Hash tables

Comp Sci 1575 Data Structures

MISSOURI

S ‘ bomputer Science

Outline

Introduction 0 Introduction

Outline

@ Introduction
Definitions

Larger context

COLLECTION
1 \
UNORDERED_COLLECTION ORDERED_COLLECTION

[I |
BAG LINEAR NON_LINEAR

I I I |
SET LINKED_LIST TREE DIRECTED_GRAPH
I I | [
HASH_TABLE DEQUE BIN_TREE UNDIRECTED_GRAPH

I \ 1 \
STACK QUEUE BST HEAP

e Hash tables are un-ordered data structure which
implements an associative array abstract data type,
mapping keys to values.

® Use a hash function to compute an index into an array of
buckets or slots, in which the value can be found.

® The second most common non-trivial data structure
(besides the list)

Data structures

Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion

Array o O

Stack ow oo @@ @@ ow o @@

Queue | fem| @@ @@ o] [o E@

Singly-Linked List [om| [om| — [E@) @@ [[w @@

Doubly-Linked List [om)] o) (o]) [o)]

Skip List [ocrogm) | [e2og(n))] [octogm))] [ecrog(m)|

Hash Table /A @] [ew) [ecw)] (wa

Binary Search Tree [eaog(n))| [eciogm)]| [e(ioem)] [ecog(n))|
Cartesian Tree /A (va
B-Tree [ocrogm)| (o10g(m)] [oc1og(m))| [ecrogm)]| [oc1og(n))] [o(tog(n)| [o(tog(n))] [oc1ogtm))]
Red-Black Tree [e(log(n))| [o(tog(m)| [e(iog(n)] [ectog(n))| [octog(m)| [o(iog(n))| [o(1ogm)]| [ocrog(m))] [om|
Splay Tree wA [ologm)| [ectogm)| [eqiogn)| (wa [oaog(m))| [o(ogm)| [ocrogm)] o(n)
AVL Tree [c20g(n)) | [ocog(m)| [ocrog(n))] [ecrog(m))| [ocrog(m)] [o(tog(n))| [o(togm)| [o(rog(m))|
KD Tree [ectog@)] [etog] [eaoem)) [octogn] [om] [om] [om)] [om] o(n)

Color key:

Hash tables: please don't do this!

Doing linear scans over
an associative array is
like trying to club
someone to death with
a loaded Uzi.

Loy Wil
Arnerican Progiramnes
B 1054

Outline
@ Introduction

Problems

Problems

How to store a large keyspace in a smaller structure?

® Which data type allows constant time access to store
integers?

® With unlimited space, how can we design a very simple
data structure to add, remove, and find integers in a data
structure in constant time?

® How can we design a data structure with a max of 100
elements to store 50 random numbers between 25 and
100,000, e.g.,

4123
42
99,999
34,004

Problems

With unlimited space, how can we design a very simple data
structure to add, remove, and find non-numeric keys to a data
structure in constant time?

® How can we design a data structure with a max of 50
elements to store 20 random characters, e.g.,
H
A
g
H

Outline

@ Introduction

Hashing

Hash functions map keys to hash codes

OBJECT —» INTEGER

DATA HASH CODES

L

4

» 16

» 68

125

® Many types of hash function exist.

Hash codes of keys serve as indices

HASH FUNCTION:
OBJECT -» INTEGER

DATA HASH CODES TABLE INDEXES

obij1 s 4 —_l 4

obj2 > 16 —1s 4

obj3 68 —1 3
MODULO

obj4 125 TABLESZE— T ©

HASH TABLE

OBJ4|0OBJ2 OBJ3|0BJ1

0 1 2 3 4

® 9% by table size squishes the codes into the array
® Process of finding a record by mapping its key value to a
position in the array involves hashing.

Hash table dictionary

Introduction

hash
keys function buckets
Hash functions 00
p 01 | 521-8976
John Smith
02 | 521-1234
. q 03
Lisa Smith
13
Sandra Dee
15

® Names (keys) map to hash codes which serve as indices
® Phone numbers (values) are merely data entries here
® Array that holds the records is called the hash table

Outline

@ Introduction

Uses

What are hash tables good for?

® Good for: “What record, if any, has key value K?”

® Main advantage of hash tables over other table data
structures is speed, especially with large dictionaries

® Hashing is not good for applications where multiple
records with the same key value are permitted.

® Can't easily find ranges, the record with the minimum or
maximum key value, or visit the records in key order

Outline

Hash functions

@ Hash functions

Hash functions
Introduction

¢ Problem: Typically, there are many more values in the key
range than there are slots in the hash table.

Hash functions

® Solution: A hash function can be used to deterministically
map data of arbitrary size to data of fixed size.

