
Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic memory, dynamic arrays, memory
leaks, classes with pointer members,

constructors and destructors

Comp Sci 1575 Data Structures

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

OOPs...

From back when Object wriented Programming and data
hiding were new:

“In C++ it’s harder to shoot yourself in the foot, but when you
do, you blow off your whole leg.” Bjarne Stroustrup (the
original author of C++).

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic variables

• Operator: new

• General syntax: pointer = new type

• Example:
int *p1;
p1 = new int;
*p1 = 42;

• Example 2:
double *p2 = new double;
*p2 = 42

Name of variable Storage address Value

0x7ffcb158c140

0x7ffcb158c144 42

0x7ffcb158c148

p1 0x7ffcb158c14c 0x7ffcb158c144

0x7ffcb158c150
Address and value pointed to by p1 have no named alias

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic memory

• Stack: Declared variables will reside in stack memory

• Heap: Can be used to allocate memory dynamically when
program runs

• When finished running, stack memory is automatically
de-allocated, but the data referenced by new pointers on
the heap is not

• Operator “delete” should be used to de-allocate the data
pointed to

• delete p; de-allocateds item being pointed to on the heap

• What is de-allocation? It is not actually deleting, but
marking the memory as available for use

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Memory organization

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Delete example

#inc lude <i o s t r e a m>
using namespace s t d ;

i n t main (){
double ∗ p v a l u e = NULL ; // Why?
p v a l u e = new double ; // Request memory
∗ p v a l u e = 2 9 4 9 4 . 9 9 ; // ??

cout << ∗ p v a l u e << e n d l ; // ??

de lete p v a l u e ; // f r e e up the memory .

return 0 ;
}

• What happens if your program repeats without delete?
• What is it called when you forget delete?

Microsoft Windows...

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic array operator: new []

Dynamic array creation: pointer = new type[numElements]

#inc lude <i o s t r e a m>
using namespace s t d ;

i n t main (){
i n t u s e r D e f i n e d S i z e ;
i n t ∗ p U s e r S i z e d A r r a y ;

cout << ‘ ‘How l a r g e o f an a r r a y ?” << e n d l ;
c i n >> u s e r D e f i n e d S i z e ;

p U s e r S i z e d A r r a y = new i n t [u s e r D e f i n e d S i z e] ;
p U s e r S i z e d A r r a y [1] = 2 3 ;
cout << ∗(p U s e r S i z e d A r r a y +1) << e n d l ; // 23
r e t u r n 0 ;

}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Deleting array values

i n t ∗ pArray ;
pArray = new in t [5 0 0] ;

// a s s i g n and man ipu l a t e he r e . . .

de lete pArray ;

What will happen if you execute this many times?

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic array operator: delete []

To avoid the memory leak caused by the previous slide’s
mistake, use:

i n t ∗ pArray = NULL ;
pArray = new in t [5 0 0] ;

// a s s i g n and man ipu l a t e he r e . . .

de lete [] pArray ;

Arrays created with new require: “delete[] pArray;” or it will
only delete the first element, leaving the rest as garbage

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Kahoot

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic multidimensional arrays

c i n >> numRows ;
c i n >> numCols ;

// A l l o c a t e memory f o r rows (l e f t column next)
double ∗∗a = new double ∗ [numRows] ;

// A l l o c a t e memory f o r columns
f o r (i n t i = 0 ; i < numRows ; i ++) {

a [i] = new double [numCols] ;
}

a [1] [2] = 3 2 ; // a r r a y [row] [c o l]

// d e a l l o c a t e
f o r (i n t i = 0 ; i < numRows ; i ++) {

de lete [] a [i] ;
}
de lete [] a ;
a = n u l l p t r ;

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Array creation and access

double **a = new double *[numRows]; // left column

a[i]=new double[numCols]; // each right row

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Multidimensional array templated

template <typename T>
T ∗∗ A l l o c a t e D y n a m i c A r r a y (i n t nRows , i n t n C o l s){

T ∗∗ dynamicArray ;
dynamicArray = new T ∗ [nRows] ;
f o r (i n t i = 0 ; i < nRows ; i ++){

dynamicArray [i] = new T [n C o l s] ;
}
re tu rn dynamicArray ;

}
template <typename T>
vo id FreeDynamicArray (T ∗∗ dArray , nRows){

f o r (i n t i = 0 ; i < numRows ; i ++){de le te [] dArray [i] ; }
de le te [] dArray ;

}
i n t main (){

i n t ∗∗my2dArr = A l l o c a t e D y n a m i c A r r a y<i n t > (4 , 4) ;
my2dArr [2] [2] = 8 ;
FreeDynamicArray<i n t >(my2dArr , 4) ;
re tu rn 0 ;

}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Memory leaks

• Memory leaks occur when new memory is allocated
dynamically and never deallocated.

