-
-

-
-

Algorithm and data structures analysis methods and practice

Comp Sci 1575 Data Structures

-
-

"Simplicity is a great virtue, but it requires hard work to achieve it, and education to appreciate it. And to make matters worse: complexity sells better."

Complexity

- Edsger Wybe Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

[Classifying](#page-2-0) functions

1 [Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

[Classifying](#page-2-0) functions

-
-

How do we determine the order or growth rate of our code?

for() loops

Classifving functions

[for\(\) loops](#page-4-0)

[Practice](#page-10-0)

• The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.

 $sum = 0$:

```
for (i = 1; i \le n; i++)
 sum += n;
```
- The first line is $\Theta(1)$.
- The for loop is repeated n times.
- The third line takes constant time, so the total cost for executing the two lines making up the for loop is $\Theta(n)$.
- Thus, the cost of the entire code fragment is also $\Theta(n)$.

for() loops

[Classifying](#page-2-0) functions

[Nested for\(\) loops](#page-5-0)

[Practice](#page-10-0)

• Analyze these inside out.

• Total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

$$
\begin{array}{ll}\n\textbf{for} (i = 0; i < n; ++i) \\
\textbf{for} (j = 0; j < n; ++j) \\
\textbf{++k};\n\end{array}
$$

$$
\Theta(n^2)
$$

Are double for loops always n^2 ?

Consecutive statements

[Classifying](#page-2-0) functions

[Consecutive](#page-6-0) statements

• These just add (recall the sum rule)

$$
\begin{array}{l} \textbf{for} \, (\, i \; = \; 0; \;\; i \; < \; n \, ; \; +i \,) \\ a \, [\, i \,] \; = \; 0 \, ; \end{array}
$$

$$
\begin{array}{ll}\n\textbf{for} (i = 0; i < n; ++i) \\
\textbf{for} (j = 0; j < n; ++j) \\
a[i] += a[j] + i + j; \\
\Theta(n) \textbf{followed by } \Theta(n^2), \textbf{ is just } \Theta(n^2)\n\end{array}
$$

if/else

[Classifying](#page-2-0) functions

-
- [if/else](#page-7-0)
-
-
-
-

-
-
- Running time of an if/else statement is never more than the running time of the test plus the larger of the running times of S1 and S2.
	- Take greater complexity of then/else clauses

switch

[Classifying](#page-2-0) functions

-
-
- [switch](#page-8-0)

-
-
-
-
-
-

-
-

• switch statement: Take complexity of most expensive case.

Recursion

[Classifying](#page-2-0) functions

[Recursion](#page-9-0)

-
-

Intuit the solution, or wait until taking algorithms to learn more, like:

- Substitution method
- Recursion-tree method
- Master method

[Practice](#page-10-0)

[Classifying functions](#page-2-0) [for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

2 [Practice](#page-10-0)

[Basics](#page-11-0)

[Recursion](#page-15-0)

[Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

[Basics](#page-11-0)

[Classifying functions](#page-2-0) [for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0)

[Recursion](#page-9-0)

2 [Practice](#page-10-0) **[Basics](#page-11-0)**

[Recursion](#page-15-0)

[Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

Assignment?

-
-

[Basics](#page-11-0)

-
-

$$
a = b;
$$

Θ(?)

Simple for loop?

[Basics](#page-11-0)

Go line-by-line

$$
sum = 0
$$
; // line 1?

$$
\begin{array}{ll}\n\text{for} & \text{if } i < = n; \\
\text{if } i < = n; \\
\text{if } i < = n; \\
\end{array}
$$

 $\Theta(?)$

Mess of for loops?

[Practice](#page-10-0)

[Basics](#page-11-0)

$$
sum = 0;
$$
\n
$$
for (i=1; i<=n; i++)
$$
\n
$$
for (j=1; j<=i; j++)
$$
\n
$$
sum++;
$$
\n
$$
for (k=0; k\n
$$
A[k] = k;
$$
$$

- Outer for loop is executed n times, but each time the cost of the inner loop is different with i increasing each time.
- During the first execution of the outer loop, $i = 1$.
- For the second execution of the outer loop, $i = 2$.
- Each time through the outer loop, i becomes one greater, until the last time through the loop when $i = n$.

$$
\sum_{i=1}^n i = n(n-1)/2
$$

[Recursion](#page-15-0)

[Classifying functions](#page-2-0) [for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0)

[Recursion](#page-9-0)

2 [Practice](#page-10-0)

[Basics](#page-11-0)

[Recursion](#page-15-0)

[Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

[Recursion](#page-15-0)

$long$ fact (int n) {

$$
\begin{array}{l}\n\text{if } (n \leq 1) \text{ return } 1; \\
\text{return } n * \text{ fact } (n - 1); \n\end{array}
$$

