l i k e the a r r a y
}

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers returned from functions

i n t ∗ getRandom (){
s r a n d ((unsigned) t ime (NULL)) ; // s e t seed
s t a t i c i n t r [1 0] ;
f o r (i n t i = 0 ; i < 1 0 ; ++i){

r [i] = rand () ;
cout << r [i] << e n d l ;

}
return r ;

}

i n t main (){
i n t ∗p ;
p = getRandom () ;
f o r (i n t i = 0 ; i < 1 0 ; i++){

cout << ” ∗(p+” << i << ”) : ” << ∗(p+i) << e n d l ;
}
return 0 ;

}

Remember: array indexing p[i] also works

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Common mistake

• Do not create a stack variable in a local scope and return
a pointer to it in the global scope! The local stack
variables are “destroyed” after the scope finishes. Heap
enables this - more later!

i n t ∗ myFunction ()
{

i n t a r r a y [2] { 1 , 2} ;
i n t ∗ pArray = a r r a y ;
return pArray ;

}

i n t main ()
{

i n t ∗p ;
p = myFunction () ;

}

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers to functions themselves

Often for passing a function as an argument to another function

i n t a d d i t i o n (i n t a , i n t b) { return (a+b) ; }
i n t s u b t r a c t i o n (i n t a , i n t b) { return (a−b) ; }
i n t op er (i n t x , i n t y , i n t (∗ f u n c t) (int , i n t)){

i n t g ;
g = (∗ f u n c t) (x , y) ;
return (g) ;

}

i n t main (){
i n t m, n ;

m = ope r (7 , 5 , a d d i t i o n) ;
i n t (∗minus) (int , i n t) = s u b t r a c t i o n ; // a l i a s
n = o pe r (2 0 , m, minus) ;
cout <<n ;
return 0 ;

} // ∗ a d d i t i o n or a d d i t i o n work above , why?

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Arrays of pointers

// a r r a y o f NUM po i n t e r s to i n t

i n t ∗ p t r [NUM] ;

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Arrays of pointers

#inc lude <i o s t r e a m>
using namespace s t d ;
const i n t NUM = 3 ;

i n t main (){
i n t v a r [NUM] = {10 , 100 , 2 0 0} ;
i n t ∗ p t r [NUM] ;
f o r (i n t i = 0 ; i < NUM; i ++){

p t r [i] = &v a r [i] ; // ??
}
f o r (i n t i = 0 ; i < NUM; i ++){

cout << ” p t r [” << i << ”]=” ;
cout << ∗ p t r [i] << ” , ” ; // two d e r e f ??

}
return 0 ;

}
// out : va r [0]=10 , va r [1]=100 , va r [2]=200

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Arrays of pointers

NOT like ptr = var; where both will have the same address.

Name of variable Storage address Value

var[0] 0x7ffcb158c140 10

var[1] 0x7ffcb158c144 100

var[1] 0x7ffcb158c148 200

0x7ffcb158c14c

ptr[0] 0x7ffcb158c150 0x7ffcb158c140

ptr[1] 0x... 0x7ffcb158c144

ptr[2] 0x... 0x7ffcb158c148

0x...

var 0x... 0x7ffcb158c140

ptr 0x... 0x7ffcb158c150

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers to structs: arrow operator (− >)

s t ruc t p e r s o n {
s t r i n g name ;
i n t age ;

} ;

p e r s o n aPerson ;
p e r s o n ∗ pPerson ;
pPerson = &aPerson ;
pPerson−>age = 2 3 ;
cout << pPerson−>age << e n d l ; // out : 23
//∗ pPerson . age = 25 ; // won ’ t work , op . o r d e r
(∗ pPerson) . age = 2 5 ; //works
cout << pPerson−>age << e n d l ; // out : 25

p e r s o n p e r s o n A r r a y [4] ; // a r r a y o f peop l e
p e r s o n A r r a y [2] . age = 2 2 ; // works
cout << p e r s o n A r r a y [2] . age << e n d l ; // out : 22

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Outline

1 Pointers and functions
Pointers as parameters to functions

Pointers and const
Void pointers

Pointers returned from functions
Pointers to functions themselves

2 Arrays of pointers

3 Pointers to structs

4 Pointers to classes

Pointers and
functions

Pointers as
parameters to
functions

Pointers and const

Void pointers

Pointers returned
from functions

Pointers to functions
themselves

Arrays of
pointers

Pointers to
structs

Pointers to
classes

Pointers to classes

#inc lude <i o s t r e a m>

c l a s s R e c t a n g l e {
i n t width , h e i g h t ;

pub l i c :
R e c t a n g l e (i n t x , i n t y) : w idth (x) , h e i g h t (y){}
R e c t a n g l e (){ width =5; h e i g h t =4;}
i n t a r e a (void) { return width ∗ h e i g h t ;}

} ;

i n t main (){
R e c t a n g l e aRect (3 , 4) ;
R e c t a n g l e ∗pRect = &aRect ;
s t d : : cout << pRect−>a r e a () << e n d l ; //12

R e c t a n g l e a r r R e c t [4] ;
s t d : : cout << a r r R e c t [2] . a r e a () << e n d l ; //20

	Pointers and functions
	Pointers as parameters to functions
	Pointers returned from functions
	Pointers to functions themselves

	Arrays of pointers
	Pointers to structs
	Pointers to classes

