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Heap applications

Simplicity does not precede complexity, but follows it.
-Alan Perlis
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D-heaps

• Like a binary heap except that all nodes have d children
(thus, a binary heap is a 2-heap).
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D-heaps

• Shallow, thus run time of inserts to O(logdN).

• For large d , deleteMin operation is more expensive,
because even though the tree is shallower, the minimum of
d children must be found, which takes d − 1 comparisons
using a standard algorithm, raising the time for this
operation to O(d logdN). If d is a constant, both running
times are O(logN).

• Multiplications and divisions to find children and parents
are now by d , which, unless d is a power of 2, increasing
the running time, because we can no longer implement
division by a bit shift.

• Number of insertions is greater than the number of
deleteMins.

• 4-heaps may outperform binary heaps in practice.
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General applications

• Heaps are used for real simulations of some kinds of
queues (patient priority, multi-tasking priority, etc).

Note: For this type of heap, max is better, because the
more important end (higher numbers) can have levels of
importance added in constant time by just adding a higher
priority, unlike a min-heap which requires adjusting all
values in the heap to add more resolution.

• Heaps are used when one part of an algorithm requires
producing an ordered stream. For this type of heap, min
or max serve a similar purpose.

• Graph path finding (more to come later)
• Best-first search (like path finding)
• Minimum spanning tree calculation on a graph
• Huffman trees (overview today)
• Bandwidth management
• more?
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Problem:

• ASCII coding scheme assigns a unique eight-bit value to
each character.

• It takes a certain minimum number of bits to provide
unique codes for each character.

• For example, it takes log 128 (or seven bits to provide the
128 unique codes) needed to represent the 128 symbols of
the ASCII character set.

• The requirement for log n bits to represent n unique code
values assumes that all codes will be the same length, as
are ASCII codes. This is called a fixed-length coding
scheme.

• Compression?

• Variable-length coding scheme?
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Letter frequencies in English

•
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Store letters in a tree

• Shallower is faster, so store more frequent letters shallow
in the tree

• Goal is to build a tree with the minimum external path
weight.

• Define the weighted path length of a leaf to be its weight
times its depth.

• Binary tree with minimum external path weight is the one
with the minimum sum of weighted path lengths for the
given set of leaves.

• A letter with high weight should have low depth, so that it
will count the least against the total path length.

• As a result, another letter might be pushed deeper in the
tree if it has less weight.
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Building a Huffman coding tree

Why Q: why is the heap helpful here?
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Building a Huffman coding tree

1 Create a collection of n initial Huffman trees, each of
which is a single leaf node containing one of the letters.

2 Put the n partial trees onto a priority queue organized by
weight (frequency).

3 Remove the first two trees (the ones with lowest weight)
from the priority queue.

4 Join these two trees together to create a new tree whose
root has the two trees as children with the weight of the
root as the sum of the weights of the two trees.

5 Put this root / tree back into the priority queue

6 Repeat until all of the partial Huffman trees have been
combined into one.
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Huffman tree after complete creation

• Higher frequency letters stored more shallowly
• Why Q: What does this help?
• How do we find letters?
• How do we encode letters?
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Huffman tree after complete creation

Once the Huffman tree has been constructed, it is an easy
matter to assign codes to individual letters. Beginning at the
root, we assign either a ‘0’ or a ‘1’ to each edge in the tree. ‘0’
is assigned to edges connecting a node with its left child, and
‘1’ to edges connecting a node with its right child.
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Huffman encoding scheme

Once we have the encoding scheme, we can use any lookup
method for encoding/decoding:
• the original tree: encode: searching for freq key, decode:

traversing L-0 R-1)
• or any associative array like BST, hash table, to store

letter-code mappings
• etc.
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Huffman encoding scheme: does it work?

Ambiguous parses only occur on internal nodes! A set of codes
is said to meet the prefix property if no code in the set is the
prefix of another, guaranteeing that there will be no ambiguity
in how a bit string is decoded. Once we reach the last bit of a
code during the decoding process, we know which letter it is
the code for. Huffman codes certainly have the prefix property
because any prefix for a code would correspond to an internal
node, while all codes correspond to leaf nodes.
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Efficiency

• Huffman tree building is an example of a greedy algorithm.
At each step, the algorithm makes a “greedy” decision to
merge the two subtrees with least weight.

• In theory, it is an optimal coding method whenever the
true frequencies are known, and the frequency of a letter is
independent of the context of that letter in the message.

• In practice, the frequencies of letters in an English text
document do change depending on context. For example,
while E is the most commonly used letter of the alphabet
in English documents, T is more common as the first
letter of a word.

• This is why most commercial compression utilities do not
use Huffman coding as their primary coding method, but
instead use techniques that take advantage of the context
for the letters.

• In general, Huffman coding does better when there is large
variation in the frequencies of letters.
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Sorting with a heap??

• How can we sort with a heap?

• Check out sort video of other sorts:
https://www.youtube.com/watch?v=WaNLJf8xzC4

https://www.youtube.com/watch?v=WaNLJf8xzC4
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Sorting with a heap

Heap was invented for heapsort, and the priority queue is
equivalent to sorting in some senses. Smoothsort is one of the
best all-round sorts (along with blocksort).
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