
Tree traversals and binary trees

Comp Sci 1575 Data Structures

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees!

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Tree is a non-linear ordered ADT

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees are upside down in computer science

Real tree: leaves at the top, root(s) at the bottom

Computer science tree: root at the top, leave(s) at the bottom

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees are composed of nodes and edges

• Node is an element in a tree
• Edge is the connection between one node and another

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Tree

• Widely used abstract data type (ADT), or data structure
implementing the ADT, that simulates a hierarchical tree
structure, with a root value and subtrees of children with a
parent node, represented as a set of linked nodes.

• A (possibly non-linear) data structure made up of nodes or
vertices and edges without having any cycle.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Root at the top, leaves at the bottom

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Family matters

• Root is the node at the top of the tree, and has no
parent. There is only one root per tree and one path from
the root node to any node.

• Leaves are bottom nodes without any sub-trees or
children (less commonly called External node)

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Parents are ancestors of children

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Family matters

• Parent of a node is the single node linked directly above
it. Any node except the root node has one edge upward to
a node called parent. Parent is the converse notion of a
child.

• Child of a node is a node linked directly below it, directly
connected by its edge downward, when moving away from
the root

• Siblings are an n group of nodes with the same parent.

• Ancestor is any node from which a node descends directly
or indirectly, which is any node reachable by repeated
proceeding from child to parent.

• Descendant is any node that descends from a node
directly or indirectly, which is any node reachable by
repeated proceeding from parent to child.

• If there is a path from n1 to n2 , then n1 is an ancestor of
n2 and n2 is a descendant of n1 .

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Left and right are defined for nodes and sub-trees

• Sub-tree is a smaller tree ’rooted’ by some particular
node in the tree, which are descendants of that node.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Internal nodes

• Internal node is a non-root node with at least one child.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Edges are sometimes called branches

• That there are n− 1 edges follows from the fact that each
edge connects some node to its parent, and every node
except the root has one parent
• If a tree has n nodes, then it must have n − 1 edges, as

every node is connected to a parent, except for the root.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

KQ and sketchpad

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees have levels

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees and nodes have depth and height

Depth
• Level/depth of a node represents the familial generation

of a node, or the length of the path from the root to a
node. The level of a node is defined by 1 + (the number
of levels between the node and the root(0)). If the root
node is at level 0, then its next child node is at level 1, its
grandchild is at level 2, and so on. In other words, the
number of edges from the tree’s root node to the node.
• Level/depth of tree is length of the longest path from

the root to the deepest leaf, or the maximum depth of any
leaf node The depth of a tree is equal to the depth of the
deepest leaf; this is always equal to the height of the tree.

Height
• height (opposite concept of level/depth) of a node,
ni is the length of the longest path from ni to a leaf. Thus
all leaves are at height 0.
• Height of a tree is equal to the height of the root.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees have levels

• Depth: root is 0; its children are 1, etc.

• What is height of these nodes?

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees have paths

• Path is a sequence of nodes and edges connecting a node
with a descendant (green or blue above for two different
leaf nodes)

• Only one path from the root to each node.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Trees have paths

• A path from node n1 to nk is defined as a sequence of
nodes n1, n2, ..., nk such that ni is the parent of ni + 1
for 1 ≤ i < k .

• The length of this path is the number of edges on the
path, namely, k − 1.

• There is a path of length zero from every node to itself.

• With the root is at depth 0, for any node ni , the depth of
ni is the length of the unique path from the root to ni .

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Degree of nodes and trees

• Degree of a node is the number of subtrees of a node.
• Degree of a tree is the largest degree of any node in a

tree.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

These are all trees

• Even single nodes can be considered trees
• Forest is a set of n ≥ 0 disjoint trees.
• A list is trivially a tree:

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

These are NOT trees

• No loops or multi-parent children

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Example tree

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Example tree of characters

• Degree of tree
• Degree of each node
• Depth of tree
• Depth of each node
• Height?
• Leaves, root, internals

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Binary trees

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Binary tree

• Set of nodes is either empty or consists of a node called
the root together with two binary trees, called the left and
right subtrees, which are disjoint from each other and
from the root; disjoint means that they have no nodes in
common.

• Each node has at most two children, which are referred to
as the left child and the right child.

• No node can have more than two children.

• The depth of an average binary tree is considerably smaller
than N, the average depth is O(sqrt(N)), and for a special
type of binary tree, namely the binary search tree, the
average value of the depth is O(log N).

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Perfect binary tree

• Binary tree in which all interior nodes have two children
and all leaves have the same depth or same level.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Full (left) and complete (right) binary trees

Full binary tree (left below)
• Tree in which every node in the tree has either 0 or 2

children.
• Each node in a full binary tree is either

(1) an internal node with exactly two non-empty children
(2) a leaf.

