Tree traversals and binary trees

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

Outline

@ Definitions

Definitions

Outline

@ Definitions
Context

Definitions

Parts of a tree

Examples

Binary trees

o i r.r-.‘_‘__‘_

0
T
[T W

Tree is a non-linear ordered ADT

COLLECTION
I \
UNORDERED_COLLECTION ORDERED_COLLECTION

[I |
BAG LINEAR NON_LINEAR

I I I |
SET LINKED_LIST TREE DIRECTED_GRAPH
I I | I
HASH_TABLE DEQUE BIN_TREE UNDIRECTED_GRAPH

] \] \
STACK QUEUE BST HEAP

Outline
@ Definitions

Definition

Trees are upside down in computer science

Definitions

Real tree: leaves at the top, root(s) at the bottom

Parts of a tree

Examples

Binary trees

Computer science tree: root at the top, leave(s) at the bottom

Trees are composed of nodes and edges

Trees

® Node is an element in a tree
e Edege is the connection between one node and another

Tree

e Widely used abstract data type (ADT), or data structure
implementing the ADT, that simulates a hierarchical tree
structure, with a root value and subtrees of children with a
parent node, represented as a set of linked nodes.

e A (possibly non-linear) data structure made up of nodes or
vertices and edges without having any cycle.

Outline

Parts of a tree 9 Parts of a tree

Outline

9 Parts of a tree
Root, leaves

Root at the top, leaves at the bottom

Eoot

Parent

Chald Leaf

Mode

Family matters

® Root is the node at the top of the tree, and has no
parent. There is only one root per tree and one path from
the root node to any node.

® | eaves are bottom nodes without any sub-trees or
children (less commonly called External node)

Outline

9 Parts of a tree

Parents, children

Parents are ancestors of children

Root
\LR

Ancestors of V

Parent of V P
T

S1 S2

L Siblings of V

- Subtree rooted at V

Children of V

Definitions

Parts of a tree

Examples

Binary trees

Family matters

Parent of a node is the single node linked directly above
it. Any node except the root node has one edge upward to
a node called parent. Parent is the converse notion of a
child.

Child of a node is a node linked directly below it, directly
connected by its edge downward, when moving away from
the root

Siblings are an n group of nodes with the same parent.
Ancestor is any node from which a node descends directly
or indirectly, which is any node reachable by repeated
proceeding from child to parent.

Descendant is any node that descends from a node
directly or indirectly, which is any node reachable by
repeated proceeding from parent to child.

If there is a path from n; to ny , then ny is an ancestor of
no and n» is a descendant of nj .

Outline

9 Parts of a tree

Left, right

Left and right are defined for nodes and sub-trees

parent
left-child
right-child
siblings
leat

"""‘*-rjght-suhtree

left-zubtres

® Sub-tree is a smaller tree 'rooted’ by some particular
node in the tree, which are descendants of that node.

Outline

9 Parts of a tree

Internal nodes

Internal nodes

root node

- =
internal nodes b
@ ® &

leaf nodes

® |nternal node is a non-root node with at least one child.

Outline

9 Parts of a tree

Edges

Edges are sometimes called branches

the ‘root node’

A'branch'._\ - g
.._ m -
g% a 'child' node :
) . 5] !
‘'sibling’ nodes

® That there are n — 1 edges follows from the fact that each
edge connects some node to its parent, and every node
except the root has one parent

® |f a tree has n nodes, then it must have n — 1 edges, as
every node is connected to a parent, except for the root.

Outline

O «a

KQ and sketchpad

Outline

Features of

trees and e Features of trees and nodes
nodes

Outline

e Features of trees and nodes
Levels, depth, height

Trees have levels

Depth fo the above tree (d) = 3

Trees and nodes have depth and height

Definitions Depth
¢ Level/depth of a node represents the familial generation
of a node, or the length of the path from the root to a
node. The level of a node is defined by 1 + (the number
of levels between the node and the root(0)). If the root
node is at level 0, then its next child node is at level 1, its
grandchild is at level 2, and so on. In other words, the
number of edges from the tree's root node to the node.
¢ Level/depth of tree is length of the longest path from
the root to the deepest leaf, or the maximum depth of any
leaf node The depth of a tree is equal to the depth of the
deepest leaf; this is always equal to the height of the tree.
Height
¢ height (opposite concept of level/depth) of a node,
n; is the length of the longest path from n; to a leaf. Thus
all leaves are at height 0.
® Height of a tree is equal to the height of the root.

