
Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Algorithm and data structures analysis
methods and practice

Comp Sci 1575 Data Structures

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Complexity

“Simplicity is a great virtue, but it requires hard work to
achieve it, and education to appreciate it. And to make
matters worse: complexity sells better.”
- Edsger Wybe Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

for() loops

How do we determine the order or growth rate of our code?

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

for() loops

• The running time of a for loop is at most the running time
of the statements inside the for loop (including tests)
times the number of iterations.

sum = 0 ;

f o r (i = 1 ; i <= n ; i ++)
sum += n ;

• The first line is Θ(1).

• The for loop is repeated n times.

• The third line takes constant time, so the total cost for
executing the two lines making up the for loop is Θ(n).

• Thus, the cost of the entire code fragment is also Θ(n).

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Nested for() loops

• Analyze these inside out.

• Total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by
the product of the sizes of all the loops.

f o r (i = 0 ; i < n ; ++i)
f o r (j = 0 ; j < n ; ++j)

++k ;

Θ(n2)
Are double for loops always n2?

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Consecutive statements

• These just add (recall the sum rule)

f o r (i = 0 ; i < n ; ++i)
a [i] = 0 ;

f o r (i = 0 ; i < n ; ++i)
f o r (j = 0 ; j < n;++ j)

a [i] += a [j] + i + j ;

Θ(n) followed by Θ(n2), is just Θ(n2)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

if/else

• Running time of an if/else statement is never more than
the running time of the test plus the larger of the running
times of S1 and S2.

• Take greater complexity of then/else clauses

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

switch

• switch statement: Take complexity of most expensive case.

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Recursion

Intuit the solution, or wait until taking algorithms to learn
more, like:

• Substitution method

• Recursion-tree method

• Master method

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Assignment?

a = b ;

Θ(?)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Simple for loop?

Go line-by-line

sum = 0 ; // l i n e 1?

f o r (i =1; i<=n ; i ++) // l i n e 2?
sum += n ; // l i n e 3?

Θ(?)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Mess of for loops?

sum = 0 ;
f o r (i =1; i<=n ; i ++)

f o r (j =1; j<=i ; j ++)
sum++;

f o r (k=0; k<n ; k++)
A [k] = k ;

• Outer for loop is executed n times, but each time the cost
of the inner loop is different with i increasing each time.
• During the first execution of the outer loop, i = 1.
• For the second execution of the outer loop, i = 2.
• Each time through the outer loop, i becomes one greater,

until the last time through the loop when i = n:

n∑
i=1

i = n(n − 1)/2

Θ(?)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Recursion

long f a c t (i n t n)
{

i f (n <= 1) return 1 ;
return n ∗ f a c t (n − 1) ;

}

• T (n) = T (n − 1) + 1 for n > 1; T (1) = 0

• Which we can prove (later) is T (n) = n − 1

Θ(n)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Log review: CS is mostly log2 x

• logarithm is the inverse operation to exponentiation
• logb x = y and by = x and blogb x = x
• Example: log2 64 = 6 and 26 = 64 and 2log2 64 = 64
• log2 x intersects x-axis at 1 and passes through the points

with coordinates (2, 1), (4, 2), and (8, 3), e.g., log2 8 = 3
and 23 = 8

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Log review

• log(nm) = log n + logm

• log(n
m) = log n − logm

• log(nr) = r log n

• loga n = logb n
logb a

(base switch)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Log general rule for algorithm analysis

• Algorithm is in O(log n) if it takes constant, O(1), time to
cut the problem size by a fraction (which is usually 1

2).

• If constant time is required to merely reduce the problem
by a constant amount, such as to make the problem
smaller by 1, then the algorithm is in O(n)

• Caveat: with input of n, an algorithm must take at least
Ω(n) to read inputs. Thus, O(log n) classification often
assumes input is pre-read.

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Binary search

// Return pos o f e l ement i n s o r t e d a r r a y ”A” o f
// s i z e n wi th v a l u e K, or −1 i f not found
i n t b i n a r y (i n t A [] , i n t n , i n t K){

i n t low = 0 ;
i n t h i g h = n − 1 ;
whi le (low <= h i g h){

i n t mid = (low + h i g h) / 2 ; # i n t d i v
i f (K > A [mid]) low = mid + 1 ;
i f (K < A [mid]) h i g h = mid − 1 ;
e l s e return mid ;

}
return −1;
}

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Binary search: first approach

• Inside the loop takes Θ(c)

• Loop starts with high − low = n − 1 and
finishes with high − low ≤ −1.

• Each iteration, high− low must be at least halved from its
previous value

• Number of iterations is at most log(n − 1) + 2

• For example, if high − low = 128, then the maximum
values of high − low after each iteration are
64, 32, 16, 8, 4, 2, 1, 0,−1

Θ(log n)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Binary search: second approach

Though not a recurrent program, we can use a recurrent
definition to calculate running time.

