
Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Priority queues implemented via heaps

Comp Sci 1575 Data Structures

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Heaps

Fancy algorithms are buggier than simple ones, and they’re
much harder to implement. Use simple algorithms as well as
simple data structures.
- Rob Pike

https://en.wikipedia.org/wiki/KISS_principle

https://en.wikipedia.org/wiki/KISS_principle

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Priority queue: most important first

• Recall: queue is FIFO
• A normal queue data structure would not implement a

priority queue efficiently because search for the element
with highest priority would take Θ(n) time.
• A list, whether sorted or not, would also require Θ(n) time

for either insertion or removal.
• A BST that organizes records by priority could be used to

find an item in Θ(log n), and the same for insert and
remove.
• How could we design and sort a tree so that the highest

priority items are most quickly accessible?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Heaps must be complete trees

By comparison, any given BST can be complete, but a heap is
required to be (at insertion, deletion, and construction)

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Heaps are sorted top to bottom

• Value in a node ≥ the values in the node’s children
(Max heap)
• Alternatively, min heap has minimum at top root
• BST is full ordering (left to right, and thus top to bottom

also), while heap is partial ordering (just top to bottom,
but not left/right); no sibling relationships specified, so
left or right child can be the larger of the two children, but
both must be smaller than the parent.
• Not as good as BST for finding an arbitrary value in the

collection; heap would be O(n) for that, but better for
finding most extreme value; merely O(1)
• Like “normal” queue, we are not interested in finding an

arbitrary value.

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Trees as arrays

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Trees as arrays

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Trees as arrays

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Array based binary tree

The total number of nodes in the tree is n. The index of the
node in question is r, which must fall in the range 0 to n - 1.

...

How fast are indices?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Indexing in heaps

Which indices are important for a heap?
Which nodes elements need to be compared?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Indexing schemes

Let n be the number of elements in the heap and i be an
arbitrary valid index of the array storing the heap.

If the tree root is at index 0, with valid indices 0 through n− 1,
then each element a at index i has

• children at indices 2i + 1 and 2i + 2

• its parent at index floor((i − 1)/2).

If the tree root is at index 1, with valid indices 1 through n,
then each element a at index i has

• children at indices 2i and 2i + 1

• its parent at index floor(i/2).

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Indexing in heaps

If you scoot the first element back to 1,
then for any element in array position i :
• the left child is in position 2i ,
• the right child is in the cell after the left child (2i + 1),
• the parent is in position bi/2c

Counter to this picture, in this class we start at 0

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Formal definition of a heap

Heap array formal definition: Node ≥ than its children

• With array starting at 0, and i being each node:
heap[i] ≥ heap[2 ∗ i + 1], for 0 ≥ i ≥ n−1

2
heap[i] ≥ heap[2 ∗ i + 2], for 0 ≥ i ≥ n−2

2

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Priority queue as heap

What are the main operations we need in this queue?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue

What should enqueue do?
What steps does is require?
Draw it out.

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue: high level design first

1 Place the new entry in the heap in the first available
location. This keeps the structure as a complete binary
tree. However, it might no longer be a heap, since the new
entry might have a higher value than its parent

2 while (new entry has priority that is higher than its parent)
swap the new entry with its parent

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue 15 in max heap

Inserting 15 in max heap:

(a) Put 15 at end; (b) Swap 15 with 7
(c) Swap 15 with 10; (d) Done!

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue and sift up

P l a c e x i n heap i n f i r s t a v a i l a b l e l o c a t i o n
(to m a i n t a i n a complete b i n a r y t r e e) .
whi le (x > p a r e n t)

Swap x w i t h i t s p a r e n t
Stop when x becomes r o o t or
when p a r e n t i s no l o n g e r < x

heapEnqueue (e1)
put e1 a t the end o f heap ;
whi le e1 i s not th e r o o t and e1 > p a r e n t (e1)

swap e1 w i t h i t s p a r e n t

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue and sift up (Note: min-heap in image)

Enqueue 14 in min heap:

• Walk through steps

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Engueue 15 in max heap

1 add element

2 swap 15 with 8

3 swap 15 with 11

What is Θ for this function? Is tree always balanced?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Enqueue 6 in min heap

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue

What should dequeue do?
What steps does it require?
Draw it out

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue: high level design first

1 Copy the entry at the root of the heap to the variable that
is used to return a value

2 Copy the last entry in the deepest level to the root, and
take that last node out of the tree. This entry is now “out
of place”

3 while(the “out of place” entry has a priority that is lower
than any of its children)
swap the “out of place” entry with its highest priority child

Why highest priority child?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue root in max heap (happens to be 20)

(a) Remove root (20) and move end (6) to root;
(b) Swap 6 with higher priority child (15);

(c) Move end (6) to root ; (d) Done!