® Hash function should be computable in constant time

® The values returned by a hash function are called hash
values, hash codes, digests, or simply hashes.

® Hash functions have much broader uses besides hash
tables (e.g., A cryptographic hash function allows one to
easily verify that some input data maps to a given hash
value, but if the input data is unknown, it is deliberately
difficult to reconstruct it (or equivalent alternatives) by
knowing the stored hash value.)

Complexit

Simple example

s Example: map set of 4-digit keys into a length 10 array

¢ simple hash function (h) could be:
h(key) = key mod 10
Alternative notation: h(key) = key%10
e Keys: 9431, 9643, 3624, 9315, 6427

Index |0/ 1 |2 3 | 4 | 5 |6] 7 |8|9
Hash table| |9431| |9643|3624|9315| |6427

Mod is often the last step of hashing

Hash function requirements

Introduction

To use hash tables for these types of data, we must map these
data types to w-bit hash codes. Hash code mappings should
have the following properties:

Hash functions

¢ If x and y are equal, then x.hashCode() and
y.hashCode() are equal.
The first property ensures that if we store x in a hash
table and later look up a value y equal to x, then we will
find x—as we should.

e If x and y are not equal, then the probability that
x.hashCode() = y.hashCode() should be small (close to
1/2%).

The second property minimizes the loss from converting
our objects to integers. It ensures that unequal objects

usually have different hash codes and so are likely to be
stored at different locations in our hash table.

Outline

@ Hash functions
Collisions

Collisions

hash
keys function hashes

00

03

05

15

Collisions

hash
keys function hashes
00
01
02
03
04
05

John Smith

Lisa Smith

Sandra Dee 1'5

e |deally, the hash function will assign each key to a unique
bucket, but most hash table designs employ an imperfect
hash function, which might cause hash collisions where the
hash function generates the same index for more than one
key.

® Given a hash function h and two keys k; and k», if
h(k1) = 8 = h(ky) where (3 is a slot in the table, then we
say that ki and k» have a collision at slot 5 under hash
function h

Key distributions impact hash function design

People round numbers to 5:
¢ simple hash function (h) could be:
h(key) = key mod 10
e Keys: 9430, 96435 3620, 9315, 6425

Index 0(1(2|3/4|/5(6|7/8]|9
Hash table

What happens here?

One fix for number hashing: mid-square method

Goal is to hash these key

values to a table of size 100.

Example Key value 4567.

4567
4567
31969
27402
22835
18268

e

4567

Square the key value, and
then take the middle r
bits of the result, giving a
value in the range 0 to
2r—1.

Most or all bits of the key
value contribute to the
result.

Range (0-99) is
equivalent to two digits in
base 10. That is, r = 2.

Middle two digits of
square result are 57.

Note: just one of many
methods to accomplish
the same goal

Outline

@ Hash functions

Hashing non-numbers

Hashing characters and strings
How might we hash the names below?

hash
keys function hashes

00

03

05

15

Hashing characters and strings

ASCIl TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ’ 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4A J 106 6A i
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C ’ 76 ac L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F 1 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o 80 50 P 112 70]
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 115} [DEVICE CONTROL 3] 51 B 3 83 S S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 v 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A z 122 7A z
27 1B [ESCAPE] 59 3B H 91 5B [123 7B {
28 1c [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 70 3}
30 1E [RECORD SEPARATOR] 62 3E > 94 SE -~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

Hashing characters and strings

int h(char xx)

{ . .
int 1, sum;
for (sum=0, i=0; x[i] = *\0"; i++)
sum += (int)x[i];
return sum % M;
}

Above function sums the ASCII values of the letters in a string.
Note: this is just one of many methods to do the same.

ASCII TABLE

Data distribution

Letter | Frequency || Letter | Frequency
A 77 N 67
B 17 0 67
C 32 P 20
D 42 Q 5
E 120 R 59
F 24 S 67
G 17 T 85
H 50 U 37
I 76 v 12
I 4 W 22
K 7 X 4
L 42 Y 22
M 24 Z 2

® |etter frequencies from corpus of English language text
® Frequency distributions can cause collisions for some hash

functions
e Solutions?

Outline

Collision
management

e Collision management

Collision
management

Collision management

While one goal of a hash function is to minimize collisions,
some collisions are unavoidable in practice.

Collision resolution techniques can be broken into two primary
classes:

® Open hashing (also called separate chaining) :
collisions result in storing one of the records outside the
table

® Closed hashing (also called open addressing) :
collisions result in storing one of the records at another
slot in the table

Hybrids are also possible

Outline

9 Collision management
Open hashing

Open hashing

1000] —={9530]]

3013

9877 ——-—| 2007| —|—>| 1057|/|

© 0o N o g B~ W M =+ O

9879

® The simplest form of open hashing defines each slot in the
hash table to be the head of a linked list.

