
Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs

Comp Sci 1575 Data Structures

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs and networks big picture

• Mathematical structure used to model pairwise relations
between objects.
• Objects correspond to mathematical abstractions called

vertices (also called nodes or points) and each of the
related pairs of vertices is called an edge (also called an
arc or line)
• Network theory is a part of graph theory: a network can

be defined as a graph in which nodes and/or edges have
attributes (e.g. names).

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Layouts do not necessarily imply position

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs and networks big picture

• Ordered collection of data (there may be a connection
between any two data values in the collection)

• Non-linear (every element doesn’t just have a previous and
next element like linked lists)

• Differs from tree in that there is no “root” node, each
node can have more than 1 “parent”, and there can be
loops

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Applications of graph theory

Very widely used at a higher-level problem solving

• Modeling social networks, the spread of ideas or diseases

• Modeling brain networks

• Modeling networks of gene-protein interactions

• Modeling connectivity in computer and communications networks.

• Integrated circuit design

• Representing a travel map as a set of locations with distances
between locations; used to compute shortest routes between
locations.

• Modeling flow capacities in transportation networks.

• Finding a path from a starting condition to a goal condition; for
example, in artificial intelligence problem solving.

• Modeling computer algorithms, showing transitions from one
program state to another.

• Finding an acceptable order for finishing sub-tasks in a complex
activity, such as constructing large buildings.

• Modeling relationships such as family trees, business or military
organizations, and scientific taxonomies.

• Modeling relationships between businesses, markets, and economies

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs

• Finite set of vertices, nodes, or points which are connected
by edges, arcs, or lines defined as a set of pairs of:
1) unordered nodes to define edges, arcs, or lines for an
undirected graph, or
2) ordered pairs to define directed edges, directed arcs, or
directed lines, or arrows for a directed graph.
• May also associate with each edge some edge value, such

as a symbolic label or a numeric attribute (cost, capacity,
length, etc.).

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs

• A graph G = (V ,E) consists of a set of vertices V and a
set of edges E , such that each edge in E is a connection
between a pair of vertices in V (and defined by that pair).

• The number of vertices is written |V |, and the number of
edges is written |E |. |E | can range from zero to a
maximum of |V |2 − |V |. Why?? Draw it

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Graphs

(a) A graph. (b) A directed graph (digraph). (c) A labeled
(directed) graph with weights associated with the edges. In
this example, there is a simple path from Vertex 0 to Vertex 3
containing Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1
also form a path, but not a simple path because Vertex 1
appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Connected components

• Undirected graph is connected if there is at least one path
from any vertex to any other.

• Maximally connected subgraphs of an undirected graph
are called connected components (3 above)

• Vertices 0, 1, 2, 3, and 4 form one connected component.

• Vertices 5 and 6 form a second connected component.

• Vertex 7 by itself forms a third connected component.

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Types of graph

Simple (a-d); Complete (c); Multigraph (e); Pseudograph (f);
Circuit in a digraph (g); Cycle in the digraph

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Degree

• indegree of vertex: for digraph this is number of
incoming edges (not depicted above)
• outdegree of vertex: for digraph this is number of

outgoing edges (not depicted above)
• degree of vertex: in undirected graph this is number of

edges incident on vertex; note: a loop in an undirected
graph counts as 2
• degree of graph: in digraph this is sum of indegree and

outdegree of every vertex; in undirected graph this is sum
of degree of every vertex; number of edges * 2

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Common operations

• adjacent(G , x , y): tests whether there is an edge from the vertex x to
the vertex y;

• neighbors(G , x): lists all vertices y such that there is an edge from
the vertex x to the vertex y; note: directed graphs just include
outgoing neighbors in this list

• add vertex(G , x): adds vertex x, if it is not there;

• remove vertex(G , x): removes vertex x, if it is there;

• add edge(G , x , y): adds edge from vertex x to vertex y, if it is not
there;

• remove edge(G , x , y): removes edge from vertex x to vertex y, if it is
there;

• get vertex value(G , x): returns value associated with vertex x;

• set vertex value(G , x , v): sets value associated with vertex x to v.

• get edge value(G , x , y): returns value associated with edge (x, y);

• set edge value(G , x , y , v): sets value associated with edge (x, y) to v.

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Adjacency with a directed graph (a) below

• (b) Adjacency matrix |V |x |V | array. Vertices: v0 through
vn−1. Space use is Θ((|V |)2). Data are weights, or 0/1.
• (c) Adjacency list |V | items long, with position i storing

edges for Vertex vi . Space use is Θ(|V |+ |E |)

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Adjacency with an undirected graph (a) below

• (b) Adjacency matrix |V |x |V | array. Vertices: v0 through
vn−1. Space use is Θ(|V |)2). Data are weights or 0/1.
• (c) Adjacency list |V | items long, with position i storing

edges for Vertex vi

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Adjacency with undirected graph: table vs. array

a Graph

b Adjacency list (table)

c Adjacency list (linked)

d Adjacency matrix

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Incidence matrix

• An edge connecting Vertices U and V is written (U, V).
Such an edge is said to be incident on Vertices U and V.

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Edge list

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Edge list

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Edge list

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Outline

1 Introductions
Big picture
Applications
ADT and data structure
Connected components
Graph types
Degree
Operations

2 Implementation
Adjacency

Directed
Undirected

Incidence
Edge list
Asymptotic comparison

Introductions

Big picture

Applications

ADT and data
structure

Connected
components

Graph types

Degree

Operations

Implementation

Adjacency

Directed

Undirected

Incidence

Edge list

Asymptotic
comparison

Asymptotic comparison

Adjacency list Adjacency matrix Incidence matrix
Store graph O(|V |+ |E |) O(|V |2) O(|V | ∗ |E |)
Add vertex O(1) O(|V |2) O(|V | ∗ |E |)
Add edge O(1) O(1) O(|V | ∗ |E |)
Remove vertex O(|E |) O(|V |2) O(|V | ∗ |E |)
Remove edge O(|V |) O(1) O(|V | ∗ |E |)
Query adjacency O(|V |) O(1) O(|E |)

• Adjacency list: Slow to remove vertices and edges,
because it needs to find all vertices or edges

• Adjacency matrix: Slow to add or remove vertices,
because matrix must be resized/copied

• Incidence matrix: Slow to add or remove vertices and
edges, because matrix must be resized/copied

	Introductions
	Big picture
	Applications
	ADT and data structure
	Connected components
	Graph types
	Degree
	Operations

	Implementation
	Adjacency
	Incidence
	Edge list
	Asymptotic comparison

