Dynamic memory, dynamic arrays, memory
leaks, classes with pointer members,
constructors and destructors

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

OOPs...

From back when Object wriented Programming and data
hiding were new:

“In C++ it's harder to shoot yourself in the foot, but when you
do, you blow off your whole leg.” Bjarne Stroustrup (the
original author of C++).

Outline

Dynamic
memory

0 Dynamic memory

Outline

0 Dynamic memory
Dynamic variables

Dynamic variables

e Operator: new
e General syntax: pointer = new type
e Example:
int *pl;
pl = new int;
*pl = 42;
e Example 2:
double *p2 = new double;

*p2 = 42
Name of variable | Storage address Value
0x7ffcb158c140
Ox7ffcb158c144 42
Ox7ffcb158c148
pl Ox7ffcb158cl4c | Ox7ffcb158c144
0x7ffcb158c150

Address and value pointed to by pl have no named alias

Outline

0 Dynamic memory

Dynamic memory

Dynamic memory

Stack: Declared variables will reside in stack memory

Heap: Can be used to allocate memory dynamically when
program runs

When finished running, stack memory is automatically
de-allocated, but the data referenced by new pointers on
the heap is not

Operator “delete” should be used to de-allocate the data
pointed to

delete p; de-allocateds item being pointed to on the heap

What is de-allocation? It is not actually deleting, but
marking the memory as available for use

Memory organization

Memory 271

Stack

high ack

i)
T

Heap X
o heap
BSS (uninitialized)
bss unitinizlized varizbles
Data (lnltlallled) data initialized variables
0 Text (Code) # rext SStEUCEiGn

Outline

0 Dynamic memory

delete

Delete example

#include <iostream>
using namespace std;

int main(){
double xpvalue = NULL; // Why?
pvalue = new double; // Request memory

xpvalue = 29494.99; // 77
cout << xpvalue << endl; // 7?7
delete pvalue; // free up the memory.

return 0;

® What happens if your program repeats without delete?
® What is it called when you forget delete?
Microsoft Windows...

Outline

Dynamic
arrays

@ Dynamic arrays

Dynamic array operator: new | |

Dynamic array creation: pointer = new type[numElements]

#include <iostream>
Synemic using namespace std;

arrays

int main(){
int userDefinedSize;
int xpUserSizedArray;

cout << ‘‘How large of an array?” << endl;
cin >> userDefinedSize;

pUserSizedArray = new int[userDefinedSize];
pUserSizedArray[1] = 23;

cout << *(pUserSizedArray+1) << endl; // 23
return O;

Outline

@ Dynamic arrays
delete[]

Deleting array values

int xpArray;
pArray = new int[500];

// assign and manipulate here ...

delete pArray;

What will happen if you execute this many times?

Dynamic array operator: delete | |

To avoid the memory leak caused by the previous slide’s
mistake, use:

int xpArray = NULL;
pArray = new int[500];

// assign and manipulate here ...

delete|]| pArray;

Arrays created with new require: “delete[| pArray;” or it will
only delete the first element, leaving the rest as garbage

Kahoot

Outline

@ Dynamic arrays

Multidimensional arrays

Dynamic multidimensional arrays

cin >> numRows;
cin >> numCols;

// Allocate memory for rows (left column next)
double *xa = new double x[numRows];

// Allocate memory for columns

for(int i = 0; i < numRows; i++) {
al[i] = new double[numCols];

}

a[l][2] = 32; // array[row][col]

// deallocate

for(int i = 0; i < numRows; i++) {
delete [] a[i];

}

delete[] a;

a = nullptr;

Dynamic
memory

Dynamic
N

Problems

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Array creation and access

double **a = new double *[numRows]; // left column

afo]

a[1]

aj2]

a[3]

—» a[0][0]/a[0]1[1] a[01(2] a[0]1[3] a[0][4]

a[1][1] a[1]1[2] a[1][3] a[1][4]

= » a[2][0] |a[2][1] a[2][2] a[2][3] a[2][4]

~ * a[3][0]|a[3][1] a[3][2] a[3](3] a[3]1[4]

a[i]=new double[numCols]; // each right row

Multidimensional array templated

template <typename T>
T xx AllocateDynamicArray(int nRows, int nCols){
T *xxdynamicArray;

dynamicArray = new T x[nRows];
for(int i =0 ; i < nRows ; i++){

dynamicArray[i] = new T [nCols];
}

return dynamicArray;

}

template <typename T>

void FreeDynamicArray (T =xdArray, nRows){
for(int i = 0; i < numRows; i++){delete[] dArray[i];}
delete [] dArray;

}

int main(){
int xxmy2dArr = AllocateDynamicArray<int >(4.,4);
my2dArr[2][2] = 8;
FreeDynamicArray<int >(my2dArr, 4);
return 0;

}

Outline

Problems

© Problems

Outline

© Problems
Memory leaks

Memory leaks

Memory leaks occur when new memory is allocated
dynamically and never deallocated.

In C++, new memory is usually allocated by the new and
new [| operators and deallocated by the delete or the
delete [| operators.

