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Admin notes

• First assignment is posted. If you have questions after
trying it out this weekend, please come to office hours
early this week (office hours on the site).
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Pointers about arrays: arrays are important

Q: Why did the programmer get fired from his job?
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Pointers about arrays: arrays are important

Q: Why did the programmer get fired from his job?
A: Because he didn’t get arrays.
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Pointers as parameters to functions

#inc lude <i o s t r e a m>
using namespace s t d ;

void s e t V a l t o 5 0 ( long ∗ par ){
∗ par = 5 0 ;
return ;

}

i n t main ( ){
long v a l ;
s e t V a l t o 5 0 (& v a l ) ;
cout << v a l << e n d l ; // 50

long i n t A r r [ 5 ] = {1000 , 2 , 3 , 17 , 5 0} ;
s e t V a l t o 5 0 ( i n t A r r ) ; // can pas s a r r a y too !
return 0 ;

} // What i s v a l u e o f i n t A r r now?
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Pointers and const

i n t x ;
const i n t z = 1 0 ;
i n t ∗p = &z ; // f a i l s
const i n t ∗pz = &z ; // suc c e ed s
i n t y = 1 0 ;
const i n t ∗p = &y ; // suc c e ed s

x = ∗p ; // g e t s c on t en t s o f p
//∗p = x ; // can ’ t modi fy c on t en t s o f p

//++(∗p ) ; // ?
++p ; // ?

• Function receiving a pointer to a non-const as a parameter
can modify the value passed as argument
• Function that takes a pointer to a const as parameter

can’t modify the value
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Pointers and const

i n t x ;

i n t ∗p1 = &x ; // non−con s t p t r to non−con s t i n t
const i n t ∗p2 = &x ; // non−con s t p t r to con s t i n t
i n t const ∗p2 = &x ; // non−con s t p t r to con s t i n t

i n t ∗ const p3 = &x ; // cons t p t r to non−con s t i n t
const i n t ∗ const p4 = &x ; // cons t p t r to con s t i n t
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Void pointers

• Void pointers point to a value that has no type, with
undetermined length and undetermined dereferencing

• Can point to any data type (int, float, char, etc)

• Data pointed to can’t be directly dereferenced

• Void pointer needs to be transformed into some other
pointer type that points to a concrete data type before
being dereferenced
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Void pointers

Pass generic parameters to a function

#inc lude <i o s t r e a m>
using namespace s t d ;

void nextElem ( void ∗data , i n t p s i z e ){
i f ( p s i z e == s i z eo f ( char ) )
{ char ∗ pchar ; pchar =(char ∗) data ; ++(∗pchar ) ; }
e l s e i f ( p s i z e == s i z eo f ( i n t ) )
{ i n t ∗ p i n t ; p i n t =( i n t ∗) data ; ++(∗p i n t ) ; }
return ;

}
i n t main ( ){

char a = ’ x ’ ;
i n t b = 1 6 0 2 ;
nextElem (&a , s i z eo f ( a ) ) ;
nextElem (&b , s i z eo f ( b ) ) ;
cout << a << ” , ” << b << ‘\n ’ ; // y , 1603
r e t u r n 0 ;

}
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Pointers returned from functions

• C++ does not allow returning an entire array as an
argument to a function.
• Can return a pointer to an array by specifying the array’s

name without an index.

i n t ∗ myFunction ( i n t myArray [ ] ) {
return myArray ;

}

i n t main ( ){
i n t myArray [ 4 ] ;
i n t ∗p ;
p = myFunction ( myArray ) ; // no &

// p can now be used l i k e the a r r a y
}
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Pointers returned from functions

• C++ does not allow returning an entire array as an
argument to a function.
• Can return a pointer to an array by specifying the array’s

name without an index.

i n t ∗ myFunction ( i n t ∗myArray ){
return myArray ;

}

i n t main ( ){
i n t myArray [ 4 ] ;
i n t ∗p ;
p = myFunction ( myArray ) ; // no &

// p can now be used l i k e the a r r a y
}
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Pointers returned from functions

i n t ∗ getRandom ( ){
s r a n d ( ( unsigned ) t ime (NULL ) ) ; // s e t seed
s t a t i c i n t r [ 1 0 ] ;
f o r ( i n t i = 0 ; i < 1 0 ; ++i ){

r [ i ] = rand ( ) ;
cout << r [ i ] << e n d l ;

}
return r ;

