
Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash tables

Comp Sci 1575 Data Structures

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Larger context

• Hash tables are un-ordered data structure which
implements an associative array abstract data type,
mapping keys to values.

• Use a hash function to compute an index into an array of
buckets or slots, in which the value can be found.

• The second most common non-trivial data structure
(besides the list)

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Data structures

Color key:

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash tables: please don’t do this!

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Problems

How to store a large keyspace in a smaller structure?

• Which data type allows constant time access to store
integers?

• With unlimited space, how can we design a very simple
data structure to add, remove, and find integers in a data
structure in constant time?

• How can we design a data structure with a max of 100
elements to store 50 random numbers between 25 and
100,000, e.g.,
4123
42
99,999
34,004
...

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Problems

With unlimited space, how can we design a very simple data
structure to add, remove, and find non-numeric keys to a data
structure in constant time?

• How can we design a data structure with a max of 50
elements to store 20 random characters, e.g.,
’H’
’A’
’S’
’H’
...

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash functions map keys to hash codes

• Many types of hash function exist.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash codes of keys serve as indices

• % by table size squishes the codes into the array
• Process of finding a record by mapping its key value to a

position in the array involves hashing.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash table dictionary

• Names (keys) map to hash codes which serve as indices
• Phone numbers (values) are merely data entries here
• Array that holds the records is called the hash table

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

What are hash tables good for?

• Good for: “What record, if any, has key value K?”

• Main advantage of hash tables over other table data
structures is speed, especially with large dictionaries

• Hashing is not good for applications where multiple
records with the same key value are permitted.

• Can’t easily find ranges, the record with the minimum or
maximum key value, or visit the records in key order

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash functions

• Problem: Typically, there are many more values in the key
range than there are slots in the hash table.

• Solution: A hash function can be used to deterministically
map data of arbitrary size to data of fixed size.

• Hash function should be computable in constant time

• The values returned by a hash function are called hash
values, hash codes, digests, or simply hashes.

• Hash functions have much broader uses besides hash
tables (e.g., A cryptographic hash function allows one to
easily verify that some input data maps to a given hash
value, but if the input data is unknown, it is deliberately
difficult to reconstruct it (or equivalent alternatives) by
knowing the stored hash value.)

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Simple example

Example: map set of 4-digit keys into a length 10 array

• simple hash function (h) could be:
h(key) = key mod 10
Alternative notation: h(key) = key%10

• Keys: 9431, 9643, 3624, 9315, 6427

Index 0 1 2 3 4 5 6 7 8 9

Hash table 9431 9643 3624 9315 6427

Mod is often the last step of hashing

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hash function requirements

To use hash tables for these types of data, we must map these
data types to w-bit hash codes. Hash code mappings should
have the following properties:

• If x and y are equal, then x.hashCode() and
y.hashCode() are equal.
The first property ensures that if we store x in a hash
table and later look up a value y equal to x, then we will
find x–as we should.

• If x and y are not equal, then the probability that
x.hashCode() = y.hashCode() should be small (close to
1/2w).
The second property minimizes the loss from converting
our objects to integers. It ensures that unequal objects
usually have different hash codes and so are likely to be
stored at different locations in our hash table.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Collisions

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Collisions

• Ideally, the hash function will assign each key to a unique
bucket, but most hash table designs employ an imperfect
hash function, which might cause hash collisions where the
hash function generates the same index for more than one
key.
• Given a hash function h and two keys k1 and k2, if

h(k1) = β = h(k2) where β is a slot in the table, then we
say that k1 and k2 have a collision at slot β under hash
function h

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Key distributions impact hash function design

People round numbers to 5:

• simple hash function (h) could be:
h(key) = key mod 10

• Keys: 9430, 96435 3620, 9315, 6425

Index 0 1 2 3 4 5 6 7 8 9

Hash table

What happens here?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

One fix for number hashing: mid-square method

Goal is to hash these key
values to a table of size 100.
Example Key value 4567.

• Square the key value, and
then take the middle r
bits of the result, giving a
value in the range 0 to
2r − 1.

