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Recursion(int day){return Recursion(day += 1);}

Comp Sci 1575 Data Structures
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Implementation

“To create recursion, you must create recursion.”
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How to design a recursive algorithm

1 First write the base cases. Must always have some base cases,
which can be solved without recursion.

2 Think about solving the problem by combining the results of
one or more smaller, but similar, sub-problems. If the algorithm
you write is correct, then certainly you can rely on it
(recursively) to solve the smaller subproblems.

3 Making progress. For the cases that are to be solved recursively,
the recursive call must always be to a case that makes a fixed
quantity of progress toward a base case (not fixed proportion).

4 Compound interest guideline: Never duplicate work by solving
the same instance of a problem in separate recursive calls.

5 Check progressively larger inputs to inductively validate that
there is no infinite recursion

6 The secret to success is: Do not worry about how the recursive
call solves the subproblem. Simply accept that it will solve it
correctly, and use this result to in turn correctly solve the
original problem.
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Example: Palindrome checking function

• Recursive case?

• Base case (which often results in termination)?

• Condition/test, which checks for the base?

Observe code to show recursion stack
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Non-recursive GCD: Euclid’s algorithm

Euclid’s algorithm efficiently computes the greatest common
divisor (GCD) of two numbers (AB and CD below), the largest
number that divides both without leaving a remainder (CF).

Proceeding left to right:



Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Recursive GCD

Check out the code
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Very simple word reversal

Use recursion to use the cin/cout buffer to reverse inputted
text: see code



Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

Outline

1 Recursive design
Examples

Palindrome detection
GCD

Simple word reversal

2 Efficiency
Problem: re-computing values
Solution 1: Use a loop
Solution 2: Tail recursion calls

Tail recursion
Iterative conversion
Language choice

Solution 3: Memoization / caching

3 Convert loops to recursion
Implementing recursion with a stack



Recursive
design

Examples

Palindrome
detection

GCD

Simple word
reversal

Efficiency

Problem:
re-computing
values

Solution 1: Use
a loop

Solution 2: Tail
recursion calls

Tail recursion

Iterative
conversion

Language
choice

Solution 3:
Memoization /
caching

Convert loops
to recursion

Implementing
recursion with a
stack

What is involved when making a function call?

Overhead:

• save caller’s state

• allocate stack space for arguments

• allocate stack space for local variables

• invoke routine at exit (return), release resources

• restore caller’s “environment”

• resume execution of caller
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Efficiency

Some recursive functions can be unnecessarily inefficient, and
would be better as iterative functions, e.g., recursive Fibonacci:
fib(n) is 0 if n is zero
fib(n) is 1 if n is one
fib(n) is fib(n - 1) + fib(n - 2) otherwise

Observe code
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Use a loop

If you can easily find a looping algorithm
(e.g., fibonacci with a loop below:)

Remember, recursion is just another way to loop
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Tail recursion: just a glorified loop

• Tail call is a subroutine call performed as the final action
of a procedure (recall order mattering example)

• Tail calls don’t have to add new stack frame to the call
stack.

• Tail recursion is a special case of recursion where the
calling function does no more computation after making a
recursive call.

• Tail-recursive functions are functions in which all recursive
calls are tail calls and thus do not build up any deferred
operations.

• Producing such code instead of a standard call sequence is
called tail call elimination.

• Tail call elimination allows procedure calls in tail position
to be implemented as efficiently as goto statements, thus
allowing more efficient structured programming.
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Convert an iterative loop into a tail recursive

1 First identify those variables that exist outside the loop
but are changing in the loop body; these variable will
become formal parameters in the recursive function.

2 One then builds a function that has these “outside”
variables as formal parameters, with default initial values

3 The original loop test becomes an if() test in the body of
the new function

4 The if-true block becomes the recursive call.

5 Arguments to the recursive call encode the updates to the
loop variables.

6 else block becomes the value the loop attempted to
calculate

7 Conversion results in tail recursion

Examples in code
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Language choice

gcc-c++ (aka g++) usually can do tail call optimization. Tail
call elimination doesn’t automatically happen in Java or
Python, though it does reliably in functional languages like
Lisp: Scheme, Clojure (upon specification), and Common Lisp,
which primarily employ recursion.
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Memoization and caching

Store the values which have already been computed, rather
than re-compute them:

See code for Fibonacci
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Convert recursion to loops

Conversion of recursive to loops is less systematic than
converting a loop to tail recursive, requires more creativity, and
isn’t always easy for a human, though converting an already
tail recursive algorithm is more straightforward:

void t a i l ( i n t i ){
i f ( i > 0){

cout << i << ’ ’ ;
t a i l ( i −1);

}
{

void i t e r E q u i v a l e n t O f T a i l ( i n t i ){
f o r ( ; i > 0 ; i−−){

cout << i << ’ ’ ;
}

}
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Implementing recursion with a stack

Often converting more inherently recursive algorithms to loops
requires keeping a programmer-designed stack like would be
done by the compiler in the first place. See example for
factorial.
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