Binary trees

Trees have levels

Bood

A airarnd O

//‘\-_-'\EH
L L el 1

/ -_#\\ f J\\
Paront Mode - i F v BoEngs o+ O | Lewsld
l}?-.q\ /III;J-\. - e =
Child Noda - =, H | o Lirwnl 2
oy o
Bub-trea Loat Mode

® Depth: root is 0; its children are 1, etc.
e What is height of these nodes?

Outline

e Features of trees and nodes

Paths

Trees have paths

Definitions

Parts of a tree

-L

KQ
Features of

trees and
nodes

TR

Binary trees

Path is a sequence of nodes and edges connecting a node
with a descendant (green or blue above for two different
KQ leaf nodes)

Only one path from the root to each node.

Trees have paths

A path from node nj to ny is defined as a sequence of
nodes ny, ny, ..., ng such that n; is the parent of n; + 1
for 1 < i< k.

® The length of this path is the number of edges on the
path, namely, kK — 1.

® There is a path of length zero from every node to itself.

e With the root is at depth 0, for any node n;, the depth of
n; is the length of the unique path from the root to n; .

Outline

e Features of trees and nodes

Degree

Degree of nodes and trees

fevel .:'

F E G isachild node of D

05 a parent of G
{-:'.reE |

leaf o 1n_=-rm|n._-tl node
that degree is zero

® Degree of a node is the number of subtrees of a node.
® Degree of a tree is the largest degree of any node in a
tree.

Outline

Examples 0 Examples

Outline

0 Examples

These are trees

These are all trees

(a) (b) (c)
(a) is an empty (ree

(d) (e) (fy @)

® Even single nodes can be considered trees
® Forest is a set of n > 0 disjoint trees.
® A list is trivially a tree:

Outline

0 Examples

There are NOT trees

These are NOT trees

OO
oee.ge .

® No loops or multi-parent children

Outline

0 Examples

Example trees

Example tree

Tree Definitions

Tree has 16 nodes
Tree has degrea 4
Tree has deplh 5
MNode 0 is the rool
MNade 1 is inlernal
Mode 4 is a leal

4 iz achild al 1

1 is the paren! of 4
0is grandparent of 4
2, 4 and 5 are sblings

Example tree of characters

e Degree of tree

® Degree of each node
® Depth of tree

® Depth of each node
® Height?

Outline

Binary trees

@ Binary trees

Outline

@ Binary trees
ADT

Binary trees

Binary tree

Set of nodes is either empty or consists of a node called
the root together with two binary trees, called the left and
right subtrees, which are disjoint from each other and
from the root; disjoint means that they have no nodes in
common.

Each node has at most two children, which are referred to
as the left child and the right child.

No node can have more than two children.

The depth of an average binary tree is considerably smaller
than N, the average depth is O(sqrt(N)), and for a special
type of binary tree, namely the binary search tree, the
average value of the depth is O(log N).

Outline

@ Binary trees

Variations

Perfect binary tree

® Binary tree in which all interior nodes have two children
and all leaves have the same depth or same level.

0K, A

Full (left) and complete (right) binary trees

Definitions Full binary tree (left below)
® Tree in which every node in the tree has either 0 or 2
Parts of a tree children.
® Each node in a full binary tree is either
(1) an internal node with exactly two non-empty children
(2) a leaf.

Complete binary tree (right below)
® Has a restricted shape obtained by starting at the root and
filling the tree by levels from left to right.
® Every level, except possibly the last, is completely filled,
and all nodes in the last level are as far left as possible.
® The bottom level has its nodes filled in from the left side.
Bty s ® Can be efficiently represented using an array.

el A

Examples

Full and complete binary trees

(a) (b)

Figure 5.3 Examples of full and complete binary trees. (a) This tree is full (but
not complete). (b) This tree is complete (but not full).