• T (n) = T (n/2) + 1 for n > 1; T (1) = 1

• Which is T (n) = log n

Θ(log n)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Euclid’s algorithm

Euclid’s algorithm efficiently computes the greatest common
divisor (GCD) of two numbers (AB and CD below), the largest
number that divides both without leaving a remainder (CF).

Proceeding left to right:

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Euclid’s algorithm

long long gcd (long long ab , long long cd){
whi le (cd != 0){

long long rem = ab % cd ;
ab = cd ;
cd = rem ;

}
return ab ;

}

• After 2 iterations, rem is at most half its original value
• If ab > cd , then ab % cd < ab/2.
• Thus, number of iterations is at most 2 log n = Θ(log n)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Exponentiation

Compute bn in how many multiplications?

// With a l oop :
double s impleExpLoop (i n t b , i n t n){

i n t r e s u l t = 1 ;
f o r (i n t c = 1 ; c <= n ; c++){

r e s u l t ∗= b ;
}
return r e s u l t ;

} ;

// or even r e c u r s i v e l y :
double s i m p l e E x p R e c u r (i n t b , i n t n){

i f (n == 0) return 1 ;
e l s e return b ∗ s i m p l e E x p R e c u r (b , n − 1) ;

}

Θ(?)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Efficient exponentiation

To obtain bn, do recursively:

• if n is even, do bn/2 ∗ bn/2

• if n is odd, do b ∗ bn/2 ∗ bn/2

• with base case, b1 = b

Note: n/2 is integer division

What is b62 ?

1 b62 = (b31)2

2 b31 = b(b15)2

3 b15 = b(b7)2

4 b7 = b(b3)2

5 b3 = b(b1)2

6 b1 = b

What is b61 ?

1 b61 = b(b30)2

2 b30 = (b15)2

3 b15 = b(b7)2

4 b7 = b(b3)2

5 b3 = b(b1)2

6 b1 = b

How many multiplications when counting from the bottom up?

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Efficient exponentiation

To obtain bn, do recursively:
if n is even, do bn/2 ∗ bn/2
if n is odd, do b ∗ bn/2 ∗ bn/2

long long pow (long long x , i n t n){
i f (n == 0)

return 1 ;
i f (n == 1)

return x ;
i f (i s E v e n (n))

return pow (x ∗ x , n / 2) ;
e l s e

return pow (x ∗ x , n / 2) ∗ x ;
}

• Number of multiplications is at most 2 log n and thus is in
Θ(log n)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Nested for loops always n2 ?

sum1 = 0 ;
f o r (k=1; k<=n ; k∗=2) // Do l og n t imes

f o r (j =1; j<=n ; j ++) // Do n t imes
sum1++;

sum2 = 0 ;
f o r (k=1; k<=n ; k∗=2) // Do l og n t imes

f o r (j =1; j<=k ; j ++) // Do k t imes
sum2++;

• First outer for loop executed log n + 1 times; on each
iteration k is multiplied by 2 until it reaches n
Inner loop is always n
First block is

∑log n
i=0 n, which is Θ(n log n)

• Second outer loop is log n + 1
Second inner loop, k, doubles each iteration
Second block, with k = 2i yields

∑log n
i=0 2i which is Θ(n)

Θ(?)

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Space complexity

Whereas for a single data structure, different operations can
have different efficiencies, space requirements usually apply to
the whole data structure itself. For example:

• What are the space requirements for an array of of n
integers?

• To define binary connectivity between all elements with all
other elements, we can use a fully connected matrix:

← dots imply connectivity

Θ(?)
and can we do better for this kind of binary connectivity?

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Data structures

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Data structures

Color key:

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Array sorting algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Algorithms as technology

Would you rather have a faster algorithm or a faster computer?

Growth rate | old computer | 10x faster computer | ∆ | ratio
This is a better key ↑

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Outline

1 Classifying functions
for() loops
Nested for() loops
Consecutive statements
if/else
switch
Recursion

2 Practice
Basics
Recursion
Logarithms

Logarithm review
Binary search
Euclid’s algorithm
Exponentiation
Nested for loops always n2 ?

3 Space complexity

4 Big picture
Data structures
Algorithms as technology
Problem versus algorithms

Classifying
functions

for() loops

Nested for() loops

Consecutive
statements

if/else

switch

Recursion

Practice

Basics

Recursion

Logarithms

Logarithm review

Binary search

Euclid’s algorithm

Exponentiation

Nested for loops
always n2 ?

Space
complexity

Big picture

Data structures

Algorithms as
technology

Problem versus
algorithms

Problem complexity versus algorithm analysis

• Analysis of algorithms applies to particular solutions to
problems, which themselves have complexities defined by
the entire set of their solutions.
• Problem: E.g., what is the least possible cost for any

sorting algorithm in the worst case?
• Any algorithm must at least look at every element in the

input, to determine that input is sorted, which would be be
cn with Ω(n) lower bound.

• Further, we can prove that any sorting algorithm must
have running time in Ω(n log n) in the worst case

	Classifying functions
	Practice
	Basics
	Recursion
	Logarithms

	Space complexity
	Big picture
	Data structures
	Algorithms as technology
	Problem versus algorithms

