
Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Algorithm analysis

Comp Sci 1575 Data Structures

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Complexity

“Any intelligent fool can make things bigger and more
complex. It takes a touch of genius and a lot of courage to
move in the opposite direction.”
https://en.wikipedia.org/wiki/E._F._Schumacher

https://en.wikipedia.org/wiki/E._F._Schumacher

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Evaluating algorithms

How to measure the efficiency of an algorithm?

1 Empirical comparison (run programs) - Problems?

2 Asymptotic algorithm analysis

What impacts the efficiency of an algorithm or data structure?

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Evaluating algorithms

What impacts the efficiency of an algorithm or data structure?

• For most algorithms, running time depends on “size” of
the input

• For data structures the space depends on the “size” of the
input.

• Time cost is expressed as T (n) for some function T on
input size n. Draw this.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rate of growth?

How does T increase with n?

// Return p o s i t i o n o f l a r g e s t v a l u e
// i n ”A” o f s i z e ”n”
i n t l a r g e s t (i n t A [] , i n t n)
{

i n t c u r r l a r g e = 0 ; // Holds l a r g e s t e l ement pos

f o r (i n t i = 1 ; i < n ; i ++) // For each e l ement
i f (A [c u r r l a r g e] < A [i]) // i f A [i] i s l a r g e r

c u r r l a r g e = i ; // remember i t s p o s i t i o n

return c u r r l a r g e ; // Return l a r g e s t p o s i t i o n
}

Define a constant, c , the amount of time required to compare
two integers in the above function largest, and thus:
T (n) = cn

Draw plot.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rate of growth?

How does T increase with n?

sum = 0 ;

f o r (i = 1 ; i <= n ; i ++)
f o r (j = 1 ; j <= n ; j ++)

sum++;

We can assume that incrementing takes constant time; call this
time c2, and thus:
T (n) = c2n

2

Draw plot.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rates of growth

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rates of growth

O(1) constant

O(log log n) double log

O(log n) logarithmic

O(n) linear

O(n log n) linear

O(n2) quadratic

O(nc) polynomial

O(cn) exponential

O(n!) factorial

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rates of growth

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rate of growth?

How does T increase with n?

// Return pos o f v a l u e k i n A o f s i z e n
i n t s e q S e a r c h (i n t A [] , i n t n , i n t k)
{

f o r (i n t i =0; i<n ; i ++)
i f (A [n] == k)

return n ;

return −1; // −1 s i g n i f i e s not found
}

Constant simple operations plus for() loop: T (n) = cn

• Is this always true?

• What if our array is randomly sorted?

• What if our array is fully sorted?

• Whas is out data distribution?

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Best, Worst, Average Cases

Not all inputs of a given size take the same time to run.

Sequential search for K in an array of n integers: Begin at first
element in array and look at each element in turn until K is
found

• Best case: ?

• Worst case: ?

• Average case: ?

While average time appears to be the fairest measure, it may
be difficult to determine; it requires knowledge of the input
data distribution.

When is the worst case time important?

Which is best depends on the real world problem being solved!

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Oh (O) upper bound

• Definition: For T (n) a non-negatively valued function,
T(n) is in the set O(f(n)) if there exist two positive
constants c and n0 such that T (n) ≤ cf (n) for all n > n0.

• Use: The algorithm is in O(n2) in the
{best, average, worst} case.

• Meaning: For all data sets big enough (i.e., n > n0), the
algorithm always executes in less than cf (n) steps in
{best, average, worst} case.

Notation for “is in”: ∈

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Oh (O)

Big-oh notation indicates an upper bound.
• Example: If T (n) = 3n2 then T (n) is in O(n2)
• Look for the tightest upper bound:

While T (n) = 3n2 is in O(n3), we prefer O(n2).

In image, everywhere to right of n0 (dashed vertical line) the
lower line, f (n), is ≤ the top line, cg(n), thus f (n) ∈ O(g(n)):

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Oh (O) for sequential search

// Return pos o f v a l u e k i n A o f s i z e n
i n t s e q S e a r c h (i n t A [] , i n t n , i n t k)
{

f o r (i n t i = 0 ; i < n ; i ++)
i f (A [n] == k)

return n ;

return −1;
}

If visiting and examining one value in the array requires cs
steps where cs is a positive number, and if the value we search
for has equal probability of appearing in any position in the
array, then in the average case T (n) = csn/2. For all values of
n > 1, csn/2 ≤ csn. Therefore, by the definition, T (n) is in
O(n) for n0 = 1 and c = cs .

