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OOPs...

From back when Object wriented Programming and data
hiding were new:

“In C++ it’s harder to shoot yourself in the foot, but when you
do, you blow off your whole leg.” Bjarne Stroustrup (the
original author of C++).
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Dynamic variables

• Operator: new

• General syntax: pointer = new type

• Example:
int *p1;
p1 = new int;
*p1 = 42;

• Example 2:
double *p2 = new double;
*p2 = 42

Name of variable Storage address Value

0x7ffcb158c140

0x7ffcb158c144 42

0x7ffcb158c148

p1 0x7ffcb158c14c 0x7ffcb158c144

0x7ffcb158c150
Address and value pointed to by p1 have no named alias
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Dynamic memory

• Stack: Declared variables will reside in stack memory

• Heap: Can be used to allocate memory dynamically when
program runs

• When finished running, stack memory is automatically
de-allocated, but the data referenced by new pointers on
the heap is not

• Operator “delete” should be used to de-allocate the data
pointed to

• delete p; de-allocateds item being pointed to on the heap

• What is de-allocation? It is not actually deleting, but
marking the memory as available for use
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Memory organization
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Delete example

#inc lude <i o s t r e a m>
using namespace s t d ;

i n t main ( ){
double ∗ p v a l u e = NULL ; // Why?
p v a l u e = new double ; // Request memory
∗ p v a l u e = 2 9 4 9 4 . 9 9 ; // ??

cout << ∗ p v a l u e << e n d l ; // ??

de lete p v a l u e ; // f r e e up the memory .

return 0 ;
}

• What happens if your program repeats without delete?
• What is it called when you forget delete?

Microsoft Windows...
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Dynamic array operator: new [ ]

Dynamic array creation: pointer = new type[numElements]

#inc lude <i o s t r e a m>
using namespace s t d ;

i n t main ( ){
i n t u s e r D e f i n e d S i z e ;
i n t ∗ p U s e r S i z e d A r r a y ;

cout << ‘ ‘How l a r g e o f an a r r a y ?” << e n d l ;
c i n >> u s e r D e f i n e d S i z e ;

p U s e r S i z e d A r r a y = new i n t [ u s e r D e f i n e d S i z e ] ;
p U s e r S i z e d A r r a y [ 1 ] = 2 3 ;
cout << ∗( p U s e r S i z e d A r r a y +1) << e n d l ; // 23
r e t u r n 0 ;

}
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Deleting array values

i n t ∗ pArray ;
pArray = new in t [ 5 0 0 ] ;

// a s s i g n and man ipu l a t e he r e . . .

de lete pArray ;

What will happen if you execute this many times?
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Dynamic array operator: delete [ ]

To avoid the memory leak caused by the previous slide’s
mistake, use:

i n t ∗ pArray = NULL ;
pArray = new in t [ 5 0 0 ] ;

// a s s i g n and man ipu l a t e he r e . . .

de lete [ ] pArray ;

Arrays created with new require: “delete[ ] pArray;” or it will
only delete the first element, leaving the rest as garbage
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Dynamic multidimensional arrays

c i n >> numRows ;
c i n >> numCols ;

// A l l o c a t e memory f o r rows ( l e f t column next )
double ∗∗a = new double ∗ [ numRows ] ;

// A l l o c a t e memory f o r columns
f o r ( i n t i = 0 ; i < numRows ; i ++) {

a [ i ] = new double [ numCols ] ;
}

a [ 1 ] [ 2 ] = 3 2 ; // a r r a y [ row ] [ c o l ]

// d e a l l o c a t e
f o r ( i n t i = 0 ; i < numRows ; i ++) {

de lete [ ] a [ i ] ;
}
de lete [ ] a ;
a = n u l l p t r ;
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Array creation and access

double **a = new double *[numRows]; // left column

a[i]=new double[numCols]; // each right row
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Multidimensional array templated

template <typename T>
T ∗∗ A l l o c a t e D y n a m i c A r r a y ( i n t nRows , i n t n C o l s ){

T ∗∗ dynamicArray ;
dynamicArray = new T ∗ [ nRows ] ;
f o r ( i n t i = 0 ; i < nRows ; i ++){

dynamicArray [ i ] = new T [ n C o l s ] ;
}
re tu rn dynamicArray ;

}
template <typename T>
vo id FreeDynamicArray (T ∗∗ dArray , nRows ){

f o r ( i n t i = 0 ; i < numRows ; i ++){de le te [ ] dArray [ i ] ; }
de le te [ ] dArray ;

}
i n t main ( ){

i n t ∗∗my2dArr = A l l o c a t e D y n a m i c A r r a y<i n t > ( 4 , 4 ) ;
my2dArr [ 2 ] [ 2 ] = 8 ;
FreeDynamicArray<i n t >(my2dArr , 4 ) ;
re tu rn 0 ;

}
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Memory leaks

• Memory leaks occur when new memory is allocated
dynamically and never deallocated.

