Inheritance

Comp Sci 1575 Data Structures

MISSOURI

S ‘ bomputer Science

Inheritance

“The great thing about Object Oriented code is that it can
make small, simple problems look like large, complex ones.”

Outline

Introduction o Introduction

Outline

o Introduction
Definition

Inheritance

® When creating a class, rather than writing completely new
data members and member functions, make a new class
inherit members of an existing class

e Existing class whose properties are inherited by new class
is called the Parent, Base, or Super class

® New class which inherits properties of base class is called
Child, Derived, or Sub class

® The derived class inherits the members of the base class,
on top of which it can add its own members.

¢ Inheritance is the capability of one class to acquire
properties and characteristics from another class

Outline
o Introduction

Purpose

Purpose of inheritance

@ Code re-usability: When a new class inherits an existing
class, all its methods and fields become available in the
new class

® Makes it easier to create and maintain large applications

©® Allows abstract classes as interfaces
(more coming up soon)

Outline

o Introduction

Example

Base and derived classes

Base class

Animal

Class Dog inherits properties
from its super class Animal.

Dog

Derived class

Class derivation list specifies the base class

class Animal {
public:
int brain = 1;
¥

// Class derivation list:
class Dog: public Animal {
public:
int spots = 34;
b

int main() {
Dog d;
cout << d.brain; // 1
cout << d.spots; // 34

}

Outline

Access control

9 Access control

Access specifiers in base class

Access control

Access levels in the original base class:
@ Public: Base class's public members are accessible to all

® Protected: Base class's protected members are accessible
only to the derived class(s)

© Private: Base class's private members are never accessible
directly from a derived class, but can be accessed through
calls to the public and protected member functions of the
base class.

Access control modes

el Modifiers of the original access specifiers:

@ Public: public members of the base class become public
members of the derived class and protected members of
the base class become protected members of the derived
class. This is most common.

® Protected: public and protected members of the base
class are demoted to protected members of the derived
class

© Private: public and protected members of the base class
are demoted to private members of the derived class

Introduction

Access control

Inheritance

Constructors

Polymorphism
ract

Access control modes modify access specifiers

Original access specifier in base:

Who has access?

public | protected | private

members of the same class | yes yes yes
members of derived class yes yes no
non members yes no no

Base class has members that are public, protected, and private

(left index)

Derived Class|Derived Class |Derived Class
Base class|Public Mode |Protected Mode Private Mode
Public Public Protected Private (accessible)
Protected |Protected Protected Private (accessible)

Private

Not accessible

Not accessible

Not accessible

Derived class (top indices) inherits these levels (intersections)

Outline

9 Access control
public mode

public mode

class Animal {
string thoughts;
public:
int brain = 1;

b
class Dog : public Animal {
public:
int spots = 34;
void printSpots() {cout << brain;} // 77
b
int main() {
Dog d;

cout << d.brain; // 77
d.printSpots(); // 77
cout << d.spots; // 34
cout << d.thoughts; // 77

Outline

9 Access control

protected mode

protected mode

class Animal {
public:
int brain = 1;
b

// Class derivation list:
class Dog : protected Animal {
public:
int spots = 34;
void printSpots() {cout << brain;} // 77

b

int main() {

Dog d;

cout << d.brain; // 7?7
d.printSpots(); ?7

cout << d.spots; // 34

}

Outline

9 Access control

private mode

private mode

class Animal {
public:
int brain = 1;
b

// Class derivation list:
class Dog : private Animal {
public:
int spots = 34;
void printSpots() {cout << brain;} // 77

b

int main() {
Dog d;
cout << d.brain; // 7?7
d.printSpots(); ?7
cout << d.spots; // 34

}

Kahoot

Outline

Inheritance

© Inheritance

Outline

9 Inheritance
Types of inheritance

Types of inheritance: Single

One derived class inherits from only one base class. It is the
most simplest form of Inheritance.

A Super Class

B Sub Class

Introduction

Inheritance

Constructors

Types of inheritance: Hierarchical

Multiple derived classes inherits from a single base class.

A

B

Types of inheritance: Hierarchical

Introduction

e s s s ===
1

E CPolygon

I L L L L

7N

CRectangle

Inheritance

Constructors

CTriangle

Types of inheritance: Hierarchical

class Polygon {

protected:
int width, height;
public:
void set_values(int a, int b){

width=a; height=b;
+

class Rectangle: public Polygon {
public:
int area(){
return width * height;
}

}

class Triangle: public Polygon {
public:
int area(){
return width * height / 2;
}

}i

int main() {
Rectangle rect;
Triangle trgl;
rect.set_values (4,5);
trgl.set_values (4,5);
cout << rect.area() << endl; // 20
cout << trgl.area() << endl; // 10
return 0;

Types of inheritance: Multiple

A single derived class may inherit from two or more than two

base classes.

A

B

Types of inheritance: Multiple

class Shape {
public:
void setWidth(int w) {width = w;}
void setHeight(int h) {height = h;}

protected:
int width;
int height;
+
class PaintCost {
public:
int getCost(int area) {return area x 70;}
b
class Rectangle: public Shape, public PaintCost {
public:
int getArea() {return (width * height);}
+

int main(void) {
Rectangle Rect;
int area;
Rect.setWidth (5);
Rect.setHeight (7);

area = Rect.getArea();

cout << Rect.getArea() << endl; // 35

cout << Rect.getCost(area) << endl; // 2450
return 0;

Types of inheritance: Multilevel

Derived class inherits from a class, which in turn inherits from

some other class. The Super class for one, is sub class for the
other.

Types of inheritance: Hybrid

Hybrid Inheritance is combination of Hierarchical and Mutilevel
Inheritance.

A

¥ L

oo
)

Outline

© Inheritance

Not inherited

What is not inherited from the base class?

Constructors, copy constructor, and destructor
of the base class

Assignment operator=()

Friends of the base class

Originally private members of the base class
(inherited but not accessible)

Kahoot

Outline

Constructors

@ Constructors

Constructors of base and derived classes

® Base class constructors are always called with the derived
class constructors

® First the base class default constructor is executed, and
then the derived class's constructor

Constructors

Outline

@ Constructors
Constructor of base class

Constructor of base class is called with the derived

class Base {

int x; // Remember, classes default to private
public:

Base() {cout << "Base default constructor”;}

}
class Derived : public Base {
int y;
public:
Derived (){cout << " Derived default constr”;}
Derived (int i){
y = i
cout << " Derived parameterized”;
}
b

int main() {

Base b; // Base...
Derived dl; // Base...
Derived d2(10); // Base...
}

Outline

@ Constructors

Parameterized versus default

Parameterized versus default

® Unless otherwise specified, the constructors of a derived
class calls the default constructor of its base class(es)

® To call base class's parameterized constructor inside
derived class's parameterized constructor, we must
mention it explicitly while declaring derived class’s
parameterized constructor.

Force calling of base parameterized constructor

class Base{

public:
int x;
Base(int i){ x =1i; }
i
class Derived: public Base {
public:
int y;
// Specify base parameterized constructor
Derived(int j): Base(j) { // Options here?
y = 1i;
}
i
int main(){
Derived d(10);
cout << d.x; // 10
cout << d.y; // 10

}

Outline

Polymorphism
and abstract
classes

@ Polymorphism and abstract classes

Next time

Polymorphism and abstract classes

Polymorphism
and abstract
classes

	Introduction
	Definition
	Purpose
	Example

	Access control
	public mode
	protected mode
	private mode

	Inheritance
	Types of inheritance
	Not inherited

	Constructors
	Constructor of base class
	Parameterized versus default

	Polymorphism and abstract classes

