C++ 11 and
the Standard Library:
Containers, Iterators, Algorithms

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

C+-+ versus C

Q: Why did C++ decide not to go out with C?
A: Because C has no class.

Outline

@cr+11

Outline

O c++11

uniform initialization

uniform initialization

#include <iostream>
int main()

{

int value0 = 5; // G+ 98
int valuel (5); // G 98

int value{5}; // G+ 11
std::string a{''hello”}; // CG++ 11

int value; // C++ 98
// value() // looks like a function, error

int value2{}; // default to 0; G+ 11

int i = 3.99; // i gets 3; no warning/error
int k{3.99}; // i gets 3; warning

return O;

uniform initialization with arrays

#include <iostream>
int main ()

{
/) C+ 98
int arr[] = {1,2,3,4,5};
// G 11 optional
int arr[] {1,2,3,4,5};
return 0;

}

This is consistent with non-arrays now.

Outline

@cr+11

range-based for

range-based for loops

#include <iostream>

int main()

{
int fibonacci[] = {0, 1, 1, 2, 3, 5, 8};

for(int number : fibonacci)

std :: cout << number << ‘', "

return O;

range-based for loops: modify element

#include <iostream>

int main()

{

int fib_plus[] = {0, 1, 1, 2, 3, 5, 8};

for(int &number : fib_plus)
number+-+;

for(int number : fib_plus)

std :: cout << number << ', "

return O;

Fast and “safe” range-based for loops

#include <iostream>

int main()

{
int fibonacci[] = {0, 1, 1, 2, 3, 5, 8};
for(const int &number : fibonacci)
std ::cout << number << *,7;
return O;
}

Avoid copy

Outline

@cr+11

auto

auto type deduction

#include <iostream>

int add(int x, int y)

{
}

int

return x + vy,

main ()

auto d = 5.0; // 5.0 is a double literal
auto i =1 + 2; // evaluates to an integer

auto sum = add(5, 6); // add() returns int

return 0;

auto in range-based for loops

#include <iostream>
int main()
{
auto fibonacci[] = {0, 1, 1, 2, 3, 5, 8};

for (auto number : fibonacci)
std :: cout << number << “,";

return O;

Warning: For-each doesn't work with pointers to an array, and
thus with arrays passed to functions.

Outline

@cr+11

nullptr

nullptr should generally be used instead of NULL

NULL is a “manifest constant” (a #define of C) that's
actually an integer that can be assigned to a pointer because of
an implicit conversion.

nullptr is a keyword representing a value of self-defined type,
that can convert into a pointer, but not into integers.

#include <iostream>

int main(){
int i = NULL; // OK
// int i = nullptr; //error, no convert to int
intx p = NULL; //ok, int converted into ptr
intx p = nullptr; // ok
// suppose you have two functions in overload:
void func(int x);
void func(intx x);

}

Now, if you call func(NULL), you are actually calling the int
variant, NULL being an int. But func(nullptr) will call the
pointer variant, nullptr not being an int.

Outline

Data
Structures
Overview

@ Data Structures Overview

Data
Structures
Overview

Data structures

Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion

Array o O

Stack ow oo @@ @@ ow o @@

Queue | fem| @@ @@ o] [o E@ (o]

Singly-Linked List ~ [om]| [om] @) BED oo [ew| @ o)

Doubly-Linked List [om)]] [ew]) [o@]

Skip List [c208(m)) | [e(ogm)] [ocrog(n)] [ecrog(n))]

Hash Table /A @] [ew) [ecw)] (wa

Binary Search Tree [e(log(n)] [e(og(m)] [eciog(n)] [ecrog(n))

Cartesian Tree N/A N/A

B-Tree [ocrogm)| (o10g(m)] [oc1og(m))| [ecrogm)]| [oc1og(n))] [o(tog(n)| [o(tog(n))] [oc1ogtm))]

Red-Black Tree [e(log(n))| [o(tog(m)| [e(iog(n)] [ectog(n))| [octog(m)| [o(iog(n))| [o(1ogm)]| [ocrog(m))] [om|

Splay Tree wA [ologm)| [ectogm)| [eqiogn)| (wa [oaog(m))| [o(ogm)| [ocrogm)] o(n)

AVL Tree [c20g(n)) | [ocog(m)| [ocrog(n))] [ecrog(m))| [ocrog(m)] [o(tog(n))| [o(togm)| [o(rog(m))|