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

A common mix-up

Big-oh notation indicates an upper bound, and is NOT the
same as worst case

• Big-oh refers to a bounded growth rate as n grows to ∞
• Best/worst case is defined for the input of size n that

happens to occur among all inputs of size n.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Oh (O)

• O(g(n)) = {T (n) : there exist positive constants
c , n0, such that
0 ≤ T (n) ≤ cg(n) for all n ≥ n0}
• g(n) is an asymptotic upper bound for T (n)

• Middle plot below is Big O

Any values of c?
Growth rate is the important factor.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Omega (Ω) lower bound

• Ω(g(n)) = {T (n) : there exist positive constants
c , n0, such that
0 ≤ cg(n) ≤ T (n) for all n ≥ n0}
• g(n) is an asymptotic lower bound for T (n)

• Right plot below is Ω

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Big-Theta (Θ)

• Θ(g(n)) = {T (n) : there exist positive constants
c1, c2, n0, such that
0 ≤ c1g(n) ≤ T (n) ≤ c2g(n) for all n ≥ n0}
• T (n) = Θ(g(n)) if and only if

T (n) ∈ O(g(n)) and T (n) ∈ Ω(g(n))

• g(n) is an asymptotically tight two-sided bound for T (n)

• Left plot below is Θ

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Little-oh (o)

• o(g(n)) = {T (n) : for any positive constant c > 0,
there exists a constant n0 > 0 such that
0 ≤ T (n) < cg(n) for all n ≥ n0}
• g(n) is an upper bound for T (n) that may or may not be

asymptotically tight.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Little-omega (ω)

• ω(g(n)) = {T (n) : for any positive constant c > 0,
there exists a constant n0 > 0 such that
0 ≤ cg(n) < T (n) for all n ≥ n0}
• g(n) is a lower bound for T (n) that is not asymptotically

tight

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Rules to help simplify

• if A < B and
B < C , then
A < C

• If T (n) ∈ O(f (n)) and
f (n) ∈ O(g(n)), then
T (n) ∈ O(g(n))

If some function f (n) is an upper bound for your cost function,
then any upper bound for f (n) is also an upper bound for your
cost function.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Ignore lower order terms

• Higher-order terms soon swamp the lower-order terms in
their contribution to the total cost as n becomes larger.

• For example, if T (n) = 3n4 + 5n2, then T (n) is in O(n4).

• The n2 term contributes relatively little to the total cost
for large n.

Why?
Draw this out.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Constants are discarded

• If T (n) ∈ O(kf (n)) for any constant k < 0, then
T (n) ∈ O(f (n))

You can ignore any multiplicative constants in equations when
using big-Oh notation.
Why??

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Combinations: sum

• If T1(n) ∈ O(f (n)) and T2(n) ∈ O(g(n)), then

T1(n) + T2(n) ∈ O(f (n) + g(n)) = O(max(f (n), g(n)))

Given two parts of a program run in sequence (whether two
statements or two sections of code), you need consider only the
more expensive part.
Why??

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Combinations: product

• If T1(n) ∈ O(f (n)) and T2(n) ∈ O(g(n)), then
T1(n) ∗ T2(n) ∈ O(f (n) ∗ g(n))

If some action is repeated some number of times, and each
repetition has the same cost, then the total cost is the cost of
the action multiplied by the number of times that the action
takes place.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Polynomials

• If T (n) is a polynomial of degree k, then T (n) = Θ(nk)

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Log

• logkN ∈ O(N) for any constant k . This tells us that
logarithms grow very slowly.

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

Outline

1 Introduction
Evaluating algorithms
Rate of growth?
Best, Worst, Average Cases

2 Definitions
Big-Oh (O)
Big-Omega (Ω)
Big-Theta (Θ)
Little-oh (o)
Little-omega (ω)

3 Analyzing programs
Rules to help simplify
Guidelines

Introduction

Evaluating
algorithms

Rate of growth?

Best, Worst, Average
Cases

Definitions

Big-Oh (O)

Big-Omega (Ω)

Big-Theta (Θ)

Little-oh (o)

Little-omega (ω)

Analyzing
programs

Rules to help simplify

Guidelines

for() loops

How do we determine the order or growth rate of our code?

	Introduction
	Evaluating algorithms
	Rate of growth?
	Best, Worst, Average Cases

	Definitions
	Big-Oh (O)
	Big-Omega ()
	Big-Theta ()
	Little-oh (o)
	Little-omega ()

	Analyzing programs
	Rules to help simplify
	Guidelines