• In C++, new memory is usually allocated by the new and
new [ ] operators and deallocated by the delete or the
delete [ ] operators.

• One of the most common mistakes leading to memory
leaks is applying the wrong delete operator.

• Deallocating multi-dimensional arrays can also lead to
problems
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Invalid and dangling pointers

i n t ∗p ; // u n i n i t i a l i z e d p o i n t e r

p = new in t ;
∗p = 5 ;
de lete p ;
i n t ∗q = p ; // ?? What i f d e l e t e p ; was l a s t ?

i n t ∗ pArr ;
i n t myarray [ 1 0 ] ;
pArr = myarray + 2 0 ; // ??

i n t ∗ dynArr ;
dynArr = new in t [ 1 0 ] ;
de lete dynArr ; // c o r r e c t ?
cout << ∗ dynArr << e n d l ; // ??
cout << ∗( dynArr + 2) << e n d l ; // ??
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Set dangling pointers to nullptr

Dangling pointer should be assigned to nullprt (old: NULL or 0)

i n t ∗q = n u l l p t r ; // C++ 11 ; recommended
i n t ∗p = 0 ;
i n t ∗ r = NULL ;

i f ( q ) // suc c e ed s i f p i s not n u l l
i f ( q ) // suc c e ed s i f p i s n u l l
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Dynamic user-defined types

#inc lude <i o s t r e a m>
us ing namespace s t d ;

c l a s s Box{
p r i v a t e :

i n t w, h , d ;
pub l i c :

vo id setDim ( i n t x , i n t y , i n t z ) {w=x ; h=y ; d=z ;}
i n t volume ( ){ re tu rn w∗h∗d ;}

} ;

i n t main ( ){
Box ∗myBox = new Box ;
myBox−>setDim ( 4 , 5 , 2 ) ;
cout << myBox−>volume ( ) ; // 40
de le te myBox ;
Box ∗myBoxArray = new Box [ 4 ] ;
myBoxArray [ 2 ] . setDim ( 4 , 1 , 2 ) ;
de le te [ ] myBoxArray ; // De l e t e a r r a y
re tu rn 0 ;

}
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Review: objects and this

• Inside every non-static member function, the variable:
T *const this holds the address of the class object from
which the member function was invoked
• this represents a pointer to the object whose member

function is being executed
• this is a hidden parameter accessible in a class’s function

to refer to the object of which the function is a member:

How many variables are in the two functions below?

c l a s s R e c t a n g l e {
i n t width , h e i g h t ;

pub l i c :
i n t g e t A r e a ( ){ return width ∗ h e i g h t ;} // #param?
void p r i n t W i d t h ( ){

cout << th i s−>width << e n d l ;
cout << (∗ t h i s ) . w idth << e n d l ;
cout << width << e n d l ;

}
}
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More useful application of this

c l a s s R e c t a n g l e
{

p r i v a t e :
i n t width , h e i g h t ;

pub l i c :
i n t g e t A r e a ( ){ re tu rn width ∗ h e i g h t ;}
i n t compare ( R e c t a n g l e r e c t ){ // #param?

re tu rn th i s−>g e t A r e a ( ) > r e c t . g e t A r e a ( ) ;
}

}

//Ass ignment op e r a t o r= ov e r l o a d
R e c t a n g l e & R e c t a n g l e : : operator=(const R e c t a n g l e &r h s )
{

width = r h s . width ;
h e i g h t = r h s . h e i g h t ;

// A l l ows c h a i n i n g o f o p e r a t o r= when c a l l e d .
re tu rn ∗ t h i s ;

}
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Constructors and destructors

The compiler provides each Class has a default constructor, so
we can declare via:
MyClass classObject;

until defining our own parameterized constructor, then we need
a new default constructor (or defaulted values)

Further, C++ automatically generates some member functions
methods for every class.

