
Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Applications of heaps

Comp Sci 1575 Data Structures



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Heap applications

Simplicity does not precede complexity, but follows it.
-Alan Perlis



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

D-heaps

• Like a binary heap except that all nodes have d children
(thus, a binary heap is a 2-heap).



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

D-heaps

• Shallow, thus run time of inserts to O(logdN).

• For large d , deleteMin operation is more expensive,
because even though the tree is shallower, the minimum of
d children must be found, which takes d − 1 comparisons
using a standard algorithm, raising the time for this
operation to O(d logdN). If d is a constant, both running
times are O(logN).

• Multiplications and divisions to find children and parents
are now by d , which, unless d is a power of 2, increasing
the running time, because we can no longer implement
division by a bit shift.

• Number of insertions is greater than the number of
deleteMins.

• 4-heaps may outperform binary heaps in practice.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

General applications

• Heaps are used for real simulations of some kinds of
queues (patient priority, multi-tasking priority, etc).

Note: For this type of heap, max is better, because the
more important end (higher numbers) can have levels of
importance added in constant time by just adding a higher
priority, unlike a min-heap which requires adjusting all
values in the heap to add more resolution.

• Heaps are used when one part of an algorithm requires
producing an ordered stream. For this type of heap, min
or max serve a similar purpose.

• Graph path finding (more to come later)
• Best-first search (like path finding)
• Minimum spanning tree calculation on a graph
• Huffman trees (overview today)
• Bandwidth management
• more?



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Problem:

• ASCII coding scheme assigns a unique eight-bit value to
each character.

• It takes a certain minimum number of bits to provide
unique codes for each character.

• For example, it takes log 128 (or seven bits to provide the
128 unique codes) needed to represent the 128 symbols of
the ASCII character set.

• The requirement for log n bits to represent n unique code
values assumes that all codes will be the same length, as
are ASCII codes. This is called a fixed-length coding
scheme.

• Compression?

• Variable-length coding scheme?



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Letter frequencies in English

•



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Store letters in a tree

• Shallower is faster, so store more frequent letters shallow
in the tree

• Goal is to build a tree with the minimum external path
weight.

• Define the weighted path length of a leaf to be its weight
times its depth.

• Binary tree with minimum external path weight is the one
with the minimum sum of weighted path lengths for the
given set of leaves.

• A letter with high weight should have low depth, so that it
will count the least against the total path length.

• As a result, another letter might be pushed deeper in the
tree if it has less weight.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Building a Huffman coding tree

Why Q: why is the heap helpful here?



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Building a Huffman coding tree

1 Create a collection of n initial Huffman trees, each of
which is a single leaf node containing one of the letters.

2 Put the n partial trees onto a priority queue organized by
weight (frequency).

3 Remove the first two trees (the ones with lowest weight)
from the priority queue.

4 Join these two trees together to create a new tree whose
root has the two trees as children with the weight of the
root as the sum of the weights of the two trees.

5 Put this root / tree back into the priority queue

6 Repeat until all of the partial Huffman trees have been
combined into one.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Huffman tree after complete creation

• Higher frequency letters stored more shallowly
• Why Q: What does this help?
• How do we find letters?
• How do we encode letters?



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Huffman tree after complete creation

Once the Huffman tree has been constructed, it is an easy
matter to assign codes to individual letters. Beginning at the
root, we assign either a ‘0’ or a ‘1’ to each edge in the tree. ‘0’
is assigned to edges connecting a node with its left child, and
‘1’ to edges connecting a node with its right child.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Huffman encoding scheme

Once we have the encoding scheme, we can use any lookup
method for encoding/decoding:
• the original tree: encode: searching for freq key, decode:

traversing L-0 R-1)
• or any associative array like BST, hash table, to store

letter-code mappings
• etc.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Huffman encoding scheme: does it work?

Ambiguous parses only occur on internal nodes! A set of codes
is said to meet the prefix property if no code in the set is the
prefix of another, guaranteeing that there will be no ambiguity
in how a bit string is decoded. Once we reach the last bit of a
code during the decoding process, we know which letter it is
the code for. Huffman codes certainly have the prefix property
because any prefix for a code would correspond to an internal
node, while all codes correspond to leaf nodes.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Efficiency

• Huffman tree building is an example of a greedy algorithm.
At each step, the algorithm makes a “greedy” decision to
merge the two subtrees with least weight.

• In theory, it is an optimal coding method whenever the
true frequencies are known, and the frequency of a letter is
independent of the context of that letter in the message.

• In practice, the frequencies of letters in an English text
document do change depending on context. For example,
while E is the most commonly used letter of the alphabet
in English documents, T is more common as the first
letter of a word.

• This is why most commercial compression utilities do not
use Huffman coding as their primary coding method, but
instead use techniques that take advantage of the context
for the letters.

• In general, Huffman coding does better when there is large
variation in the frequencies of letters.



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Outline

1 Faster heaps?

2 General applications

3 Huffman coding tree
Problem
Letter frequencies
Store letters in a tree
Building a Huffman tree
Building a Huffman tree
Finished Huffman tree
Encoding scheme

4 Sorting



Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Sorting with a heap??

• How can we sort with a heap?

• Check out sort video of other sorts:
https://www.youtube.com/watch?v=WaNLJf8xzC4

https://www.youtube.com/watch?v=WaNLJf8xzC4


Faster heaps?

General
applications

Huffman
coding tree

Problem

Letter frequencies

Store letters in a tree

Building a Huffman
tree

Building a Huffman
tree

Finished Huffman
tree

Encoding scheme

Sorting

Sorting with a heap

Heap was invented for heapsort, and the priority queue is
equivalent to sorting in some senses. Smoothsort is one of the
best all-round sorts (along with blocksort).


	Faster heaps?
	General applications
	Huffman coding tree
	Problem
	Letter frequencies
	Store letters in a tree
	Building a Huffman tree
	Building a Huffman tree
	Finished Huffman tree
	Encoding scheme

	Sorting

