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Complexity

“Simplicity is a great virtue, but it requires hard work to
achieve it, and education to appreciate it. And to make
matters worse: complexity sells better.”
- Edsger Wybe Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
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for() loops

How do we determine the order or growth rate of our code?
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for() loops

• The running time of a for loop is at most the running time
of the statements inside the for loop (including tests)
times the number of iterations.

sum = 0 ;

f o r ( i = 1 ; i <= n ; i ++)
sum += n ;

• The first line is Θ(1).

• The for loop is repeated n times.

• The third line takes constant time, so the total cost for
executing the two lines making up the for loop is Θ(n).

• Thus, the cost of the entire code fragment is also Θ(n).
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Nested for() loops

• Analyze these inside out.

• Total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by
the product of the sizes of all the loops.

f o r ( i = 0 ; i < n ; ++i )
f o r ( j = 0 ; j < n ; ++j )

++k ;

Θ(n2)
Are double for loops always n2?
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Consecutive statements

• These just add (recall the sum rule)

f o r ( i = 0 ; i < n ; ++i )
a [ i ] = 0 ;

f o r ( i = 0 ; i < n ; ++i )
f o r ( j = 0 ; j < n;++ j )

a [ i ] += a [ j ] + i + j ;

Θ(n) followed by Θ(n2), is just Θ(n2)
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if/else

• Running time of an if/else statement is never more than
the running time of the test plus the larger of the running
times of S1 and S2.

• Take greater complexity of then/else clauses
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switch

• switch statement: Take complexity of most expensive case.
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Recursion

Intuit the solution, or wait until taking algorithms to learn
more, like:

• Substitution method

• Recursion-tree method

• Master method
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Assignment?

a = b ;

Θ(?)
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Simple for loop?

Go line-by-line

sum = 0 ; // l i n e 1?

f o r ( i =1; i<=n ; i ++) // l i n e 2?
sum += n ; // l i n e 3?

Θ(?)
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Mess of for loops?

sum = 0 ;
f o r ( i =1; i<=n ; i ++)

f o r ( j =1; j<=i ; j ++)
sum++;

f o r ( k=0; k<n ; k++)
A [ k ] = k ;

• Outer for loop is executed n times, but each time the cost
of the inner loop is different with i increasing each time.
• During the first execution of the outer loop, i = 1.
• For the second execution of the outer loop, i = 2.
• Each time through the outer loop, i becomes one greater,

until the last time through the loop when i = n:

n∑
i=1

i = n(n − 1)/2

Θ(?)
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Recursion

long f a c t ( i n t n )
{

i f ( n <= 1) return 1 ;
return n ∗ f a c t ( n − 1 ) ;

}

• T (n) = T (n − 1) + 1 for n > 1; T (1) = 0

• Which we can prove (later) is T (n) = n − 1

Θ(n)
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Log review: CS is mostly log2 x

• logarithm is the inverse operation to exponentiation
• logb x = y and by = x and blogb x = x
• Example: log2 64 = 6 and 26 = 64 and 2log2 64 = 64
• log2 x intersects x-axis at 1 and passes through the points

with coordinates (2, 1), (4, 2), and (8, 3), e.g., log2 8 = 3
and 23 = 8
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Log review

• log(nm) = log n + logm

• log( n
m ) = log n − logm

• log(nr ) = r log n

• loga n = logb n
logb a

(base switch)
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Log general rule for algorithm analysis

• Algorithm is in O(log n) if it takes constant, O(1), time to
cut the problem size by a fraction (which is usually 1

2).

• If constant time is required to merely reduce the problem
by a constant amount, such as to make the problem
smaller by 1, then the algorithm is in O(n)

• Caveat: with input of n, an algorithm must take at least
Ω(n) to read inputs. Thus, O(log n) classification often
assumes input is pre-read.
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Binary search

// Return pos o f e l ement i n s o r t e d a r r a y ”A” o f
// s i z e n wi th v a l u e K, or −1 i f not found
i n t b i n a r y ( i n t A [ ] , i n t n , i n t K){

i n t low = 0 ;
i n t h i g h = n − 1 ;
whi le ( low <= h i g h ){

i n t mid = ( low + h i g h ) / 2 ; # i n t d i v
i f (K > A [ mid ] ) low = mid + 1 ;
i f (K < A [ mid ] ) h i g h = mid − 1 ;
e l s e return mid ;

}
return −1;
}
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Binary search: first approach

• Inside the loop takes Θ(c)

• Loop starts with high − low = n − 1 and
finishes with high − low ≤ −1.

