
Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Exception handling

Comp Sci 1575 Data Structures

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Exceptions

There are no exceptions to the rule that everybody likes to be
an exception to the rule.
- Charles Osgood

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Problem

• When writing an algorithm to solve a problem in the
general case, often special cases must be addressed

• Some might occur only rarely

• Adding rare cases to the algorithm may increase it’s
complexity or clarity

• Error handling return statements end up intricately linked
to the normal control flow of the code, constraining both
how the code is laid out, and how errors can be reasonably
handled.

• Ideally, express the algorithm in general form including any
common special cases.

• Rare exceptional situations, along with a strategy to
handle them, could appear elsewhere, like an annotation
to the algorithm.

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Solution

• Exception handling is a process of handling exceptional
situations that may occur in a program

• Allows programmers to cleanly separate the code that
implements the focused algorithm from the code that deals
with exceptional situations that the algorithm may face.

• After giving the proper message stating the reason of the
exception, the program continues to execute after
correcting the error, or will terminate gracefully i.e., it will
give a proper message and then will terminate the
program.

• Exception handling communicates the existence of a
run-time problem or error from where it was detected to
where the issue can be handled.

• Un-handled exceptions stop program execution.

• Also commonly called raising an exception.

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Keywords: try, throw, and catch

t ry
{

s t a t e m e n t s ;
throw e x c e p t i o n−t y p e ;

}

catch (e x c e p t i o n−t y p e v a r)
{

s t a t e m e n t s ;
}

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Keywords: try, throw, and catch

• try block acts watches for any exceptions that are thrown
by any of the statements within the try block (protected
code)
• throw keyword signals that an exception or error case has

occurred, and is followed by an: {error code, description of
the problem, or a custom exception class}

• Should an error occur in the try block, an exception is
thrown (raised), which then causes the current scope to be
exited, and also each outer scope (propagation) until a
suitable handler (catch block) is found, calling in turn the
destructors of any objects in these exited scopes.

• catch keyword is used to define a catch block that handles
exceptions for a single exception type; catch must be in
the same scope as try

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Benefits

• Functions don’t need to return error codes, freeing their
return values for program logic.

• Fewer functions to deal with errors

• An exception jumps to the point in the call stack that can
handle the error.

• Exception stack-unwinding mechanism destroys all objects
in scope according to well-defined rules after an exception
is thrown.

• Clean separation between code that detects errors and the
code that handles errors

• Algorithm is kept focused on solving the problem, and
exceptional cases are handled elsewhere.

• Approach is more modular and encourages the
development of code that is cleaner and easier to maintain
and debug.

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Examples

Check out the code

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Trace the execution

vo id g () { throw ” e x c e p t i o n ” ;}
vo id f ()
{

s t d : : s t r i n g s t r = ” H e l l o ” ;
g () ;

}
i n t main ()
{

t r y { f () ; }
catch (. . .) { }

}

main() calls f(); f() creates a local variable named str; str constructor

allocates a memory chunk to hold the string ”Hello”; f() calls g();

g()throws an exception; f() does not catch the exception; Because

the exception was not caught, we now need to exit f() in a clean

fashion. All the destructors of local variables previous to the throw

are called, called ’stack unwinding’; destructor of str is called,

releasing memory occupied by it. main() catches the exception; The

program continues; ’stack unwinding’ guarantees destructors of local

variables (stack variables) will be called when we leave its scope.

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Trace the execution

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Trace of try/ catch versus return

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Order of unwinding

Exception handling must be designed carefully. For example, if
execution unwinds before a delete statement in a local scope or
in a destructor, memory leaks can occur.

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Outline

1 Introduction
Problem
Solution
Keywords
Benefits

2 Examples

3 Stack unwinding

4 std exceptions

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

std exceptions

#inc lude <e x c e p t i o n>
i n t main (){

t ry {
// do someth ing (might throw an e x c e p t i o n)

}
catch (const s t d : : e x c e p t i o n &e){

// hand l e e x c e p t i o n e
}
catch (. . .) {

// ca t ch e s a l l e x c ep t i o n s ,
// not a l r e a d y caught by a ca tch b l o ck
// b e f o r e can be used to ca tch e x c e p t i o n
// o f unknown or i r r e l e v a n t type

}
}

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

std exception class

c l a s s e x c e p t i o n {
pub l i c :

e x c e p t i o n () throw () ;
e x c e p t i o n (const e x c e p t i o n &) throw () ;
e x c e p t i o n& operator= (const e x c e p t i o n &) throw () ;
v i r t u a l ˜ e x c e p t i o n () throw () ;
v i r t u a l const char∗ what () const throw () ;

}

what() is commonly used – check out the code

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Exception family tree (inheritance)

Introduction

Problem

Solution

Keywords

Benefits

Examples

Stack
unwinding

std exceptions

Limiting which errors (if any) a function can throw

// no e x c e p t i o n s a l l owed from f : C++98 s t y l e
i n t f (i n t x) throw () ;

// on l y i n t e x c e p t i o n s a l l owed from f : C++98 s t y l e
i n t f (i n t x) throw (i n t) ;

// no e x c e p t i o n s a l l owed from f : C++11 s t y l e
i n t f (i n t x) n o e x c e p t ;

C++98 does not enforce exception specifications at compile
time. For example, the following code is legal:

void D u b i o u s F u n c t i o n (i n t iFoo) throw ()
{

i f (iFoo < 0)
{

throw RangeExcept ion () ;
}

}

	Introduction
	Problem
	Solution
	Keywords
	Benefits

	Examples
	Stack unwinding
	std exceptions