• Most or all bits of the key
value contribute to the
result.

• Range (0-99) is
equivalent to two digits in
base 10. That is, r = 2.

• Middle two digits of
square result are 57.

• Note: just one of many
methods to accomplish
the same goal

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hashing characters and strings

How might we hash the names below?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hashing characters and strings

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Hashing characters and strings

i n t h (char ∗x)
{

i n t i , sum ;
f o r (sum=0, i =0; x [i] != ‘\0 ’ ; i ++)

sum += (i n t) x [i] ;
r e t u r n sum % M;

}
Above function sums the ASCII values of the letters in a string.
Note: this is just one of many methods to do the same.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Data distribution

• Letter frequencies from corpus of English language text
• Frequency distributions can cause collisions for some hash

functions
• Solutions?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Collision management

While one goal of a hash function is to minimize collisions,
some collisions are unavoidable in practice.

Collision resolution techniques can be broken into two primary
classes:

1 Open hashing (also called separate chaining) :
collisions result in storing one of the records outside the
table

2 Closed hashing (also called open addressing) :
collisions result in storing one of the records at another
slot in the table

Hybrids are also possible

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Open hashing

• The simplest form of open hashing defines each slot in the
hash table to be the head of a linked list.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Open hashing

• Only the first item is stored in the array

• Collisions are stored in linked list

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Open hashing

• Alternatively, all items can be stored externally

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Closed hashing

• Closed hashing stores all records directly in the hash table

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Closed hashing

• Each record R with key value kR has a home position that
is h(kR), the slot computed by the hash function

• If R is to be inserted and another record already occupies
R’s home position, collision policy systematically picks
another index in the table

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Linear probing

h(K) = K mod 10

• First slot in the sequence
will be the home position
for the key.

• If the home position is
occupied, then try the
next slot in a pre-defined
order, the probe sequence

• Probe sequence is
generated by some
function, p

• pos = (home + p(k, i))%M

where p(K, i) = i

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Linear probing

f u n c t i o n f i n d s l o t (key)
i = hash (key) mod n u m s l o t s
// s e a r c h u n t i l we e i t h e r f i n d the key ,
// or f i n d an empty s l o t .
whi le ((s l o t [i] i s f u l l) and (s l o t [i] . key != key))

i = (i + 1) % n u m s l o t s
return i

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Alternative linear probe sequences

h(K) = K mod 10 pos = (home + p(k , i))%M
where:

• p(K , i) = ci

• Will this visit all slots
before returning back to
home:
for c=1?
for c=2?

• Constant c must be
relatively prime to M to
generate a linear probing
sequence that visits all
slots in the table (c and
M must share no factors).

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Quadratic hashing

pos = (home + p(k , i))%M
where:

• p(K , i) = c1i
2 + c2i + c3

• Simple case: p(K , i) = i2

• Draw?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Double hashing

pos = (home + p(k , i))%M
where:

• h2 is a second hash function and
p(K , i) = i ∗ h2(K)

• Can be combined with other methods like pseudo-random
or quadratic, e.g.,
p(K , i) = i2 ∗ h2(K)

• Draw?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Robin Hood hashing

• During double hashing, a new key may displace a key
already inserted, if its probe count is larger than that of
the key at the current position.

• Reduces worst case search times in the table.

• What else do we need to store?

• Draw?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Search

Finding a record with key value K in a database organized by
hashing follows a two-step procedure:

1 Compute the table location h(K).

2 Starting with slot h(K), locate the record containing key K
using (if necessary) a collision resolution policy.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

How to search with collision resolution?

h(K) = K mod 10 index = (home + p(k , i))%M

• What should search do if
looking for 9877?

• What should search do if
looking for 2037?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

How to delete?

h(K) = K mod 10 • What is the process to:
Delete only 9877?
Delete only 2037?
Delete 9877 then 2037?

• What is a general
solution?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

How to delete?

h(K) = K mod 10 • If 9877 is deleted from
the table, a search for
2037 must still pass
through Slot 7 as it
probes to slot 8

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10 • Indicates that a record
once occupied the slot
but does so no longer.

