Backtracking

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

Recursive backtracking

Life can only be understood backwards;
but it must be lived forwards.
-Soren Kierkegaard

Outline

Introduction

@ Introduction

Outline

@ Introduction
Problem: Hindsight

Problem: fixing your past mistakes

® You are faced with repeated sequences of options and
must choose one each step

e After you make your choice you will get a new set of
options.

® Which set of options you get depends on which choice you
made.

® Procedure is repeated until you reach a final state.

¢ If you made a good sequence of choices, your final state
may be a goal state.

® |f you didn’t, you can go back and try again

For example:

Games such as, n-Queens, Knapsack problem, Sudoku, Maze,
etc

Outline

@ Introduction

Solution: Backtracking

Solution: backtracking

General meta-heuristic that incrementally builds candidate
solutions by a sequence of candidate extension steps, one
at a time, and abandons each partial candidate, c, (by
backtracking) as soon as it determines that ¢ cannot
possibly be extended to a valid solution.

Can be completed in various ways to give all the possible
solutions to the given problem.

® Can be implemented with a form of recursion or stacks

® |f at some step it becomes clear that the current path that
you are on can't lead to a solution, you go back to the
previous step (backtrack) and choose a different path.

Outline

@ Introduction

General procedure

General procedure

Pick a starting point.
while (Problem is not solved)
For each path from the starting point.
check if selected path is valid,
if yes
select it
and make recursive call to rest of problem
if recursive calls returns true, then
return true.
else
undo the current move and
return false.
If none of the moves work out,
return false, NO SOLUTION.

Outline

@ Introduction

General pseudocode

With data, P, call backtrack(root(P))

® root(P): return partial candidate at root of search tree.

® reject(P,c): return true only if partial candidate c is not worth
completing.

® accept(P,c): return true if ¢ is a solution of P, and false otherwise.

e first(P,c): generate the first extension of candidate c.

® next(P,s): generate next alternative extension of a candidate, after
extension s.

® output(P,c): use solution c of P, as appropriate to application.

procedure backtrack(c)
if reject(P,c) then return
if accept(P,c) then output(P,c)
s = first(P,c)
while s is not NULL do
backtrack(s)
s = next(P,s)

backtrack (root(P))

Outline

Examples

@ Examples

Outline

@ Examples
Sudoku

Sudoku: decompose into smaller problem?

Introduction Start Finish
5|3 7 5(3|4]6[|7|8]9|1]|2
6 1]19]5 6(7|12]1]9[5]|3|4]|8
9|8 6 119]18]3[4[2]|5]|6]7
St 8 6 3 8|5|9]17]|6[1]4|2]|3
4 8 3 1 412(6]8|5]|3]7]9]1
7 2 6 71113]19]2[4]8|5]|6
6 2|8 916|1]5|3(7]|2|8|4
4119 5 2|8|714]1]9]6|3|5
8 719 3/4)5]12|8[6]1]7]|9

® 81 cells, in a 9 by 9 grid, with 9 zones, each zone being the
intersection of the first, middle, or last 3 rows, and the first,
middle, or last 3 columns.

® Each cell may contain a number from one to nine; each number
can only occur once in each zone, row, and column of the grid.

® At the beginning of the game, some cells begin with numbers in
them, and the goal is to fill in the remaining cells.

Sudoku strategies?

5|3 7
6 1({9(5
918 6
8 6 3
4 38 3 1
7 2 6
6 2|8
41119 5
8 719

How might we solve this non-recursively?

Sudoku: decompose into smaller problem?

5|3 7
6 1({9(5
918 6
8 6 3
4 38 3 1
7 2 6
6 2|8
41119 5
8 719

What is our pseudocode for a recursive solution?

Which functions do we need?

5|3 7
6 1|95
9|8 6
8 6 3
4 8 3 1
7 2 6
6 2|8
411]9 5
8 719

Find row, col of an unassigned cell
If there are none, return true
For digits from 1 to 9
a) If no conflict for digit at row, col
assign digit to row, col
and recursively try to fill rest of grid
b) If recursion successful , return true
c) Else, remove digit and try another
If all digits were tried and nothing worked,
return false

Outline

@ Examples

Mazes

General rules to solve a maze?

Right hand rule? Start in center, and try to escape.

General rules to solve a maze?

Right hand rule doesn’'t work with this kind of loop

Recursive maze-finding

Is there a smaller version of a maze problem?

Recursive maze-finding

_l

||

S}

Is there a smaller version of a maze problem?

e

%

Recursive pseudocode: maze with prize at center

Introduction Goal: start outside of maze, obtain prize, find your way out

Examples

Face left, the first direction to explore
For i in each of the three directions
if (!found && direction being faced is not a dead end)
then explore the direction now being faced,
returning to this exact spot after the exploration,
and setting found to true.
Turn 90 degrees right
Step forward, turn around

	Introduction
	Problem: Hindsight
	Solution: Backtracking
	General procedure
	General pseudocode

	Examples
	Sudoku
	Mazes