Complete binary tree (right below)
• Has a restricted shape obtained by starting at the root and

filling the tree by levels from left to right.
• Every level, except possibly the last, is completely filled,

and all nodes in the last level are as far left as possible.
• The bottom level has its nodes filled in from the left side.
• Can be efficiently represented using an array.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Full and complete binary trees

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Full and complete binary trees

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Balanced binary trees

• Has the minimum possible maximum height (a.k.a. depth)
for the leaf nodes, because for any given number of leaf
nodes, the leaf nodes are placed at the greatest height
possible.

• One common balanced tree structure is a binary tree
structure in which the left and right subtrees of every node
differ in height by no more than 1.

• One may also consider binary trees where no leaf is much
farther away from the root than any other leaf.
(Different balancing schemes allow different definitions of
”much farther”.)

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Degenerate trees

Left A degenerate (or pathological) tree is where each parent
node has only one associated child node; performance will
behave like a linked list data structure.

Right Shape of the binary search tree depends entirely on the
order of insertions and deletions, and can become
degenerate.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Example application: expression trees

• Expression tree: The leaves are operands, such as
constants or variable names, and the other nodes contain
operators.

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

Outline

1 Definitions
Context
Definition

2 Parts of a tree
Root, leaves
Parents, children
Left, right
Internal nodes
Edges

3 KQ

4 Features of trees and nodes
Levels, depth, height
Paths
Degree

5 Examples
These are trees
There are NOT trees
Example trees

6 Binary trees
ADT
Variations
Example application

7 KQ

Definitions

Context

Definition

Parts of a tree

Root, leaves

Parents, children

Left, right

Internal nodes

Edges

KQ

Features of
trees and
nodes

Levels, depth, height

Paths

Degree

Examples

These are trees

There are NOT trees

Example trees

Binary trees

ADT

Variations

Example application

KQ

KQ and sketchpad

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Traversals

• Order of list is obvious, tree not so much

• Any process for visiting all of the nodes in some order is
called a traversal.

• Any traversal that lists every node in the tree exactly once
is called an enumeration of the tree’s nodes.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Pre-order

• Pre-order traversal: parents is visited before the children

Pre-order: F, B, A, D, C, E, G, I, H

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Pre-order Recursive

1 Check if the current node is empty / null.
2 Display the data part of the root (or current node).
3 Traverse the left subtree by recursively calling the

pre-order function.
4 Traverse the right subtree by recursively calling the

pre-order function.

Pre-order: F, B, A, D, C, E, G, I, H

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Pre-order Recursive

1 Process the root

2 Process the nodes in the left subtree with a recursive call

3 Process the nodes in the right subtree with recursive call

Pre-order: F, B, A, D, C, E, G, I, H.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Pre-order recursive pseudocode algorithm

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

p r e o r d e r (node)
i f (node == n u l l)

return
v i s i t (node)
p r e o r d e r (node . l e f t)
p r e o r d e r (node . r i g h t)

What is trace on this tree?

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Pre-order iterative pseudocode algorithm

i t e r a t i v e P r e o r d e r (node)
i f (node == n u l l)

return
s = empty s t a c k
s . push (node)
whi le (not s . i sEmpty ())

node = s . pop ()
v i s i t (node)
// r i g h t c h i l d i s pushed f i r s t so tha t
// l e f t i s p r o c e s s e d f i r s t
i f (node . r i g h t != n u l l)

s . push (node . r i g h t)
i f (node . l e f t != n u l l)

s . push (node . l e f t)

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Post-order

• Post-order traversal: children are visited before the parent

Post-order: A, C, E, D, B, H, I, G, F.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Post-order recursive

1 Check if the current node is empty / null.
2 Traverse the left subtree by recursively calling the

post-order function.
3 Traverse the right subtree by recursively calling the

post-order function.
4 Display the data part of the root (or current node).

Post-order: A, C, E, D, B, H, I, G, F.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Post-order recursive

1 Process the nodes in the left subtree with a recursive call

2 Process the nodes in the right subtree with recursive call

3 Process the root

Post-order: A, C, E, D, B, H, I, G, F.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Post-order recursive pseudocode algorithm

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

p o s t o r d e r (node)
i f (node == n u l l)

return
p o s t o r d e r (node . l e f t)
p o s t o r d e r (node . r i g h t)
v i s i t (node)

What is trace on this tree?

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Post-order iterative pseudocode algorithm

i t e r a t i v e P o s t o r d e r (node)
s = empty s t a c k
l a s t N o d e V i s i t e d = n u l l
whi le (not s . i sEmpty () or node != n u l l)

i f (node != n u l l)
s . push (node)
node = node . l e f t

e l s e
peekNode = s . peek ()
// i f r i g h t c h i l d e x i s t s and t r a v e r s i n g node
// from l e f t c h i l d , then move r i g h t
i f (peekNode . r i g h t != n u l l and
l a s t N o d e V i s i t e d != peekNode . r i g h t)

node = peekNode . r i g h t
e l s e

v i s i t (peekNode)
l a s t N o d e V i s i t e d = s . pop ()

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

In-order

• An inorder traversal first visits the left child (including its
entire subtree), then visits the node, and finally visits the
right child (including its entire subtree).
• Binary trees only

In-order: A, B, C, D, E, F, G, H, I.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

In-order: recursive

1 Check if the current node is empty / null.

2 Traverse the left subtree by recursively calling the in-order
function.

3 Display the data part of the root (or current node).

4 Traverse the right subtree by recursively calling the
in-order function.

Why just for binary?