• During search, if a
tombstone is encountered
during a probe sequence,
search continues.

• When does search end?

• What about during
insertion?

• Problems?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10 • During insertion,
tombstone slots can be
used to store the new
record.

• To avoid inserting
duplicate keys, follow the
probe sequence until a
truly empty position has
been found, to verify that
a duplicate is not in the
table.

• Problems?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10 • Degrades HT over time:
as number of
delete/insert operations
increases, cost of a
successful search
increases.

• Fix 1: During later
search, when found, an
element can be relocated
to the first location
marked for deletion that
was probed during the
search.

• Fix 2: Periodically rehash
by reinserting all records
into a new hash table.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Load factor: cost goes up for full tables

α = N/M where
N is the number of records currently in the table and
M is the size of the hash table

cost

α (fullness)

Is there a solution to this slowdown?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Load factor: re-hashing

cost

α (fullness)

Build another table that is about twice as big (with an
associated new hash function) and scan down the entire
original hash table, computing the new hash value for each
element and inserting it in the new table.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Asymptotic comparison of dictionary DS options

ADT Lookup Insertion Deletion Ordered
Average Worst Average Worst Average Worst

Sequential container: key-value pairs O(n) O(n) O(1) O(1) O(n) O(n) No
Sequential container: key-value pairs O(log n) O(n) O(1) O(1) O(n) O(n) Yes

Hash table O(1) O(n) O(1) O(n) O(1) O(n) No
Self-balancing binary search tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) Yes

Unbalanced binary search tree O(log n) O(n) O(log n) O(n) O(log n) O(n) Yes

• Reminder: BST is also a decent data structure for a
dictionary.

• How does the BST compare in the average and worst
cases?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Outline

1 Introduction
Definitions
Problems
Hashing
Uses

2 Hash functions
Collisions

Key distribution
Hashing non-numbers

3 Collision management
Open hashing
Closed hashing

Linear probing
Quadratic hashing
Double hashing

4 Search

5 Deletion

6 Load factor

7 Complexity

8 Bonus section: optional

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Problem: distributed database

• To download a file from someone, knowing their IP address
is one way to initiate a peer to peer (p2p) connection.

• How to store a database of pairings between IP addresses
and torrents without a central server?

• Keys could be content names (e.g., names of books and
software), and the value could be the IP address at which
the content is stored; in this case, an example key-value
pair is the tuple:
(ComputerNetworkingEssentials.pdf, 128.17.123.38).
Ask: Which is the key and which is the value?

• Building such a database is straightforward with a
client-server architecture that stores all the (key, value)
pairs in one central server. You just ask the central server
(at its known IP) for the IP of the people with your file of
interest.

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

DHT

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Solution: distributed hash table (DHT)

• n users

• Each user identifier is an integer in the range [0, 2n − 1]

• Hash the key (author/book name) into a number, mod
2n − 1

• The user that has the closest value after the hashed key
stores the item

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Problem

• How to lookup which user is storing a particular hashed
key?

• How to find the other user who “knows” about that user?

• Should we store the location of all “neighbors”?

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

Solution: circular DHT

The user that has the closest value after the hashed key stores
the item.
Each user stores the IP of users with immediately larger keys.
“Join” and “Leave” protocols are needed.

(a) Only index forward neighbors; number of messages is n/2

(b) Storing indices of more neighbors increases messaging
efficiency, and increases storage overhead

Introduction

Definitions

Problems

Hashing

Uses

Hash functions

Collisions

Key distribution

Hashing
non-numbers

Collision
management

Open hashing

Closed hashing

Linear probing

Quadratic hashing

Double hashing

Search

Deletion

Load factor

Complexity

Bonus section:
optional

A balance of connections: space versus time

DHT can be designed so that both the number of neighbors
per peer as well as the average number of messages per query
is O(logN), where N is the number of peers.

	Introduction
	Definitions
	Problems
	Hashing
	Uses

	Hash functions
	Collisions
	Hashing non-numbers

	Collision management
	Open hashing
	Closed hashing

	Search
	Deletion
	Load factor
	Complexity
	Bonus section: optional