• Each iteration, high− low must be at least halved from its
previous value

• Number of iterations is at most log(n − 1) + 2

• For example, if high − low = 128, then the maximum
values of high − low after each iteration are
64, 32, 16, 8, 4, 2, 1, 0,−1

Θ(log n)
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Binary search: second approach

Though not a recurrent program, we can use a recurrent
definition to calculate running time.

• T (n) = T (n/2) + 1 for n > 1; T (1) = 1

• Which is T (n) = log n

Θ(log n)
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Euclid’s algorithm

Euclid’s algorithm efficiently computes the greatest common
divisor (GCD) of two numbers (AB and CD below), the largest
number that divides both without leaving a remainder (CF).

Proceeding left to right:
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Euclid’s algorithm

long long gcd ( long long ab , long long cd ){
whi le ( cd != 0){

long long rem = ab % cd ;
ab = cd ;
cd = rem ;

}
return ab ;

}

• After 2 iterations, rem is at most half its original value
• If ab > cd , then ab % cd < ab/2.
• Thus, number of iterations is at most 2 log n = Θ(log n)
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Exponentiation

Compute bn in how many multiplications?

// With a l oop :
double s impleExpLoop ( i n t b , i n t n ){

i n t r e s u l t = 1 ;
f o r ( i n t c = 1 ; c <= n ; c++){

r e s u l t ∗= b ;
}
return r e s u l t ;

} ;

// or even r e c u r s i v e l y :
double s i m p l e E x p R e c u r ( i n t b , i n t n ){

i f ( n == 0) return 1 ;
e l s e return b ∗ s i m p l e E x p R e c u r ( b , n − 1 ) ;

}

Θ(?)
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Efficient exponentiation

To obtain bn, do recursively:

• if n is even, do bn/2 ∗ bn/2

• if n is odd, do b ∗ bn/2 ∗ bn/2

• with base case, b1 = b

Note: n/2 is integer division

What is b62 ?

1 b62 = (b31)2

2 b31 = b(b15)2

3 b15 = b(b7)2

4 b7 = b(b3)2

5 b3 = b(b1)2

6 b1 = b

What is b61 ?

1 b61 = b(b30)2

2 b30 = (b15)2

3 b15 = b(b7)2

4 b7 = b(b3)2

5 b3 = b(b1)2

6 b1 = b

How many multiplications when counting from the bottom up?
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Efficient exponentiation

To obtain bn, do recursively:
if n is even, do bn/2 ∗ bn/2
if n is odd, do b ∗ bn/2 ∗ bn/2

long long pow ( long long x , i n t n ){
i f ( n == 0)

return 1 ;
i f ( n == 1)

return x ;
i f ( i s E v e n ( n ) )

return pow ( x ∗ x , n / 2 ) ;
e l s e

return pow ( x ∗ x , n / 2) ∗ x ;
}

• Number of multiplications is at most 2 log n and thus is in
Θ(log n)
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Nested for loops always n2 ?

sum1 = 0 ;
f o r ( k=1; k<=n ; k∗=2) // Do l og n t imes

f o r ( j =1; j<=n ; j ++) // Do n t imes
sum1++;

sum2 = 0 ;
f o r ( k=1; k<=n ; k∗=2) // Do l og n t imes

f o r ( j =1; j<=k ; j ++) // Do k t imes
sum2++;

• First outer for loop executed log n + 1 times; on each
iteration k is multiplied by 2 until it reaches n
Inner loop is always n
First block is

∑log n
i=0 n, which is Θ(n log n)

• Second outer loop is log n + 1
Second inner loop, k, doubles each iteration
Second block, with k = 2i yields

∑log n
i=0 2i which is Θ(n)

Θ(?)
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Space complexity

Whereas for a single data structure, different operations can
have different efficiencies, space requirements usually apply to
the whole data structure itself. For example:

• What are the space requirements for an array of of n
integers?

• To define binary connectivity between all elements with all
other elements, we can use a fully connected matrix:

← dots imply connectivity

Θ(?)
and can we do better for this kind of binary connectivity?
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Algorithms as technology

Would you rather have a faster algorithm or a faster computer?

Growth rate | old computer | 10x faster computer | ∆ | ratio
This is a better key ↑
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Problem complexity versus algorithm analysis

• Analysis of algorithms applies to particular solutions to
problems, which themselves have complexities defined by
the entire set of their solutions.
• Problem: E.g., what is the least possible cost for any

sorting algorithm in the worst case?
• Any algorithm must at least look at every element in the

input, to determine that input is sorted, which would be be
cn with Ω(n) lower bound.

• Further, we can prove that any sorting algorithm must
have running time in Ω(n log n) in the worst case
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