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue and sift down

Remove r i g h t m o s t d e e p e s t e n t r y ; c a l l i t x .
Make x t he new r o o t .
whi le (x < one o f i t s c h i l d r e n))

swap x w i t h i t s l a r g e s t c h i l d
Stop when x becomes a l e a f or
when x i s no l o n g e r < one o f i t s c h i l d r e n

heapDequeue ()
e x t r a c t th e e l em en t from th e r o o t ;
move e l e me nt from l a s t l e a f to i t s p l a c e ;
remove th e l a s t l e a f ;
p = t he r o o t ;
whi le p i s not a l e a f and p < i t s c h i l d r e n

swap p w i t h th e l a r g e r c h i l d ;

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue root (11) in max heap

1 Copy root

2 Overwrite root with last

3 swap down

What is Θ for this function?
Why choose one of the “worst” nodes to replace root?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue (13) in min heap

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Dequeue root of min heapi (4)

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Building heaps

How to build a heap from a randomly sorted complete tree
(which is a randomly sorted array, if we assume an array-tree
data structure)?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Heapify via repeated insertion

• Θ(n log n)

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

A helper method for efficient heapify: Sift down

Sift down was already part of Dequeue

s i f tDown (A, i) :
l e f t = 2∗ i
r i g h t = 2∗ i + 1
l a r g e s t = i

i f l e f t <= heap l e ng t h (A) and A[l e f t] > A[l a r g e s t] :
l a r g e s t = l e f t

i f r i g h t <= heap l e ng t h (A) and A[r i g h t] > A[l a r g e s t] :
l a r g e s t = r i g h t

i f l a r g e s t != i then :
swap A[i] and A[l a r g e s t]
s i f tDown (A, l a r g e s t)

For the above algorithm to re-heapify the array, the node at
index i and at least one of its direct children must violate the
heap property. If they do not, the algorithm will fall through
with no change to the array.

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Sift down: modular method

Sift 1 down:

• Swap 1 (element 0) with 7 (larger child)
Why higher priority child?

• Swap 1 (element 2) with 6 (larger child)
Would it be a heap if we promoted lower priority child?

What about reorganizing the whole array?

• Can we repeatedly apply sift down to randomly sorted
complete binary tree to form a heap?

• How do we cover all nodes?

• Where do we start?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Build via repeated sift-down

bui ldMaxHeap (A) :
// heap i s s e t to same s i z e as a r r a y
heap l e ng t h [A] = l e ng t h [A]

// go ing backwards
f o r each i ndex i from f l o o r (l e n g t h [A] / 2) to 1 do :

s i f tDown (A, i)

Which node does this start with?
Which node does it end with?
What is Θ for this function?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Other supporting functions

Some housekeeping functions are also helpful (see heap.cpp)

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Complexity

Depending on tree type:

Algorithm Average Worst Case
Find-min O(1) O(1)

Insert O(2.607)-why? O(log n)

Space O(n) O(n)

Search O(n) O(n)

Delete O(log n) O(log n)

Peek O(1) O(1)

Build via repeated insert O(n) O(n log n)

Build via repeat sift-down O(n) O(n)

We just reviewed Binary heap
(where insert is not entirely correct).

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Outline

1 Introduction
Goal
Structure
Partial ordering

2 Implementation
Array based binary tree

Indexing

3 Functions
Enqueue
Dequeue
Build heap

Repeated insertion
Repeated sift down

Other supporting functions
Complexity

4 std:: heap and priority queue
Algorithms

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Algorithms: example of heap functions

Defines functions for a variety of purposes (e.g. searching,
sorting, counting, manipulating) that operate on ranges of
elements. Range is defined as [first, last) where last refers to
the element past the last element to inspect or modify.
http://en.cppreference.com/w/cpp/algorithm/

http://www.cplusplus.com/reference/algorithm/

For example, heap operations can be performed on a vector:

• is heap checks if the given range is a max heap

• is heap until finds the largest subrange that is a max heap

• make heap creates a max heap out of a range of elements

• push heap adds last-1 element to a max heap

• pop heap removes the largest element from a max heap
by moving to end

• sort heap turns a max heap into a range of elements
sorted in ascending order

http://en.cppreference.com/w/cpp/algorithm/
http://www.cplusplus.com/reference/algorithm/

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Algorithms: example of heap functions

See: Heap algorithms.cpp

How can we do this more directly?

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

std::priority queue

#include < queue >

• Priority queue is a container adaptor that provides
constant time lookup of the largest (by default) element,
at the expense of logarithmic insertion and extraction.

• User-provided “Compare” can be supplied to change the
ordering, e.g., using std::greater< T > would cause the
smallest element to appear as the top().

• Working with a priority queue is similar to managing a
heap in some random access container, with the benefit of
not being able to accidentally invalidate the heap.

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

std::priority queue template parameters

template<
c l a s s T,
c l a s s Conta i n e r = s td : : v e c to r<T>,
c l a s s Compare = s td : : l e s s<typename Conta i n e r : : v a l u e t y p e>

>

• T - The type of the stored elements. The behavior is
undefined if T is not the same type as
Container::value type.

• Container - Type of underlying container to store the
elements. Container must satisfy requirements of
SequenceContainer, and its iterators must satisfy the
requirements of RandomAccessIterator. It must provide
the following functions with the usual semantics:
front(); push back(); pop back();
Standard containers std::vector and std::deque satisfy
these requirements.

• Compare - type providing a strict weak ordering.

Introduction

Goal

Structure

Partial ordering

Implementation

Array based binary
tree

Indexing

Functions

Enqueue

Dequeue

Build heap

Repeated insertion

Repeated sift down

Other supporting
functions

Complexity

std:: heap and
priority queue

Algorithms

Demo code: priority queue

See: Priority queue.cpp

	Introduction
	Goal
	Structure
	Partial ordering

	Implementation
	Array based binary tree

	Functions
	Enqueue
	Dequeue
	Build heap
	Other supporting functions
	Complexity

	std:: heap and priority queue
	Algorithms