Full and complete binary trees

s Meither complete nor full Complete but not full

Parts of a tree

Full but not complete Complete and full

Examples

Binary trees

Balanced binary trees

® Has the minimum possible maximum height (a.k.a. depth)
for the leaf nodes, because for any given number of leaf
nodes, the leaf nodes are placed at the greatest height
possible.

® One common balanced tree structure is a binary tree
structure in which the left and right subtrees of every node
differ in height by no more than 1.

® One may also consider binary trees where no leaf is much
farther away from the root than any other leaf.
(Different balancing schemes allow different definitions of
"much farther".)

Degenerate trees

Figure 5.13 Two Binary Search Trees for a collection of values. Tree (a) results
. if values are inserted in the order 37, 24, 42, 7, 2, 40, 42, 32, 120. Tree (b) results
Figure 4.12 Worst-case binary tree if the same values are inserted in the order 120, 42, 42,7, 2, 32, 37, 24, 40.

Left A degenerate (or pathological) tree is where each parent
node has only one associated child node; performance will
behave like a linked list data structure.

Right Shape of the binary search tree depends entirely on the
order of insertions and deletions, and can become
degenerate.

Outline

@ Binary trees

Example application

Example application: expression trees

® Expression tree: The leaves are operands, such as
constants or variable names, and the other nodes contain
operators.

Figure 4.14 Expression tree for (a + b = ¢) + ((d x e + f) * g)

Outline

O K

KQ and sketchpad

Outline

Traversals

@ Traversals

Traversals

Traversals

® QOrder of list is obvious, tree not so much
® Any process for visiting all of the nodes in some order is
called a traversal.

® Any traversal that lists every node in the tree exactly once
is called an enumeration of the tree's nodes.

Outline

@ Traversals
Pre-order

Pre-order

® Pre-order traversal: parents is visited before the children

Pre-order: F, B, A, D, C, E, G, I, H

Pre-order Recursive

@ Check if the current node is empty / null.

@® Display the data part of the root (or current node).

© Traverse the left subtree by recursively calling the
pre-order function.

O Traverse the right subtree by recursively calling the
pre-order function.

Pre-order: F, B, A, D, C, E, G, I, H

Pre-order Recursive

® Process the root
® Process the nodes in the left subtree with a recursive call
© Process the nodes in the right subtree with recursive call

Pre-order: F, B, A, D, C, E, G, I, H.

Pre-order recursive pseudocode algorithm

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

preorder(node)
if(node = null)
return
visit (node)
preorder(node. left)
preorder(node.right)

What is trace on this tree? e 0 o

Pre-order iterative pseudocode algorithm

iterativePreorder (node)

if (node = null)
return

s = empty stack

s.push(node)

while (not s.isEmpty())
node = s.pop()
visit (node)
//right child is pushed first so that
//left is processed first

if (node.right != null)
s.push(node.right)
if (node.left != null)

s.push(node. left)

Outline

@ Traversals

Post-order

Post-order

® Post-order traversal: children are visited before the parent

Post-order: A, C, E, D, B, H, I, G, F.

Post-order recursive

@ Check if the current node is empty / null.

® Traverse the left subtree by recursively calling the
post-order function.

© Traverse the right subtree by recursively calling the
post-order function.

O Display the data part of the root (or current node).

Post-order: A, C, E, D, B, H, I, G, F.

Post-order recursive

@ Process the nodes in the left subtree with a recursive call
® Process the nodes in the right subtree with recursive call

©® Process the root

Post-order: A, C, E, D, B, H, I, G, F.