In-order: A, B, C, D, E, F, G, H, I.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

In-order: recursive

1 Process the nodes in the left subtree with a recursive call

2 Process the root

3 Process the nodes in the right subtree with recursive call

In-order: A, B, C, D, E, F, G, H, I.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

In-order: recursive

Assuming each node is referenced to via a pointer called
‘node’, has a left and right pointer, and that leaves have two
null pointers:

i n o r d e r (node)
i f (node == n u l l)

return
i n o r d e r (node . l e f t)
v i s i t (node)
i n o r d e r (node . r i g h t)

What is trace on this tree?

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

In-order: iterative

i t e r a t i v e I n o r d e r (node)
s = empty s t a c k
whi le (not s . i sEmpty () or node != n u l l)

i f (node != n u l l)
s . push (node)
node = node . l e f t

e l s e
node = s . pop ()
v i s i t (node)
node = node . r i g h t

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Backward in-order recursive

Useful for printing if indent each item to its depth in the tree

1 Process the nodes in the right subtree with a recursive call

2 Process the root

3 Process the nodes in the left subtree with a recursive call

What is trace on this tree?

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Generalization of traversal to non-binary

1 Perform pre-order operation.

2 For each i from 1 to the number of children do:

1 Visit i-th, if present.
2 Perform in-order operation.

3 Perform post-order operation.

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Counting example

template <typename E>
i n t count (BinNode<E> ∗ r o o t)
{

// i f Nothing to count
i f (r o o t == NULL)

return 0 ;
return 1 + count (root−> l e f t ())

+ count (root−>r i g h t ()) ;
}

What is trace on this tree?

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

KQ and sketchpad

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Outline

8 Traversals
Pre-order

Recursive
Pre-order

Post-order

Recursive
Iterative

In-order

Recursive
Iterative

Backward in-order

Recursive
Generalization
Examples

9 KQ

10 Apply

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Apply a function to a whole tree?

• Functions as parameters to functions.

• Pass as parameter: void func(int&)

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Whichever func used has to accept one int

void a p p l y (void f u n c (i n t &) , i n t data [] , i n t n)
{

i n t i ;
f o r (i = 0 ; i < n ; i ++)
{

f u n c (data [i]) ;
}

}

void s e v e n u p (i n t &i)
{

i += 7 ;
}

a p p l y (seven up , data , 1 0) ;

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

func() now can have different parameter types

template <typename T>
void a p p l y (void f u n c (T&) , i n t data [] , i n t n)
{

i n t i ;
f o r (i = 0 ; i < n ; i ++)
{

f u n c (data [i]) ;
}

}

// f u n c t i o n tha t t a k e s a c h a r a c t e r i n s t e a d

a p p l y (c o n v e r t t o u p p e r , data , 1 0) ;

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Only requirement is a single parametef for func

template <typename T>
void a p p l y (T func , i n t data [] , i n t n)
{

i n t i ;
f o r (i = 0 ; i < n ; i ++)
{

f u n c (data [i]) ;
}

}

. . .

a p p l y (c o n v e r t t o u p p e r , data , 1 0) ;
a p p l y (seven up , data , 1 0) ;
. . .

Traversals

Pre-order

Recursive

Pre-order

Post-order

Recursive

Iterative

In-order

Recursive

Iterative

Backward in-order

Recursive

Generalization

Examples

KQ

Apply

Apply any operation to whole tree

template <typename T, typename E>
void p r e o r d e r (T func , BTNode<E> ∗ n o d e p t r)
{

i f (n o d e p t r != NULL)
{

f u n c (n o d e p t r−>data) ;
p r e o r d e r (func , n o d e p t r−> l e f t) ;
p r e o r d e r (func , n o d e p t r−>r i g h t) ;

}
}

void s e v e n u p (i n t & i)
{

i +=7;
}

p r e o r d e r (seven up , n o d e p t r) ;

	1: Intro
	Definitions
	Context
	Definition

	Parts of a tree
	Root, leaves
	Parents, children
	Left, right
	Internal nodes
	Edges

	KQ
	Features of trees and nodes
	Levels, depth, height
	Paths
	Degree

	Examples
	These are trees
	There are NOT trees
	Example trees

	Binary trees
	ADT
	Variations
	Example application

	KQ

	2: Traversals
	Traversals
	Pre-order
	Post-order
	In-order
	Backward in-order
	Generalization
	Examples

	KQ
	Apply

