
Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

List abstract data type and
an “array list” implementation

Comp Sci 1575 Data Structures

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Data Structures...

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Reminder

• Welcome to the first day of Data Structures.

• Now is when it will start to be very helpful to have read
the book chapter. The slides, book, and code will parallel
each other.

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Interfaces

• List

• Unsorted set (USet)

• Sorted set (SSet)

• Priority queue /

• Graph

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

List implementations

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Unsorted set implementations

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Sorted set implementations

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Priority queue implementations

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Graph implementations

• Adjacency matrix

• Adjacency list (array and linked)

• Incidence list

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Big picture on ADTs

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Chapter dependencies in ODS

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

List ADT: Why do we care?

• A list is the most universal user interface for computers:
e.g., Bash’s $ls, your inbox, your google results, your file
browser, etc.

• MANY programs use lists in at least some part of their
back-end

• What is the common-language definition of a list?

• What is our formal definition of a list ADT?

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Definitions: List ADT

• A list is a finite, ordered sequence of data items.

• List elements have a position or order.

• Ordered is not the same as sorted, which relates order to
value; lists can be sorted or unsorted, but are still ordered

• Notation: < a0, a1, . . . , an−1 >

• Length/Size of the list is n − 1

• Position of element ai in the list is i

• First element of the list is a0, the head

• Last element is an−1, the tail

• ai follows (or succeeds) ai−1 where (i < n)

• ai−1 precedes ai where (i > 0).

• Each list item has a data type

• Operations??

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Which list ADT operations do we want?

• Should be able to be ordered, and have a position

• Should grow and shrink as we add/insert or remove items

• Should be able to insert and remove elements from
anywhere in the list.

• Should be able to gain access to any element’s value,
either to read it or to change it.

• Should be able to create and clear (or reinitialize) lists.

• Convenient to access next or previous element from
“current” one.

• Should be able to locate and/or read items by value or
position

• Can have many more arbitrary actions if desired

Check out the pure virtual abstract class, list.h

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

How can we accomplish operation implementation?

What about normal arrays? Aren’t they already complete lists?

i n t x [4] = {1 , 5 , 8 , 2} ;
x [0] = 3 ;
x [1] = 3 ;
x [2] = 3 ;
x [3] = 3 ;

• Ordered?

• What about search, insert, remove, grow, shrink, next,
previous, length, print whole list, append, pop?

To increase our degree of modularity in operation between
functions, which construct is very helpful to keep track of to
complete many of the above tasks?

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Current position construct is helpful to implement

• Most operations can be made to act relative to a current
position or a specified position (which could be set to
current to complete a task)

• The in-class implementation will support a current
position, illustrated here using notation | ,
e.g.,< 20, 23, |12, 15 >

• For example, listObject.insert(x) could produce
< 20, 23, x , |12, 15 >

• This is not true for std:: implementations we’ll cover

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Iterate through a list

One very common task is to iterate through a list:

f o r (L . mvToStart () ; L . c u r r P o s () < L . l e n g t h () ; L . n e x t ())
{

e l e m v a l u e = L . g e t V a l u e () ;
doSomething (e l e m v a l u e) ;

}

Note the use of member functions to move through the lits and
check termintation; note that this function does not use private
members.

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

List find function

// r e t u r n True i f k i s i n l i s t L , f a l s e o t h e rw i s e

bool f i n d (L i s t <i n t> &L , i n t K)
{

i n t i t ;
f o r (L . mvToStart () ; L . c u r r P o s () < L . l e n g t h () ; L . n e x t ())
{

i t = L . g e t V a l u e () ;
i f (K == i t)

re tu rn t rue ;
}
re tu rn f a l s e ; // K not found

}

What would a better find function return?
Can we provide more information?

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Array list insert

• Requires moving elements after insert toward the tail

• How many steps does this take for a list of 4?
How about 5? 6? 7?

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

Outline

1 Introduction
Abstract data types: interfaces

List
Unsorted set
Sorted set
Priority queue
Graphs

2 Lists are fundamental
Definitions
List operations

3 List implementation demands
Arrays as lists?
Current position
Example tasks

Iterate
Search
Insert

4 An actual implementation

Introduction

Abstract data types:
interfaces

List

Unsorted set

Sorted set

Priority queue

Graphs

Lists are
fundamental

Definitions

List operations

List implemen-
tation
demands

Arrays as lists?

Current position

Example tasks

Iterate

Search

Insert

An actual im-
plementation

“Array list” implementation

List based on arrays:

• Check out abstract class file, list.h

• Go over array list class file, list A.h

• Check out find and print in ListTest.h

• Which is all called in main AList easy .cpp

	Introduction
	Abstract data types: interfaces

	Lists are fundamental
	Definitions
	List operations

	List implementation demands
	Arrays as lists?
	Current position
	Example tasks

	An actual implementation