Post-order recursive pseudocode algorithm

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

postorder (node)
if(node = null)
return
postorder(node. left)
postorder(node.right)
visit (node)

What is trace on this tree? e 0 o

Post-order iterative pseudocode algorithm

iterativePostorder (node)
s = empty stack
lastNodeVisited = null
while (not s.isEmpty() or node != null)
if (node != null)
s.push(node)
node = node. left
else
peekNode = s.peek()
// if right child exists and traversing .
// from left child, then move right

if (peekNode.right != null and

lastNodeVisited != peekNode.right)
node = peekNode.right

else

visit (peekNode)
lastNodeVisited = s.pop()

Outline

@ Traversals

In-order

In-order

® An inorder traversal first visits the left child (including its
entire subtree), then visits the node, and finally visits the
right child (including its entire subtree).

® Binary trees only

In-order: A, B, C, D, E, F, G, H, I

In-order: recursive

@ Check if the current node is empty / null.

® Traverse the left subtree by recursively calling the in-order
function.

© Display the data part of the root (or current node).

O Traverse the right subtree by recursively calling the
in-order function.

Why just for binary?

In-order: A, B, C, D, E, F, G, H, I

In-order: recursive

@ Process the nodes in the left subtree with a recursive call
® Process the root

© Process the nodes in the right subtree with recursive call

In-order: A, B, C, D, E, F, G, H, I

In-order: recursive

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

inorder (node)
if(node = null)
return
inorder(node. left)
visit (node)
inorder(node.right)

What is trace on this tree? e 0 o

In-order: iterative

iterativelnorder (node)
s = empty stack
while(not s.isEmpty() or node != null)
if (node !'= null)
s.push(node)
node = node. left
else
node = s.pop()
visit (node)
node = node.right

Outline

@ Traversals

Backward in-order

Backward in-order recursive

Useful for printing if indent each item to its depth in the tree
@ Process the nodes in the right subtree with a recursive call
® Process the root

© Process the nodes in the left subtree with a recursive call

What is trace on this tree? @ G o

Outline

@ Traversals

Generalization

Generalization of traversal to non-binary

@ Perform pre-order operation.

® For each i/ from 1 to the number of children do:
@ Visit i-th, if present.
@® Perform in-order operation.

© Perform post-order operation.

Outline

@ Traversals

Examples

Counting example

template <typename E>
int count(BinNode<E> xroot)

{
// if Nothing to count
if (root = NULL)
return 0;
return 1 + count(root—>left ())
+ count(root—>right ());
}
(®)
®) ()
© ® ©

What is trace on this tree? @ 0 o

Outline

O «a

KQ and sketchpad

Outline

@O Apply

Apply a function to a whole tree?

® Functions as parameters to functions.

® Pass as parameter: void func(inté&)

Whichever func used has to accept one int

void apply(void func(int&), int data[], int n)

{

int i;
for(i = 0; i < n; i++)
{
func(data[i]);
}
}
void seven_up(int &i)
{
i =7
}

apply(seven_up, data, 10);

func() now can have different parameter types

template <typename T>
void apply(void func(T&), int data[], int n)

{
int i;
for(i = 0; i < n; i++)
{
func(data[i]);
}
}

// function that takes a character instead

apply(convert_to_upper, data, 10);

Only requirement is a single parametef for func

template <typename T>
void apply(T func, int data[], int n)

{
int i;
for(i = 0; i < n; i++)
{
func(data[i]);
}

apply(convert_to_upper, data, 10);
apply (seven_up, data, 10);

Apply any operation to whole tree

template <typename T, typename E>
void preorder (T func, BTNode<E> xnode_ptr)

{
if (node_ptr != NULL)

{ func(node_ptr—>data);
preorder(func, node_ptr—>left);
preorder (func, node_ptr—>right);

}

}
void seven_up(int & i)
{
i +=7;
}

preorder(seven_up, node_ptr);

	1: Intro
	Definitions
	Context
	Definition

	Parts of a tree
	Root, leaves
	Parents, children
	Left, right
	Internal nodes
	Edges

	KQ
	Features of trees and nodes
	Levels, depth, height
	Paths
	Degree

	Examples
	These are trees
	There are NOT trees
	Example trees

	Binary trees
	ADT
	Variations
	Example application

	KQ

	2: Traversals
	Traversals
	Pre-order
	Post-order
	In-order
	Backward in-order
	Generalization
	Examples

	KQ
	Apply