• In C++, new memory is usually allocated by the new and
new [] operators and deallocated by the delete or the
delete [] operators.

• One of the most common mistakes leading to memory
leaks is applying the wrong delete operator.

• Deallocating multi-dimensional arrays can also lead to
problems

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Invalid and dangling pointers

i n t ∗p ; // u n i n i t i a l i z e d p o i n t e r

p = new in t ;
∗p = 5 ;
de lete p ;
i n t ∗q = p ; // ?? What i f d e l e t e p ; was l a s t ?

i n t ∗ pArr ;
i n t myarray [1 0] ;
pArr = myarray + 2 0 ; // ??

i n t ∗ dynArr ;
dynArr = new in t [1 0] ;
de lete dynArr ; // c o r r e c t ?
cout << ∗ dynArr << e n d l ; // ??
cout << ∗(dynArr + 2) << e n d l ; // ??

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Set dangling pointers to nullptr

Dangling pointer should be assigned to nullprt (old: NULL or 0)

i n t ∗q = n u l l p t r ; // C++ 11 ; recommended
i n t ∗p = 0 ;
i n t ∗ r = NULL ;

i f (q) // suc c e ed s i f p i s not n u l l
i f (q) // suc c e ed s i f p i s n u l l

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Kahoot

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Dynamic user-defined types

#inc lude <i o s t r e a m>
us ing namespace s t d ;

c l a s s Box{
p r i v a t e :

i n t w, h , d ;
pub l i c :

vo id setDim (i n t x , i n t y , i n t z) {w=x ; h=y ; d=z ;}
i n t volume (){ re tu rn w∗h∗d ;}

} ;

i n t main (){
Box ∗myBox = new Box ;
myBox−>setDim (4 , 5 , 2) ;
cout << myBox−>volume () ; // 40
de le te myBox ;
Box ∗myBoxArray = new Box [4] ;
myBoxArray [2] . setDim (4 , 1 , 2) ;
de le te [] myBoxArray ; // De l e t e a r r a y
re tu rn 0 ;

}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Review: objects and this

• Inside every non-static member function, the variable:
T *const this holds the address of the class object from
which the member function was invoked
• this represents a pointer to the object whose member

function is being executed
• this is a hidden parameter accessible in a class’s function

to refer to the object of which the function is a member:

How many variables are in the two functions below?

c l a s s R e c t a n g l e {
i n t width , h e i g h t ;

pub l i c :
i n t g e t A r e a (){ return width ∗ h e i g h t ;} // #param?
void p r i n t W i d t h (){

cout << th i s−>width << e n d l ;
cout << (∗ t h i s) . w idth << e n d l ;
cout << width << e n d l ;

}
}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

More useful application of this

c l a s s R e c t a n g l e
{

p r i v a t e :
i n t width , h e i g h t ;

pub l i c :
i n t g e t A r e a (){ re tu rn width ∗ h e i g h t ;}
i n t compare (R e c t a n g l e r e c t){ // #param?

re tu rn th i s−>g e t A r e a () > r e c t . g e t A r e a () ;
}

}

//Ass ignment op e r a t o r= ov e r l o a d
R e c t a n g l e & R e c t a n g l e : : operator=(const R e c t a n g l e &r h s)
{

width = r h s . width ;
h e i g h t = r h s . h e i g h t ;

// A l l ows c h a i n i n g o f o p e r a t o r= when c a l l e d .
re tu rn ∗ t h i s ;

}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Constructors and destructors

The compiler provides each Class has a default constructor, so
we can declare via:
MyClass classObject;

until defining our own parameterized constructor, then we need
a new default constructor (or defaulted values)

Further, C++ automatically generates some member functions
methods for every class.