One of the most common mistakes leading to memory
leaks is applying the wrong delete operator.
Deallocating multi-dimensional arrays can also lead to
problems

Outline

© Problems

Invalid and dangling pointers

Invalid and dangling pointers

int xp; // uninitialized pointer

p = new int;

*p = b;

delete p;

int xq = p; // 7?7 What if delete p; was last?

int xpArr;
int myarray[10];
pArr = myarray + 20; // 77

int xdynArr;

dynArr = new int[10];

delete dynArr; // correct?

cout << xdynArr << endl; // 77

cout << x(dynArr + 2) << endl; // 77

Set dangling pointers to nullptr

Dangling pointer should be assigned to nullprt (old: NULL or 0)

int xq = nullptr; // G+~ 11; recommended
int xp = 0;
int xr = NULL;

if(q) // succeeds if p is not null
if(q) // succeeds if p is null

Kahoot

Outline

Dynamic
user-defined
types

e Dynamic user-defined types

Dynamic user-defined types

#include <iostream>
using namespace std;

class Box{
private:
int w, h, d;
public:
void setDim(int x, int y, int z) {w=x; h=y; d=z;}
int volume(){return wxhxd;}

}s

int main(){
Box xmyBox = new Box;
myBox—>setDim (4, 5, 2);
cout << myBox—>volume (); // 40
delete myBox;
Box xmyBoxArray = new Box[4];
myBoxArray [2].setDim (4, 1, 2);
delete|[] myBoxArray; // Delete array
return 0;

Dynamic
user-defined
types

Outline

@ this

Review: objects and this

® [nside every non-static member function, the variable:
T *const this holds the address of the class object from
which the member function was invoked

® this represents a pointer to the object whose member
function is being executed

® this is a hidden parameter accessible in a class’s function
to refer to the object of which the function is a member:

How many variables are in the two functions below?

class Rectangle{
int width, height;
public:

int getArea(){return widthxheight;} // #param?

void printWidth (){
cout << this—>width << endl;
cout << (xthis).width << endl;
cout << width << endl;

}

More useful application of this

class Rectangle
{ -
private:
int width, height;
public:
int getArea(){return widthxheight;}
int compare(Rectangle rect){ // #param?
return this—>getArea() > rect.getArea();

}
}

//Assignment operator= overload
Rectangle & Rectangle :: operator=(const Rectangle &rhs)
{

width = rhs.width;

height = rhs. height;

// Allows chaining of operator= when called.
return xthis;
}

Outline

Structs and
classes with
dynamic
memory

@ Structs and classes with dynamic memory

Outline

@ Structs and classes with dynamic memory
Constructors and destructors

Dynamic
memor

Dynamic

arrays

Dynamic
user-defined

types

this

Constructors and destructors

The compiler provides each Class has a default constructor, so
we can declare via:

MyClass classObject;

until defining our own parameterized constructor, then we need
a new default constructor (or defaulted values)

Further, C+4 automatically generates some member functions
methods for every class.

@ copy constructor used for definition with initialization:
MyClass B = A;
MyClass B(A);
Also called when passing or returning by value, rather than
by reference with &

® operator= used for assignment between existing objects:
A = B = C; (can be chained with multiple assignment)

© destructor called automatically when a class goes out of
scope, or is explicitly deallocated with delete

Constructors and destructors: main

int main() {
// parameterized constructor
Rectangle rect (3, 4, 253);

// default constructor
Rectangle recta;

// copy constructor
Rectangle rectb(rect);

Rectangle rectc = rect;

// operator= assignment (not constructor)
recta = rect;

return O0;

Constructors and destructors: declarations

class Rectangle{
int width, height, xpfill;

public:
// parameterized constructor

Rectangle(int, int, int);

// new default constructor
Rectangle ();

// copy constructor
Rectangle(const Rectangle &);

// assignment (overload operator, not constructor)
const Rectangle & operator=(const Rectangle &);

// destructor uses " in front of class name
“Rectangle ();

int printFill () {return xpFill;}

Constructors and destructors: definitions

Rectangle :: Rectangle(int a, int b, int fillVal){
width = a; height = b;
pFill = new int(fillVal);

width 5; height = 5;

Rectangle :: Rectangle(){
pFill = new int(255);

Rectangle :: Rectangle(const Rectangle &source){
width = source.width;
height = source.height;
// pFill = source.pFill; // shallow copy pointer itself
pFill = new int(x(source.pFill)); // deep copy contents

const Rectangle & Rectangle:: operator=(const Rectangle &rhs){

if (this != &rhs){
width = rhs.width;
height = rhs. height;
// pFill = rhs.pFill; // shallow copy pointer itself
«pFill = x(rhs.pFill); // deep copy contents
return xthis;

} // what if pFill was an array? delete[] old first for size mismatch?

Rectangle::” Rectangle(){
delete pFill;
}

Watch out for shallow and deep copy!

Kahoot

Outline

@ Structs and classes with dynamic memory

Requirements of dynamic members

Class with dynamic members

If a your user-defined class with dynamically allocated members
is to function in all typical ways, you likely need to to re-write
its:

@ Default constructor

® Parameterized constructor

® Copy constructor

O Assignment operator=

@ Default destructor

Guidelines for classes with dynamic memory

Dynamic
memor

e Initialize pointers in the constructor! If not allocating

e space right away, best to initialize to nullptr until ready
arrays for use.

® Use new inside class member functions to allocate space

® Use delete to clean up dynamically allocated space
whenever finished using it. Do so in the destructor, which
is the last function that runs for an object

Dynamic

user-defined

® |solate memory management tasks from the
functionality/algorithmic tasks wherever possible: Write a
set of member functions just for dealing with memory
management issues — like creation of space, deallocation,
resizing, etc. Your algorithmic functions can call the
memory-handling functions, when needed

	Dynamic memory
	Dynamic variables
	Dynamic memory
	delete

	Dynamic arrays
	delete[]
	Multidimensional arrays

	Problems
	Memory leaks
	Invalid and dangling pointers

	Dynamic user-defined types
	this
	Structs and classes with dynamic memory
	Constructors and destructors
	Requirements of dynamic members