•
$$
T(n) = T(n-1) + 1
$$
 for $n > 1$; $T(1) = 0$

• Which we can prove (later) is $T(n) = n - 1$

 $\Theta(n)$

}

Recursion

[Logarithms](#page-17-0)

[Classifying functions](#page-2-0) [for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0)

[Recursion](#page-9-0)

2 [Practice](#page-10-0)

[Basics](#page-11-0)

[Recursion](#page-15-0)

[Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

Log review: CS is mostly $\log_2 x$

[Practice](#page-10-0)

[Logarithm review](#page-18-0)

- logarithm is the inverse operation to exponentiation
- $\log_b x = y$ and $b^y = x$ and $b^{\log_b x} = x$
- Example: $log_2 64 = 6$ and $2^6 = 64$ and $2^{log_2 64} = 64$
- $\log_2 x$ intersects x-axis at 1 and passes through the points with coordinates $(2, 1)$, $(4, 2)$, and $(8, 3)$, e.g., $log_2 8 = 3$ and $2^3 = 8$

Log review

-
-

-
-
- [Logarithm review](#page-18-0)
-

-
-

- $log(nm) = log n + log m$
- $\log(\frac{n}{m}) = \log n \log m$
- $\log(n^r) = r \log n$
- $\log_a n = \frac{\log_b n}{\log_b a}$ $\frac{\log_b n}{\log_b a}$ (base switch)

Log general rule for algorithm analysis

-
-

[Practice](#page-10-0)

-
-
-
- [Logarithm review](#page-18-0)
-

-
-
- Algorithm is in $O(\log n)$ if it takes constant, $O(1)$, time to cut the problem size by a fraction (which is usually $\frac{1}{2}$).
- If constant time is required to merely reduce the problem by a constant amount, such as to make the problem smaller by 1, then the algorithm is in $O(n)$
- Caveat: with input of n , an algorithm must take at least $\Omega(n)$ to read inputs. Thus, $O(\log n)$ classification often assumes input is pre-read.

Binary search

[Binary search](#page-21-0)

-
-
-

[Practice](#page-10-0)

-
-
-
-

[Binary search](#page-21-0)

-
-
-

Binary search: first approach

Position 2 3 5 Ω 1 4 6 7 8 9 10 11 12 13 14 - 15 Key $11|13|$ 21 $26|29|$ $36|40|$ 41 $45|51|$ 54 56 65 72 77 83

- Inside the loop takes $\Theta(c)$
- Loop starts with $high low = n 1$ and finishes with $high - low \le -1$.
- Each iteration, *high low* must be at least halved from its previous value
- Number of iterations is at most $log(n-1) + 2$
- For example, if $high low = 128$, then the maximum values of $high - low$ after each iteration are $64, 32, 16, 8, 4, 2, 1, 0, -1$

Θ(log n)

Binary search: second approach

[Practice](#page-10-0)

-
-
-
-

[Binary search](#page-21-0)

Though not a recurrent program, we can use a recurrent definition to calculate running time.

- $T(n) = T(n/2) + 1$ for $n > 1$; $T(1) = 1$
- Which is $T(n) = \log n$

Θ(log n)

Euclid's algorithm

[Euclid's algorithm](#page-24-0)

-
-

Euclid's algorithm efficiently computes the greatest common divisor (GCD) of two numbers (AB and CD below), the largest number that divides both without leaving a remainder (CF).

Proceeding left to right:

[Practice](#page-10-0)

[Euclid's algorithm](#page-24-0)

long long gcd (long long ab, long long cd) { while $(cd := 0)$ long long rem $=$ ab $\%$ cd; $ab = cd$: $cd = rem;$ } return ab: }

- After 2 iterations, rem is at most half its original value
- If $ab > cd$, then ab % $cd < ab/2$.
- Thus, number of iterations is at most $2 \log n = \Theta(\log n)$

Euclid's algorithm

Exponentiation

[Practice](#page-10-0)

[Exponentiation](#page-26-0)

```
Compute b^n in how many multiplications?
```

```
// With a loop:double simple Exploop (int b, int n) \{int result = 1:
  for (int c = 1; c \le n; c++){
    result \approx b:
  }
  return result:
\};
// or even recursively:
double simple Exp Recur (int b, int n) \{if (n = 0) return 1;
  else return b * simpleExpRecur(b, n - 1);}
```


Efficient exponentiation

[Exponentiation](#page-26-0)

To obtain b^n , do recursively:

- if n is even, do $b^{n/2} * b^{n/2}$
- if n is odd, do $b * b^{n/2} * b^{n/2}$
- with base case, $b^1 = b$

Note: $n/2$ is integer division

What is b^{62} ? **D** $b^{62} = (b^{31})^2$ $b^{31} = b(b^{15})^2$ 3 $b^{15} = b(b^7)^2$ $b^7 = b(b^3)^2$ $b^3 = b(b^1)^2$ $b^1 = b$ What is b^{61} ? $b^{61} = b(b^{30})^2$ $b^{30} = (b^{15})^2$ 3 $b^{15} = b(b^7)^2$ 4 $b^7 = b(b^3)^2$ **5** $b^3 = b(b^1)^2$ $b^1 = b$

How many multiplications when counting from the bottom up?