1 copy constructor used for definition with initialization:
MyClass B = A;
MyClass B(A);
Also called when passing or returning by value, rather than
by reference with &

2 operator= used for assignment between existing objects:
A = B = C; (can be chained with multiple assignment)

3 destructor called automatically when a class goes out of
scope, or is explicitly deallocated with delete

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Constructors and destructors: main

i n t main () {
// pa r ame t e r i z e d c o n s t r u c t o r
R e c t a n g l e r e c t (3 , 4 , 2 5 3) ;

// d e f a u l t c o n s t r u c t o r
R e c t a n g l e r e c t a ;

// copy c o n s t r u c t o r
R e c t a n g l e r e c t b (r e c t) ;
R e c t a n g l e r e c t c = r e c t ;

// op e r a t o r= ass i gnment (not c o n s t r u c t o r)
r e c t a = r e c t ;

return 0 ;
}

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Constructors and destructors: declarations

c l a s s R e c t a n g l e {
i n t width , h e i g h t , ∗ p f i l l ;

pub l i c :
// pa r ame t e r i z e d c o n s t r u c t o r
R e c t a n g l e (i n t , i n t , i n t) ;

// new d e f a u l t c o n s t r u c t o r
R e c t a n g l e () ;

// copy c o n s t r u c t o r
R e c t a n g l e (const R e c t a n g l e &);

// as s i gnment (o v e r l o a d ope ra to r , not c o n s t r u c t o r)
const R e c t a n g l e & operator=(const R e c t a n g l e &);

// d e s t r u c t o r u s e s ˜ i n f r o n t o f c l a s s name
˜ R e c t a n g l e () ;

i n t p r i n t F i l l () { re tu rn ∗ p F i l l ;}
} ;

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Constructors and destructors: definitions

R e c t a n g l e : : R e c t a n g l e (i n t a , i n t b , i n t f i l l V a l){
width = a ; h e i g h t = b ;
p F i l l = new i n t (f i l l V a l) ;

}

R e c t a n g l e : : R e c t a n g l e (){
width = 5 ; h e i g h t = 5 ;
p F i l l = new i n t (2 5 5) ;

}

R e c t a n g l e : : R e c t a n g l e (const R e c t a n g l e &s o u r c e){
width = s o u r c e . width ;
h e i g h t = s o u r c e . h e i g h t ;
// p F i l l = sou r c e . p F i l l ; // s h a l l ow copy p o i n t e r i t s e l f
p F i l l = new i n t (∗(s o u r c e . p F i l l)) ; // deep copy con t en t s

}

const R e c t a n g l e & R e c t a n g l e : : ope ra to r=(const R e c t a n g l e &r h s){
i f (t h i s != &r h s){

width = r h s . width ;
h e i g h t = r h s . h e i g h t ;
// p F i l l = rh s . p F i l l ; // s h a l l ow copy p o i n t e r i t s e l f
∗ p F i l l = ∗(r h s . p F i l l) ; // deep copy con t en t s
r e t u r n ∗ t h i s ;

} // what i f p F i l l was an a r r a y ? d e l e t e [] o l d f i r s t f o r s i z e mismatch ?
}

R e c t a n g l e : : ˜ R e c t a n g l e (){
de l e t e p F i l l ;

}

Watch out for shallow and deep copy!

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Kahoot

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Outline

1 Dynamic memory
Dynamic variables
Dynamic memory
delete

2 Dynamic arrays
delete[]
Multidimensional arrays

3 Problems
Memory leaks
Invalid and dangling pointers

4 Dynamic user-defined types

5 this

6 Structs and classes with dynamic memory
Constructors and destructors
Requirements of dynamic members

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Class with dynamic members

If a your user-defined class with dynamically allocated members
is to function in all typical ways, you likely need to to re-write
its:

1 Default constructor

2 Parameterized constructor

3 Copy constructor

4 Assignment operator=

5 Default destructor

Dynamic
memory

Dynamic variables

Dynamic memory

delete

Dynamic
arrays

delete[]

Multidimensional
arrays

Problems

Memory leaks

Invalid and dangling
pointers

Dynamic
user-defined
types

this

Structs and
classes with
dynamic
memory

Constructors and
destructors

Requirements of
dynamic members

Guidelines for classes with dynamic memory

• Initialize pointers in the constructor! If not allocating
space right away, best to initialize to nullptr until ready
for use.

• Use new inside class member functions to allocate space

• Use delete to clean up dynamically allocated space
whenever finished using it. Do so in the destructor, which
is the last function that runs for an object

• Isolate memory management tasks from the
functionality/algorithmic tasks wherever possible: Write a
set of member functions just for dealing with memory
management issues – like creation of space, deallocation,
resizing, etc. Your algorithmic functions can call the
memory-handling functions, when needed

	Dynamic memory
	Dynamic variables
	Dynamic memory
	delete

	Dynamic arrays
	delete[]
	Multidimensional arrays

	Problems
	Memory leaks
	Invalid and dangling pointers

	Dynamic user-defined types
	this
	Structs and classes with dynamic memory
	Constructors and destructors
	Requirements of dynamic members