KD Tree [ectog@)] [etog] [eaoem)) [octogn] [om] [om] [om)] [om) o)

Color key:

Sorting algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst
oot Quicksort [a(n 10g())| [0(n 10g(m))| [0)]
SIS Mergesort [a(n 1og(m) [ein log(n))| [o(n log(n))|
Overview
Timsort la(n 1og(n)| [o(n log(n))|
Heapsort [atn logm)| |e(n log(n))] [otn log(m))]

Bubble Sort [atn) |
Insertion Sort ~ [am
Selection Sort [a@m2)]
Tree Sort [atn 1og(n))] [e(n 1og(n))]
Shell Sort
Bucket Sort [ER)

—~
— — —~| =
£ £l = B
=3 =3 - | = 5
=

Radix Sort - o(n+k)
Counting Sort [E@0)
Cubesort [a(n 1og(n)| [otn log(n))|

Outline

© sTL

Outline

© sTL

History

STL is nowjust part of standard namespace
-

D ata Struchired
& mgom

- Standard C++ Library

=
-7 “ oS0 — [T

® Old diagram of the Standard Template Library (STL)

Main pillars of the STL

STL

Algorithms

Containers
Iterators

¢ Containers manage storage space for elements and
provide member functions to access them. Implemented as
templated classes, with flexibility of types as elements.

® Algorithms act on containers, and perform operations like
initialization, sorting, searching, and transforming of the
contents of the aforementioned containers.

® |terators step through elements of collections of objects
in containers or subsets of containers. Pointer-like
iterators can traverse many container classes in modularly.

Example std :: vector

Check out the code: container with iterators and algorithms

A dynamic C-like array (i.e., capable of random access) with
the ability to resize itself automatically when inserting or
erasing an object.

e Random access is done in constant, O(1) time.

® |nsertion or removal of elements at the back takes average
time O(1), amortized constant time. Removing the last
element takes only constant time, because no re-sizing
happens.

® |nsertion or removal of elements at the beginning or
“middle” is linear in distance to the end of the vector

O(n).

See: Intro_vector.cpp

Outline

© sTL

Containers

Containers

Containers library is a generic collection of class templates
and algorithms that allow programmers to easily
implement common data structures like queues, lists, and
stacks.
Classes of containers, each of which is designed to support
a different set of operations:

@ sequence containers

@ associative containers

© un-ordered associative containers

@ container adaptors (modify above)
Containers manage storage space that is allocated for their
elements and provides member functions to access them,
either directly or through iterators (objects with properties
similar to pointers).
The set of containers have at least several member
functions in common with each other, and share
functionalities.

Containers

Types of containers

Simple Sequences Containers Adaptors Associative Containers Other Types

pair vector Queue set/multiset valArray
list (double) priority queue map/multimap bitset
slist stack Hashmap
deque

For a comprehensive list, see:
® http://en.cppreference.com/w/cpp/container
® http://www.cplusplus.com/reference/stl/

® https://en.wikipedia.org/wiki/Standard_
Template_Library

http://en.cppreference.com/w/cpp/container
http://www.cplusplus.com/reference/stl/
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Standard_Template_Library

Simple utilities: pair, tuple

Types of containers

Simple Sequences Containers Adaptors Associative Containers Other Types

pair vector queue set/multiset valArray
list (double) priority gueue map/multimap bitset
slist stack Hashmap
deque

Not in the “Containers” but “Utilities”
® http://en.cppreference.com/w/cpp/utility/pair
® http://en.cppreference.com/w/cpp/utility/tuple

http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/tuple

Order is
Important

How to choose your container?

no

Tnsert/erase
at middle,

Took-up keys

yes

Frequent
Traversals

Persistent’ es

Pom

Size v
Wi

a
dely

vector
(sorted)

Allow
Duplicates

vector

Separate
Key / Value

unordered_map

[|

|unordered_multimap| | map ” set |multimap

Outline

© sTL

Iterators

Iterators

An iterator can be imagined as a pointer to a given element in
the container, with overloaded operators to provide a subset of
well-defined functions normally provided by pointers:
e QOperatorx Dereferencing the iterator returns the element
that the iterator is currently pointing at.
® QOperator + + Moves the iterator to the next element in

the container. Most iterators also provide Operator — — to
move to the previous element.
® Operator == and Operator! = Basic comparison

operators to determine if two iterators point to the same
element. To compare the values that two iterators are
pointing at, dereference the iterators first, and then use a
comparison operator.