}

i n t main ( ){
i n t ∗p ;
p = getRandom ( ) ;
f o r ( i n t i = 0 ; i < 1 0 ; i++ ){

cout << ” ∗( p+” << i << ” ) : ” << ∗( p+i ) << e n d l ;
}
return 0 ;

}

Remember: array indexing p[i] also works
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Common mistake

• Do not create a stack variable in a local scope and return
a pointer to it in the global scope! The local stack
variables are “destroyed” after the scope finishes. Heap
enables this - more later!

i n t ∗ myFunction ( )
{

i n t a r r a y [ 2 ] { 1 , 2} ;
i n t ∗ pArray = a r r a y ;
return pArray ;

}

i n t main ( )
{

i n t ∗p ;
p = myFunction ( ) ;

}
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Pointers to functions themselves

Often for passing a function as an argument to another function

i n t a d d i t i o n ( i n t a , i n t b ) { return ( a+b ) ; }
i n t s u b t r a c t i o n ( i n t a , i n t b ) { return ( a−b ) ; }
i n t op er ( i n t x , i n t y , i n t (∗ f u n c t ) ( int , i n t ) ){

i n t g ;
g = (∗ f u n c t ) ( x , y ) ;
return ( g ) ;

}

i n t main ( ){
i n t m, n ;

m = ope r ( 7 , 5 , a d d i t i o n ) ;
i n t (∗minus ) ( int , i n t ) = s u b t r a c t i o n ; // a l i a s
n = o pe r ( 2 0 , m, minus ) ;
cout <<n ;
return 0 ;

} // ∗ a d d i t i o n or a d d i t i o n work above , why?
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Arrays of pointers

// a r r a y o f NUM po i n t e r s to i n t

i n t ∗ p t r [NUM] ;
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Arrays of pointers

#inc lude <i o s t r e a m>
using namespace s t d ;
const i n t NUM = 3 ;

i n t main ( ){
i n t v a r [NUM] = {10 , 100 , 2 0 0} ;
i n t ∗ p t r [NUM] ;
f o r ( i n t i = 0 ; i < NUM; i ++){

p t r [ i ] = &v a r [ i ] ; // ??
}
f o r ( i n t i = 0 ; i < NUM; i ++){

cout << ” p t r [ ” << i << ”]=” ;
cout << ∗ p t r [ i ] << ” , ” ; // two d e r e f ??

}
return 0 ;

}
// out : va r [0 ]=10 , va r [1 ]=100 , va r [2]=200
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Arrays of pointers

NOT like ptr = var; where both will have the same address.

Name of variable Storage address Value

var[0] 0x7ffcb158c140 10

var[1] 0x7ffcb158c144 100

var[1] 0x7ffcb158c148 200

0x7ffcb158c14c

ptr[0] 0x7ffcb158c150 0x7ffcb158c140

ptr[1] 0x... 0x7ffcb158c144

ptr[2] 0x... 0x7ffcb158c148

0x...

var 0x... 0x7ffcb158c140

ptr 0x... 0x7ffcb158c150
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Pointers to structs: arrow operator ( − >)

s t ruc t p e r s o n {
s t r i n g name ;
i n t age ;

} ;

p e r s o n aPerson ;
p e r s o n ∗ pPerson ;
pPerson = &aPerson ;
pPerson−>age = 2 3 ;
cout << pPerson−>age << e n d l ; // out : 23
//∗ pPerson . age = 25 ; // won ’ t work , op . o r d e r
(∗ pPerson ) . age = 2 5 ; //works
cout << pPerson−>age << e n d l ; // out : 25

p e r s o n p e r s o n A r r a y [ 4 ] ; // a r r a y o f peop l e
p e r s o n A r r a y [ 2 ] . age = 2 2 ; // works
cout << p e r s o n A r r a y [ 2 ] . age << e n d l ; // out : 22
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Pointers to classes

#inc lude <i o s t r e a m>

c l a s s R e c t a n g l e {
i n t width , h e i g h t ;

pub l i c :
R e c t a n g l e ( i n t x , i n t y ) : w idth ( x ) , h e i g h t ( y ){}
R e c t a n g l e ( ){ width =5; h e i g h t =4;}
i n t a r e a ( void ) { return width ∗ h e i g h t ;}

} ;

i n t main ( ){
R e c t a n g l e aRect ( 3 , 4 ) ;
R e c t a n g l e ∗pRect = &aRect ;
s t d : : cout << pRect−>a r e a ( ) << e n d l ; //12

R e c t a n g l e a r r R e c t [ 4 ] ;
s t d : : cout << a r r R e c t [ 2 ] . a r e a ( ) << e n d l ; //20
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