Open hashing

overflow
keys buckets entries
000 x
- 001 | LisaSmith | 521-8976 |e
John Smith
002 x
Lisa Smith . ~
151 x
John smith | 521-1234 | e
Sam Doe =2 /x| sandra Dee | 521-9655
153 | Ted Baker | 418-4165 |®
154 x
Sandra Dee
253 x
Ted Baker
254 | samDoe | 521-5030 |e
255 x

® Only the first item is stored in the array

e Collisions are stored in linked list

Open hashing

keys buckets entries
000 [x|
—— | x| Lisasmith | 521-8976 |
. 001 | &
John Smith —
002 | x
: . : :/ul John Smith | 521-1234 |
Lisa Smith —
151 | x
o] y
Sam Doe K4 | x| sandra Dee | 521-9655 |
153 | a|
154 | x
Sandra Dee —
: :\xl Ted Baker | 418-4165 |
253 [x
Ted Baker B :
—{ x| SsamDoe | 521-5030 |
255 | x

® Alternatively, all items can be stored externally

Outline

9 Collision management

Closed hashing

keys

John Smith
Lisa Smith
Sam Doe

Sandra Dee

Ted Baker

000
001
002

Closed hashing

buckets
Lisa Smith 521-8976
John Smith 521-1234
Sandra Dee | 521-9655
Ted Baker 418-4165
Sam Doe 521-5030

® Closed hashing stores all records directly in the hash table

Closed hashing

keys buckets
000
001 [Lisa Smith | 5218976
John Smith 002
Lisa Smith 151 [
53] john Smith [5211234
Sam Doe J#55] | sandra Dee | 5219655
154 | Ted Baker | 418-4165
Sandra Dee 155 |
Ted Baker 253
254/ samDoe | 5215030
255

® FEach record R with key value kg has a home position that
is h(kg), the slot computed by the hash function

e If R is to be inserted and another record already occupies
R's home position, collision policy systematically picks
another index in the table

Linear probing

h(K) = K mod 10

® First slot in the sequence

09050 09050 will be the home position
11001 11001 for the key
2 2 o
® |f the home position is
3 3 occupied, then try the
4 4 next slot in a pre-defined
5 5 order, the probe sequence
6 6 ® Probe sequence is
79877 7|9877 generated by some
8 (2037 8 (2037 function, p
9 91059 ® pos = (home + p(k i))%M

(@) (b) where p(K, i) =

Linear probing

function find_slot (key)
i = hash(key) mod num_slots

// search until we either find the key,

// or find an empty slot.

while ((slot[i] is full) and (slot[i].key != key))
i = (i + 1) % num_slots

return i

Alternative linear probe sequences

h(K) = K mod 10 pos = (home + p(k,i))%M
where:
09050 09050 _ _
11001 1 [roo1| © PUKG) =i
5 5 e Will this visit all slots
before returning back to
3 3 _
home:
4 4 for c=17
5 5 for c=27
6 6 e Constant ¢ must be
719877 719877 relatively prime to M to
812037 8 |2037 generate a linear probing
9 911059 sequence that visits all

slots in the table (c and
(a) (b) M must share no factors).

Quadratic hashing

pos = (home + p(k, i))%M
where:
* p(K,i)=ci’*+ ci+c3
® Simple case: p(K,i) = i?
® Draw?

Double hashing

pos = (home + p(k,i))%M
where:
® h, is a second hash function and
p(K, i) =ix* hy(K)
® Can be combined with other methods like pseudo-random
or quadratic, e.g.,
p(K, i) = 12 % h(K)
® Draw?

Robin Hood hashing

During double hashing, a new key may displace a key
already inserted, if its probe count is larger than that of
the key at the current position.

Reduces worst case search times in the table.

What else do we need to store?
Draw?

Outline

Search

O Scarch

Search

Finding a record with key value K in a database organized by
hashing follows a two-step procedure:

® Compute the table location h(K).

@® Starting with slot h(K), locate the record containing key K
using (if necessary) a collision resolution policy.

Search

Search

How to search with collision resolution?

h(K) = K mod 10

9050

111001

© 0 N o g A~ W N

9877

2037

index = (home + p(k, i))%M
® \What should search do if
looking for 98777

® \What should search do if
looking for 20377

Outline

Deletion

@ Deletion

How to delete?

h(K) = K mod 10 ® What is the process to:
Delete only 98777
Delete only 20377
Delete 9877 then 20377

® What is a general
solution?

