
Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Recursion(int day){return Recursion(day += 1);}

Comp Sci 1575 Data Structures

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Implementation

“To create recursion, you must create recursion.”

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

How to design a recursive algorithm

1 First write the base cases. Must always have some base cases,
which can be solved without recursion.

2 Think about solving the problem by combining the results of
one or more smaller, but similar, sub-problems. If the algorithm
you write is correct, then certainly you can rely on it
(recursively) to solve the smaller subproblems.

3 Making progress. For the cases that are to be solved recursively,
the recursive call must always be to a case that makes a fixed
quantity of progress toward a base case (not fixed proportion).

4 Compound interest guideline: Never duplicate work by solving
the same instance of a problem in separate recursive calls.

5 Check progressively larger inputs to inductively validate that
there is no infinite recursion

6 The secret to success is: Do not worry about how the recursive
call solves the subproblem. Simply accept that it will solve it
correctly, and use this result to in turn correctly solve the
original problem.

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Example: Palindrome checking function

• Recursive case?

• Base case (which often results in termination)?

• Condition/test, which checks for the base?

Observe code to show recursion stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Non-recursive GCD: Euclid’s algorithm

Euclid’s algorithm efficiently computes the greatest common
divisor (GCD) of two numbers (AB and CD below), the largest
number that divides both without leaving a remainder (CF).

Proceeding left to right:

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Recursive GCD

Check out the code

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Very simple word reversal

Use recursion to use the cin/cout buffer to reverse inputted
text: see code

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

What is involved when making a function call?

Overhead:

• save caller’s state

• allocate stack space for arguments

• allocate stack space for local variables

• invoke routine at exit (return), release resources

• restore caller’s “environment”

• resume execution of caller

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Efficiency

Some recursive functions can be unnecessarily inefficient, and
would be better as iterative functions, e.g., recursive Fibonacci:
fib(n) is 0 if n is zero
fib(n) is 1 if n is one
fib(n) is fib(n - 1) + fib(n - 2) otherwise

Observe code

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Efficiency

Some recursive functions can be unnecessarily inefficient, and
would be better as iterative functions, e.g., recursive Fibonacci:
fib(n) is 0 if n is zero
fib(n) is 1 if n is one
fib(n) is fib(n - 1) + fib(n - 2) otherwise

Observe code

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Use a loop

If you can easily find a looping algorithm
(e.g., fibonacci with a loop below:)

Remember, recursion is just another way to loop

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Tail recursion: just a glorified loop

• Tail call is a subroutine call performed as the final action
of a procedure (recall order mattering example)

• Tail calls don’t have to add new stack frame to the call
stack.

• Tail recursion is a special case of recursion where the
calling function does no more computation after making a
recursive call.

• Tail-recursive functions are functions in which all recursive
calls are tail calls and thus do not build up any deferred
operations.

• Producing such code instead of a standard call sequence is
called tail call elimination.

• Tail call elimination allows procedure calls in tail position
to be implemented as efficiently as goto statements, thus
allowing more efficient structured programming.

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Convert an iterative loop into a tail recursive

1 First identify those variables that exist outside the loop
but are changing in the loop body; these variable will
become formal parameters in the recursive function.

2 One then builds a function that has these “outside”
variables as formal parameters, with default initial values

3 The original loop test becomes an if() test in the body of
the new function

4 The if-true block becomes the recursive call.

5 Arguments to the recursive call encode the updates to the
loop variables.

6 else block becomes the value the loop attempted to
calculate

7 Conversion results in tail recursion

Examples in code

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Language choice

gcc-c++ (aka g++) usually can do tail call optimization. Tail
call elimination doesn’t automatically happen in Java or
Python, though it does reliably in functional languages like
Lisp: Scheme, Clojure (upon specification), and Common Lisp,
which primarily employ recursion.

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Memoization and caching

Store the values which have already been computed, rather
than re-compute them:

See code for Fibonacci

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Convert recursion to loops

Conversion of recursive to loops is less systematic than
converting a loop to tail recursive, requires more creativity, and
isn’t always easy for a human, though converting an already
tail recursive algorithm is more straightforward:

void t a i l (i n t i){
i f (i > 0){

cout << i << ’ ’ ;
t a i l (i −1);

}
{

void i t e r E q u i v a l e n t O f T a i l (i n t i){
f o r (; i > 0 ; i−−){

cout << i << ’ ’ ;
}

}

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack

Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Implementing recursion with a stack

Often converting more inherently recursive algorithms to loops
requires keeping a programmer-designed stack like would be
done by the compiler in the first place. See example for
factorial.

	Recursive design
	Examples
	Simple word reversal

	Efficiency
	Problem: re-computing values
	Solution 1: Use a loop
	Solution 2: Tail recursion calls
	Solution 3: Memoization / caching

	Convert loops to recursion
	Implementing recursion with a stack