® Operator = Assign the iterator to a new position (typically
the start or end of the container’s elements). To assign
the value of the element the iterator is point at,
dereference the iterator first, then use the assign operator.

Iterators

Iterator categories

Data Random access
Structures
(0]
Bidirectional
Forward
Input iterator Qutput iterator
Iterator categori Provid
Input iterator istream
Qutput iterator ostream
Forward iterator
Bidirectional iterator list, set, multiset, map, multimap
Random access iterator vector, deque, array

® Where does forward_list go?
® http://en.cppreference.com/w/cpp/iterator
® http://www.cplusplus.com/reference/iterator/

http://en.cppreference.com/w/cpp/iterator
http://www.cplusplus.com/reference/iterator/

Iterators

category properties valid expressions
oy consicte copyassignatle and dosuttle X P33
all categories L
ICan be incremented tta
a++
'Supports equality/inequality comparisons : Tf E
Input " -
Can be dereferenced as an rvalue 2
a->m
output/Sa" be dereferenced as an Ivalue *a =t
ForwardiOutpUll o1y for mutable iterator types) *at++ = t
SN default-constructible i (? i
Multi-pass: neither dereferencing nor incrementing affects { b=a; *a++; *b;
dereferenceability }
--a
Random Can be decremented a--
Access *3- -
a +n
. . n+a
'Supports arithmetic operators + and - a - n
a - b
a < b
'Supports inequality comparisons (<, >, <= and >=) between a >b
iterators a <= b
a >= b
[Supports assignment jons += and -= : +i :
'Supports offset dereference operator ([]) a[n]

Each category of iterator is defined by the operations that can be performed on
it. Any type that supports the necessary operations can be used as an iterator,
e.g., pointers support all of the operations required by RandomAccesslterator, so
pointers can be used anywhere a RandomAccesslterator is expected.

Iterators

Each container includes at least 4 member functions for the
operator= to set the values of named LHS iterators.
® begin() returns an iterator to the first element.
® end() returns an iterator one past the last element.
e cbegin() returns a const (read-only) iterator to the first
element.
e cend() returns a const (read-only) iterator one past the
last element.
end() doesn't point to the last element in the list. This makes
looping easy: iterating over the elements can continue until the
iterator reaches end(), and then you know you're done.

Past-the-last element

iterator example

#include <iostream>
#include <vector>
#include <string>

int main()

std ::vector<int> ints {1, 2, 4, 8, 16};
std ::vector<std ::string> fruits {"orange”, "apple”, "raspberry”};
std :: vector<char> empty;

// Sums all integers in the vector ints (if any), printing only the result.
int sum = 0;

for (auto it = ints.cbegin(); it != ints.cend(); it++)
sum += xit;

std :: cout << "Sum of ints: << sum << "\n";
// Prints the first fruit in the vector fruits, without checking
std::cout << "First fruit: " << *fruits.begin() << "\n";

// checks
cout << empty.empty ();
if (empty.begin() = empty.end())
std ::cout << "vector 'empty' is indeed empty.\n";

// Alternative syntax
auto itl = ints.begin();
auto it2 = std::begin(ints);

Container have different iterator invalidation rules

Each container has different rules for when an iterator will be
invalidated after operations on the container:
http://en.cppreference.com/w/cpp/container

After insertion, are... After erasure, are...
Category Container iterators references iterators references Conditionally
valid? valid? valid? valid?
array N/A N/A
Insertion changed
No NA capacity
vector Yes Yes e modined
Sequence containers e o e
Modified first or last
deque No Yes Yes, except erased element(s) element
No No Modified middle only
list Yes Yes, except erased element(s)
forward_list Yes Yes, except erased element(s)
set
multiset
Associative containers - Yes Yes, except erased element(s)
multimap
unordered_set .
I e No NA Insertion caused rehash
Unordered associative Ye
containers unordered_map &
unordered_multimap Yes Yes, except erased element(s) No rehash

http://en.cppreference.com/w/cpp/container

	C++ 11
	uniform initialization
	range-based for
	auto
	nullptr

	Data Structures Overview
	STL
	History
	Containers
	Iterators

