
Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Search

Comp Sci 1575 Data Structures

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Searching for items in a dictionary

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Overview of data structures so far

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Search

• Is searching the most frequently performed task on a
computer?

• Is all computation a form of search?

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Common definitions

• Search can be viewed abstractly as a process to determine
if an element with a particular value is a member of a
group.

• The more common view of searching is an attempt to find
the record within a collection of records that has a
particular key value, or those records in a collection whose
key values meet some criterion such as falling within a
range of values.

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Formal definition

• Suppose that we have a collection L of n records of the
form (k1, I1), (k2, I2), ... (kn, In) where Ij is information
associated with key kj from record j for 1 ≤ j ≤ n.

• Given a particular key value K , the search problem is to
locate a record (kj , Ij) in L such that kj = K , if one exists.

• Searching is a systematic method for locating the record,
or records, with key value kj = K .

• Successful search is one in which a record with key
kj = K is found.

• Unsuccessful search is one in which no record with
kj = K is found (and no such record exists).

• Exact-match query is a search for the record whose key
value matches a specified key value.

• Range query is a search for all records whose key value
falls within a specified range of key values.

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Methods for searching

• Sequential and list methods (today)

• Direct access by key value, hashing (next class)

• Tree indexing methods (Maybe last day of class)

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Sequential search on unsorted lists

How does T increase with n?

// Return pos o f v a l u e k i n A o f s i z e n
i n t s e q S e a r c h (i n t A [] , i n t n , i n t k)
{

f o r (i n t i = 0 ; i < n ; i ++)
i f (A [n] == k)

return n ;
return −1; // −1 s i g n i f i e s not found

}

Constant simple operations plus for() loop:
T (n) = cn

Is this always true?
What if our array is randomly sorted?

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Binary search on sorted lists

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Binary search on sorted lists

// Return pos o f v a l u e k i n A o f s i z e n
i n t b i n a r y (i n t A [] , i n t n , i n t k)
{

i n t low = 0 ;
i n t h i g h = n − 1 ;

whi le (low <= h i g h)
{

i n t mid = (low + h i g h) / 2 ;

i f (k > A [mid])
low = mid + 1 ;

i f (k < A [mid])
h i g h = mid − 1 ;

e l s e
return mid ; // found

}
return −1;

}

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Binary search on sorted lists

1

2

3

4

5

6

7

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Costs of binary search

• Binary search may be log n time, but what is the cost of
maintaining a sorted array?

• What algorithm would excel at this?

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Reminder: dictionary classes

• Set of (Key ,Value) pairs, search for unique key

• Unsorted array list based dictionary (review UALdict.* files
under dictionary day)

• Sorted array list based dictionary (review SALdict.* files
under dictionary day)

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Reminder: Binary search tree

Check out search(v) on: https://visualgo.net/en/bst

• Binary search tree implements a form of binary search
(review BST*.* files under BST day)

https://visualgo.net/en/bst

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Binary search on a BST

1

2

3

4

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Costs of binary search

• What is the cost of maintaining a sorted BST?

• Is it better than a sorted list?

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Problem

• In the real world, individual records are not often accessed
with equal probability.

• So, organize a list with more frequent items earlier in the
list, to speed up search times (still not usually as fast as
binary search)

• However, we often don’t know the frequencies ahead of
time, and they may change

• Further, we would like to avoid the cost of having to
repeatedly sort our lists.

• Solutions?

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Solution: self organizing lists

• Modifying a list in real-time to change its order based on
access frequency for each key will tend to sort the list by
access frequency

• For example: {A, B, C, D, E, F, G, H} could be queried
for access of the following items in the following order:
F D F G E G F A D F G E
and then modified by several rules:

1 When a record’s frequency count goes up, it moves
forward in the list to become the last record with that
value for its frequency count, resulting in
F G D E A B C H, with a total cost of 45 comparisons
(search and re-ordering)

2 When a record is accessed, move it to the front, producing
E G F D A B C H, for a total cost of 54 comparisons

3 When a record is accessed, swap it with the key preceding
its position in the list, producing
A B F D G E C H, with a total of 62 comparisons

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

1) Count method

• Store a count of accesses to each record and always
maintain records in this order.

• Whenever a record is accessed, move it toward the front of
the list if its number of accesses becomes greater than a
record preceding it.

• Count will store the records in the order of frequency that
has actually occurred so far.

• Besides requiring space for the access counts, count does
not react well to changing frequency of access over time;
once a record has been accessed a large number of times
under the frequency count system, it will remain near the
front of the list regardless of further access history.

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

1) Count method

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

2) Move-to-front method

• Bring a record to the front of the list when it is found,
pushing all the other records back one position.

• This is analogous to the least recently used buffer (LRU)
replacement strategy.

• This heuristic is easy to implement if the records are
stored using a linked list, and not for an array.

• Move-to-front responds well to local changes in frequency
of access, in that if a record is frequently accessed for a
brief period of time it will be near the front of the list
during that period of access.

• Move-to-front does poorly when the records are processed
in sequential order, especially if that sequential order is
then repeated multiple times.

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Move-to-front method

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

3) Transpose method

• Swap any record found with the record immediately
preceding it in the list.

• Transpose is good for list implementations based on either
linked lists or arrays.

• Frequently used records will, over time, move to the front
of the list, and records that were once frequently accessed
but are no longer used will slowly drift toward the back.

• Some pathological sequences of access can make
transpose perform poorly. For example if two items are
accessed alternating and repeating, they would not move
globally. A variation on transpose would be to move the
accessed record forward in the list by some fixed number
of steps, which addresses this problem.

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

3) Transpose method

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Compression of transmitted messages

Procedure:

1 If the word has been seen before, transmit the current
position of the word in the list. Move the word to the
front of the list.

2 If the word is seen for the first time, transmit the word.
Place the word at the front of the list.

Both the sender and the receiver keep track of the position of
words in the list in the same way (using the move-to-front
rule), so they agree on the meaning of the numbers that
encode repeated occurrences of words. For example:

Pre-transmit: the car on the left hit the car I left

Compressed: the car on 3 left hit 3 5 I 5

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Outline

1 Introduction
Definitions
Methods for searching

2 Lists: sorted and unsorted
Sequential search (unsorted list)
Binary search (sorted list)
Reminders

3 Self-organizing lists
Problem
Solutions

Count
Move-to-front
Transpose

Example application

4 Bit vectors

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Bit vectors / bit arrays

• A bit array (also known as bit map , bit set, bit string, or
bit vector) can enable forms of search

• For example, the bit array for the set of primes in the
range [0 : 15]. The bit at position i is set to 1 if and only
if i is prime:

For example, if we had two bit arrays, one for prime numbers
and one for odd numbers, we could search for the set of
numbers between 0 and 15 that are both prime and odd
numbers via:

0011010100010100 & 0101010101010101

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Bitwise operators

Introduction

Definitions

Methods for
searching

Lists: sorted
and unsorted

Sequential search
(unsorted list)

Binary search (sorted
list)

Reminders

Self-organizing
lists

Problem

Solutions

Count

Move-to-front

Transpose

Example application

Bit vectors

Bitwise operators in C++

	Introduction
	Definitions
	Methods for searching

	Lists: sorted and unsorted
	Sequential search (unsorted list)
	Binary search (sorted list)
	Reminders

	Self-organizing lists
	Problem
	Solutions
	Example application

	Bit vectors

