Exception handling

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

Exceptions

There are no exceptions to the rule that everybody likes to be
an exception to the rule.
- Charles Osgood

Outline

Introduction

o Introduction

Outline

o Introduction
Problem

Problem

When writing an algorithm to solve a problem in the
general case, often special cases must be addressed

Some might occur only rarely

Adding rare cases to the algorithm may increase it's
complexity or clarity

Error handling return statements end up intricately linked
to the normal control flow of the code, constraining both
how the code is laid out, and how errors can be reasonably
handled.

Ideally, express the algorithm in general form including any
common special cases.

Rare exceptional situations, along with a strategy to
handle them, could appear elsewhere, like an annotation
to the algorithm.

Outline

o Introduction

Solution

Introduction

Examples

Stack

unwir

std exceptions

Solution

Exception handling is a process of handling exceptional
situations that may occur in a program

Allows programmers to cleanly separate the code that
implements the focused algorithm from the code that deals
with exceptional situations that the algorithm may face.

After giving the proper message stating the reason of the
exception, the program continues to execute after
correcting the error, or will terminate gracefully i.e., it will
give a proper message and then will terminate the
program.

Exception handling communicates the existence of a
run-time problem or error from where it was detected to
where the issue can be handled.

Un-handled exceptions stop program execution.

Also commonly called raising an exception.

Outline

o Introduction

Keywords

Keywords: try, throw, and catch

try
{
statements;
throw exception—type;
}
catch(exception—type var)
{

statements;

}

Keywords: try, throw, and catch

® try block acts watches for any exceptions that are thrown
by any of the statements within the try block (protected
code)

® throw keyword signals that an exception or error case has
occurred, and is followed by an: {error code, description of
the problem, or a custom exception class}

® Should an error occur in the try block, an exception is
thrown (raised), which then causes the current scope to be
exited, and also each outer scope (propagation) until a
suitable handler (catch block) is found, calling in turn the
destructors of any objects in these exited scopes.

e catch keyword is used to define a catch block that handles
exceptions for a single exception type; catch must be in
the same scope as try

Outline

o Introduction

Benefits

Benefits

Functions don't need to return error codes, freeing their
return values for program logic.

Fewer functions to deal with errors

An exception jumps to the point in the call stack that can
handle the error.

Exception stack-unwinding mechanism destroys all objects

in scope according to well-defined rules after an exception
is thrown.

Clean separation between code that detects errors and the
code that handles errors

Algorithm is kept focused on solving the problem, and
exceptional cases are handled elsewhere.

Approach is more modular and encourages the
development of code that is cleaner and easier to maintain
and debug.

Outline

Examples

@ Examples

Examples

Examples

Check out the code

Outline

Stack
unwinding

e Stack unwinding

Stack
unwinding

Trace the execution

void g() { throw "exception”;}
void f()

std::string str = "Hello";

int main()

try { f(); }
catch (...) {}
}

main() calls f(); f() creates a local variable named str; str constructor
allocates a memory chunk to hold the string "Hello”; f() calls g();
g()throws an exception; f() does not catch the exception; Because
the exception was not caught, we now need to exit f() in a clean
fashion. All the destructors of local variables previous to the throw
are called, called 'stack unwinding'; destructor of str is called,
releasing memory occupied by it. main() catches the exception; The
program continues; 'stack unwinding’' guarantees destructors of local
variables (stack variables) will be called when we leave its scope.

Trace the execution

T

3 while (cin >> x >> y)

try {

2 = hmean(x,y);
} /1 end of try block
catch (const char * s) [/ start of exception handler

Stack o e s
unwinding cout ? Y . B 2
1 cout << "Enter a new pair of numbers: ";
ontinue;

} !/ end of handler

cout << "Harmonic mean of " << x << " and " <<y
<< " is " <<z << "\n%;

cout << "Enter next set of numbers <q to quit>: ";

}
double hmean(double a, double b)
{

if (a == -b)

throw "bad hmean() arguments: a = -b not allowed";
return 2.0 *a * b / (a + b);

1. The program calls hmean () within a try block.

2. hmean () throws an exception, transferring execution to the catch block, and
assigning the exception string to s.

3. The catch block transfers execution back to the while loop.

Stack
unwinding

Trace of try/ catch versus return

int main()

{
try {
afunct();

nextfunct(); €|
}
catch(const char * s)

{
}

int main()

{
try |
afunct();
nextfunct();

—> }
catch(const char * s)

void cfunct();

{

iﬁnnps]
throw "Help!";

return;

using return

void afunct(); ‘void bfunct(); ‘vnid cfunct();
{ 1
bfunct(}); cfunct(); if(oops)
throw "Help!";
return; return; s
} return;
H

using throw

Order of unwinding

Stack
unwinding

Exception handling must be designed carefully. For example, if
execution unwinds before a delete statement in a local scope or
in a destructor, memory leaks can occur.

Outline

std exceptions

@ std exceptions

std exceptions

#include <exception>
int main(){

try {
// do something (might throw an exception)
}

catch(const std::exception &e){
// handle exception e

std exceptions

catch (...){
// catches all exceptions,
// not already caught by a catch block
// before can be used to catch exception
// of unknown or irrelevant type

}
}

std exception class

class exception{
public:
exception () throw();
exception (const exception&) throw ();
exception& operator= (const exception&) throw();
virtual “exception() throw();
virtual const charx what() const throw();

std exceptions

what() is commonly used — check out the code

Exception family tree (inheritance)

— std:bad_alloc ™~ std: domain_error
std exceptions m e =1 std:invalid_argument

— std:bad_typeid — std:length_error

= std:bad_exception — std:out_of_range

~—| std:logic_failure &=

std:overflow_ermor

—| std:runtime_arror
std:range_error

std:underflow_error

std exceptions

Limiting which errors (if any) a function can throw

// no exceptions allowed from f: C4++98 style
int f(int x) throw();

// only int exceptions allowed from f: C++98 style
int f(int x) throw(int);

// no exceptions allowed from f: C++11 style
int f(int x) noexcept;

C++98 does not enforce exception specifications at compile
time. For example, the following code is legal:

void DubiousFunction(int iFoo) throw()

{
if (iFoo < 0)

{
}

throw RangeException ();

	Introduction
	Problem
	Solution
	Keywords
	Benefits

	Examples
	Stack unwinding
	std exceptions

