Doubly linked lists and freeList node caches

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science




Debugging

The code that is the hardest to debug is the code you know
can't possibly be wrong.




Do Q1

Q1



Outline

Doubly linked

list @ Doubly linked list




Outline

@ Doubly linked list
Definitions




Doubly linked lists

head curr tail

3 \ \
Lol o fee] [tz o s [ 1

® Doubly linked list has a set of sequentially linked nodes.

® Each node contains pointers to the previous and next
node.

® Head and tail nodes are often empty/null, but not always.




Outline

@ Doubly linked list

Differences with singly




Doubly linked lists difference with singly linked

head curr tail

3 \ \
L= o] o s ot e[ s [T Y]

® \We no longer need to insert after current; however
to keep the same functions as we have for the singly linked
list, we will keep curr as pointing to the item before the
operations being performed.

¢ Some functions, like prev(), are simpler with doubly linked
lists than singly




Outline

@ Doubly linked list

Implementation




Very few changes to node class from singly linked

Comparing node_FL.h to node_FL_DL.h :
e Add second pointer, pointing to previous node
® Each node now has two pointers and a data element
® Tweak constructor slightly to accommodate new pointer
® Check it out!




Do Q2

Q2



Very few changes to doubly from singly linked class

Comparing list_L.h to list_DL.h :

® insert(), append(), remove(), and prev() are the only
functions which change appreciably.

® Check it out!




Outline

@ Doubly linked list

Insertion




DL Insert

curr
N\
SN I -] I ol 2] e o S B2 N
Insert 10: 10
(a)
curr

A Y
o
|
!

i g
- |20 :|:E 10l Tt 23




Outline

@ Doubly linked list

Removal




DL Remove

—
=
=
]

curr




Outline

Sketchpad
slide

9 Sketchpad slide




Sketchpad slide

Sketchpad
slide




Review code

Sketchpad
slide

Do code




Sketchpad
slide

Do Q3




Outline

Comparison

@ Comparison




Outline

@ Comparison
Table of step counts




Operation steps related list size increase?

ArrayList | LinkedList | DLinkedList
Insert() n 1 1
append() 1 1 1
remove() n 1 1
move ToStart/End() 1 1 1
prev() 1 n 1
next() 1 1 1
length() cnt or re-calc 1 lorn lorn
currPos() 1 norl norl
moveToPos() 1 n n
getValue() curr or spec 1 lorn lorn
clear() = > >

Differences between these data structures are moderate, but for
other structures, choosing wrong might be the difference
between tractable and not




Outline

@ Comparison

Advantages and disadvantages




Advantages and disadvantages

® Only significant disadvantage of doubly linked list
compared to singly is additional space usage

¢ Only significant advantage over LinkedList is prev()




Outline

@ Comparison

Variations




Variations

e Circularly linked lists (instead of sentinel head/tail nodes)

® Data elements which are just pointers, so multiple lists
can point to the same data: the larger the elements and
the more they are duplicated, the more likely that pointers
to shared elements is the better approach.




Outline

Freelist

@ Freelist




Outline

@ Freelist

Problem




Problem with linked lists

® We create and delete nodes regularly with linked lists
® new and delete are relatively expensive

® With a dynamic array, we might only create a larger array
every now and then.

® |Is there a similar solution for our linked lists composed of
node elements?




Outline

@ Freelist

Solution




Cache of Node items: freelist

® Generally, cache stores data in an easily accessible
temporary location so future requests for that data can be
faster (many applications and levels of caching)

¢ freelist holds some nodes not currently being used

® Rather than call standard new and delete:

® overloaded new will take from the node cache and give to

the list
® overloaded delete will take from the list and give to the

cache




Implementation

® To delete a node from linked list, place at head of the
freelist

® To add a new node to a linked list, check freelist for
available nodes, and if available, take node from head of
freelist

e |f freelist is empty, standard new operator called
e freelist should be a static variable. Why?




Shared freelist between lists of the same type

In the node class itself:

static Node<E> *xfreelist ;

® This creates a single variable shared among all instances of
the Link nodes of a given type

® Even with one template class, the compiler automatically
gives each type of the class its own class type, and thus its
own freelist




Efficiency of freelists

o Are freelists useful if your list only grows and never
shrinks?

® Useful for linked lists that periodically grow and then
shrink.

e Will never grow larger than largest size yet reached

® QOperator overloading of new and delete is invisible to
user, and hidden in node class




Only change: overloaded operators in Node class

Linked list has two classes: list_L.h and node.h

node_FL.h replaces node.h

The list class (list_L.h) doesn't have to change at all, or
know that the node class has changed!

® Main just needs a new include #include “node_FL.h"
Check it out.




	Doubly linked list
	Definitions
	Differences with singly
	Implementation
	Insertion
	Removal

	Sketchpad slide
	Comparison
	Table of step counts
	Advantages and disadvantages
	Variations

	Freelist
	Problem
	Solution