Efficient exponentiation

```
Practice
```

```
Exponentiation
```
}

```
To obtain b^n, do recursively:
if n is even, do b^{n/2} * b^{n/2}if n is odd, do b * b^{n/2} * b^{n/2}long long pow (long long x, int n) {
     if(n = 0)return 1:
     if(n = 1)return x;
     if (isEven (n))return pow (x * x, n / 2);
     e l s e
          return pow (x * x, n / 2) * x;
```
• Number of multiplications is at most $2 \log n$ and thus is in $\Theta(\log n)$

Nested for loops always n^2 ?

[Practice](#page-10-0)

[Nested for loops](#page-29-0) always n^2 ?

$$
sum1 = 0;
$$
\n
$$
for (k=1; k<=n; k*=2) // Do log n times
$$
\n
$$
for (j=1; j<=n; j++) // Do n times
$$
\n
$$
sum1++;
$$

$$
sum2 = 0;
$$
\n
$$
for (k=1; k<=n; k*=2) // Do log n times
$$
\n
$$
for (j=1; j<=k; j++) // Do k times
$$
\n
$$
sum2++;
$$

- First outer for loop executed log $n + 1$ times; on each iteration k is multiplied by 2 until it reaches n Inner loop is always n
	- First block is $\sum_{i=0}^{\log n} n$, which is $\Theta(n \log n)$
- Second outer loop is $\log n + 1$ Second inner loop, k, doubles each iteration Second block, with $k = 2^i$ yields $\sum_{i=0}^{\log n} 2^i$ which is $\Theta(n)$

Space [complexity](#page-30-0)

[Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0) [Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

3 [Space complexity](#page-30-0)

[Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

[Practice](#page-10-0)

Space [complexity](#page-30-0)

Whereas for a single data structure, different operations can have different efficiencies, space requirements usually apply to the whole data structure itself. For example:

Space complexity

- What are the space requirements for an array of of n integers?
- To define binary connectivity between all elements with all other elements, we can use a fully connected matrix:

 $\Theta(?)$

and can we do better for this kind of binary connectivity?

[Big picture](#page-32-0)

[Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0)

[Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

4 [Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

[Data structures](#page-33-0)

[Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0) [Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

4 [Big picture](#page-32-0) [Data structures](#page-33-0)

[Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

Data structures

-
-

[Data structures](#page-33-0)

Elements

[Data structures](#page-33-0)

Data structures

Color key:

[Data structures](#page-33-0)

Array sorting algorithms

[Algorithms as](#page-37-0) technology

[Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0) [Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

4 [Big picture](#page-32-0)

[Data structures](#page-33-0)

[Algorithms as technology](#page-37-0)

[Problem versus algorithms](#page-39-0)

Algorithms as technology

[Algorithms as](#page-37-0)

technology

Would you rather have a faster algorithm or a faster computer?

Growth rate | old computer | 10x faster computer Δ | ratio This is a better key ↑

[Problem versus](#page-39-0) algorithms

[Classifying functions](#page-2-0)

[for\(\) loops](#page-4-0) [Nested for\(\) loops](#page-5-0) [Consecutive statements](#page-6-0) [if/else](#page-7-0) [switch](#page-8-0) [Recursion](#page-9-0)

[Practice](#page-10-0)

[Basics](#page-11-0) [Recursion](#page-15-0) [Logarithms](#page-17-0) [Logarithm review](#page-18-0)

[Binary search](#page-21-0)

[Euclid's algorithm](#page-24-0)

[Exponentiation](#page-26-0)

[Nested for loops always](#page-29-0) n^2 ?

[Space complexity](#page-30-0)

4 [Big picture](#page-32-0)

[Data structures](#page-33-0) [Algorithms as technology](#page-37-0) [Problem versus algorithms](#page-39-0)

-
-

[Practice](#page-10-0)

-
-
-
-
-
-

[Problem versus](#page-39-0) algorithms

- Analysis of algorithms applies to particular solutions to **problems**, which themselves have **complexities** defined by the entire set of their solutions.
- Problem: E.g., what is the least possible cost for any sorting algorithm in the worst case?
	- Any algorithm must at least look at every element in the input, to determine that input is sorted, which would be be cn with $\Omega(n)$ lower bound.
	- Further, we can prove that any sorting algorithm must have running time in $\Omega(n \log n)$ in the worst case