0(9050
111001

Deletion

9877
2037

© 0 N o g A~ W N

Deletion

h(K) = K mod 10

9050

111001

© 0 N o g A~ W N

9877

2037

How to delete?

e |f 9877 is deleted from
the table, a search for
2037 must still pass
through Slot 7 as it
probes to slot 8

Deletion

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10

—y

© 0 N o g B~ WD

9050

1001

9877

2037

Indicates that a record
once occupied the slot
but does so no longer.

During search, if a
tombstone is encountered
during a probe sequence,
search continues.

When does search end?

What about during
insertion?

Problems?

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10 ® During insertion,
tombstone slots can be
used to store the new
record.

019050

—y

1001 ® To avoid inserting
duplicate keys, follow the
probe sequence until a
truly empty position has
been found, to verify that
a duplicate is not in the
table.

® Problems?

Deletion

9877
2037

© 0 N o g B~ WD

Delete: set flag or tombstone (aka lazy delete)

h(K) = K mod 10 ® Degrades HT over time:
as number of
delete/insert operations
09050 increases, cost of a
1001 successful search
increases.

[y

® Fix 1: During later
search, when found, an
element can be relocated
to the first location
marked for deletion that
was probed during the
9877 search.

2037 ® Fix 2: Periodically rehash
by reinserting all records
into a new hash table.

Deletion

© o0 N o g B~ W N

Outline

Load factor

@ Load factor

Load factor: cost goes up for full tables

a = N/M where
N is the number of records currently in the table and

M is the size of the hash table
5

Load factor

cost

a (fullness)

Is there a solution to this slowdown?

Load factor

Load factor: re-hashing

cost

a (fullness)

Build another table that is about twice as big (with an
associated new hash function) and scan down the entire
original hash table, computing the new hash value for each
element and inserting it in the new table.

Outline

Complexity

a Complexity

Asymptotic comparison of dictionary DS options

ADT Lookup Insertion Deletion Ordered
Average | Worst | Average | Worst | Average | Worst
Sequential container: key-value pairs| O(n) O(n) 0o(1) 0(1) O(n) O(n) No
Sequential container: key-value pairs|O(log n) [O(n) O(1) O(1) O(n) O(n) Yes
Hash table O(1) O(n) O(1) O(n) O(1) O(n) No
Self-balancing binary search tree | O(log n) | O(log n) [O(log n) | O(log n) [O(log n) [O(log n) [Yes
Unbalanced binary search tree O(log n)| O(n) [O(log n)| O(n) [O(log n)| O(n) Yes

® Reminder: BST is also a decent data structure for a
dictionary.

® How does the BST compare in the average and worst
cases?

Complexity

Outline

Bonus section:
optional

@ Bonus section: optional

Introduction

Hash functions

Complexity

Bonus section:

optional

Problem: distributed database

To download a file from someone, knowing their I[P address
is one way to initiate a peer to peer (p2p) connection.

How to store a database of pairings between IP addresses
and torrents without a central server?

Keys could be content names (e.g., names of books and
software), and the value could be the IP address at which
the content is stored; in this case, an example key-value
pair is the tuple:

(ComputerNetworkingEssentials.pdf, 128.17.123.38).
Ask: Which is the key and which is the value?

Building such a database is straightforward with a
client-server architecture that stores all the (key, value)
pairs in one central server. You just ask the central server
(at its known IP) for the IP of the people with your file of
interest.

DHT

Data Key Distributed
Hash Network
function
Hash
function —™| 52ED879E

Hash

; —»| 46042841
function

Bonus section:
optional

Solution: distributed hash table (DHT)

® n users

Each user identifier is an integer in the range [0, 2" — 1]

Hash the key (author/book name) into a number, mod
2" —1

The user that has the closest value after the hashed key
stores the item

Bonus section:

optional

Problem

® How to lookup which user is storing a particular hashed
key?
® How to find the other user who “knows” about that user?

® Should we store the location of all “neighbors”?

Bonus section:
optional

Solution: circular DHT

The user that has the closest value after the hashed key stores
the item.

Each user stores the IP of users with immediately larger keys.
“Join" and “Leave” protocols are needed.

(a) Only index forward neighbors; number of messages is n/2
Who is

1 responsible 1
for key 117

. 8 8
Bonus section:
: a. b.
optional

(b) Storing indices of more neighbors increases messaging
efficiency, and increases storage overhead

A balance of connections: space versus time

Who is
responsible
for key 117

3 3
15 15

DHT can be designed so that both the number of neighbors
Sl per peer as well as the average number of messages per query
is O(log V), where N is the number of peers.

	Introduction
	Definitions
	Problems
	Hashing
	Uses

	Hash functions
	Collisions
	Hashing non-numbers

	Collision management
	Open hashing
	Closed hashing

	Search
	Deletion
	Load factor
	Complexity
	Bonus section: optional