1 copy constructor used for definition with initialization:
MyClass B = A;
MyClass B(A);
Also called when passing or returning by value, rather than
by reference with &

2 operator= used for assignment between existing objects:
A = B = C; (can be chained with multiple assignment)

3 destructor called automatically when a class goes out of
scope, or is explicitly deallocated with delete
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Constructors and destructors: main

i n t main ( ) {
// pa r ame t e r i z e d c o n s t r u c t o r
R e c t a n g l e r e c t ( 3 , 4 , 2 5 3 ) ;

// d e f a u l t c o n s t r u c t o r
R e c t a n g l e r e c t a ;

// copy c o n s t r u c t o r
R e c t a n g l e r e c t b ( r e c t ) ;
R e c t a n g l e r e c t c = r e c t ;

// op e r a t o r= ass i gnment ( not c o n s t r u c t o r )
r e c t a = r e c t ;

return 0 ;
}
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Constructors and destructors: declarations

c l a s s R e c t a n g l e {
i n t width , h e i g h t , ∗ p f i l l ;

pub l i c :
// pa r ame t e r i z e d c o n s t r u c t o r
R e c t a n g l e ( i n t , i n t , i n t ) ;

// new d e f a u l t c o n s t r u c t o r
R e c t a n g l e ( ) ;

// copy c o n s t r u c t o r
R e c t a n g l e ( const R e c t a n g l e &);

// as s i gnment ( o v e r l o a d ope ra to r , not c o n s t r u c t o r )
const R e c t a n g l e & operator=(const R e c t a n g l e &);

// d e s t r u c t o r u s e s ˜ i n f r o n t o f c l a s s name
˜ R e c t a n g l e ( ) ;

i n t p r i n t F i l l ( ) { re tu rn ∗ p F i l l ;}
} ;
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Constructors and destructors: definitions

R e c t a n g l e : : R e c t a n g l e ( i n t a , i n t b , i n t f i l l V a l ){
width = a ; h e i g h t = b ;
p F i l l = new i n t ( f i l l V a l ) ;

}

R e c t a n g l e : : R e c t a n g l e (){
width = 5 ; h e i g h t = 5 ;
p F i l l = new i n t ( 2 5 5 ) ;

}

R e c t a n g l e : : R e c t a n g l e ( const R e c t a n g l e &s o u r c e ){
width = s o u r c e . width ;
h e i g h t = s o u r c e . h e i g h t ;
// p F i l l = sou r c e . p F i l l ; // s h a l l ow copy p o i n t e r i t s e l f
p F i l l = new i n t (∗( s o u r c e . p F i l l ) ) ; // deep copy con t en t s

}

const R e c t a n g l e & R e c t a n g l e : : ope ra to r=(const R e c t a n g l e &r h s ){
i f ( t h i s != &r h s ){

width = r h s . width ;
h e i g h t = r h s . h e i g h t ;
// p F i l l = rh s . p F i l l ; // s h a l l ow copy p o i n t e r i t s e l f
∗ p F i l l = ∗( r h s . p F i l l ) ; // deep copy con t en t s
r e t u r n ∗ t h i s ;

} // what i f p F i l l was an a r r a y ? d e l e t e [ ] o l d f i r s t f o r s i z e mismatch ?
}

R e c t a n g l e : : ˜ R e c t a n g l e (){
de l e t e p F i l l ;

}

Watch out for shallow and deep copy!
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Class with dynamic members

If a your user-defined class with dynamically allocated members
is to function in all typical ways, you likely need to to re-write
its:

1 Default constructor

2 Parameterized constructor

3 Copy constructor

4 Assignment operator=

5 Default destructor
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Guidelines for classes with dynamic memory

• Initialize pointers in the constructor! If not allocating
space right away, best to initialize to nullptr until ready
for use.

• Use new inside class member functions to allocate space

• Use delete to clean up dynamically allocated space
whenever finished using it. Do so in the destructor, which
is the last function that runs for an object

• Isolate memory management tasks from the
functionality/algorithmic tasks wherever possible: Write a
set of member functions just for dealing with memory
management issues – like creation of space, deallocation,
resizing, etc. Your algorithmic functions can call the
memory-handling functions, when needed
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