Graphs

Comp Sci 1575 Data Structures

MISSOURI

Sy ‘ Computer Science

Outline

Introductions

@ Introductions

Outline

@ Introductions
Big picture

Graphs and networks big picture

® Mathematical structure used to model pairwise relations
between objects.

® Objects correspond to mathematical abstractions called
vertices (also called nodes or points) and each of the
related pairs of vertices is called an edge (also called an
arc or line)

e Network theory is a part of graph theory: a network can
be defined as a graph in which nodes and/or edges have
attributes (e.g. names).

Layouts do not necessarily imply position

HOW A GRAPH THEORIST
DRAWS A "STAR":

10z ®
woyjewpayids

GO0D JOB MIKE!

Graphs and networks big picture

COLLECTION

UNORDERED_COLLECTION ORDERED_COLLECTION

[| |
BAG LINEAR NON_LINEAR

I |
SET LINKED_LIST ~ TREE DIRECTED_GRAPH
I I | |
HASH_TABLE DEQUE BIN_TREE UNDIRECTED_GRAPH

[i \
STACK QUEUE BST HEAP

¢ Ordered collection of data (there may be a connection
between any two data values in the collection)

¢ Non-linear (every element doesn't just have a previous and
next element like linked lists)
e Differs from tree in that there is no "root” node, each

node can have more than 1 “parent”, and there can be
loops

Outline

@ Introductions

Applications

Applications of graph theory

Very widely used at a higher-level problem solving
® Modeling social networks, the spread of ideas or diseases
® Modeling brain networks
® Modeling networks of gene-protein interactions
® Modeling connectivity in computer and communications networks.
® |Integrated circuit design

Implementatio|
I ® Representing a travel map as a set of locations with distances

between locations; used to compute shortest routes between
locations.

® Modeling flow capacities in transportation networks.

® Finding a path from a starting condition to a goal condition; for
example, in artificial intelligence problem solving.

® Modeling computer algorithms, showing transitions from one
program state to another.

® Finding an acceptable order for finishing sub-tasks in a complex
activity, such as constructing large buildings.

® Modeling relationships such as family trees, business or military
organizations, and scientific taxonomies.

® Modeling relationships between businesses, markets, and economies

Outline

@ Introductions

ADT and data structure

(a) (b)

® Finite set of vertices, nodes, or points which are connected
by edges, arcs, or lines defined as a set of pairs of:
1) unordered nodes to define edges, arcs, or lines for an
undirected graph, or
2) ordered pairs to define directed edges, directed arcs, or
directed lines, or arrows for a directed graph.

® May also associate with each edge some edge value, such
as a symbolic label or a numeric attribute (cost, capacity,
length, etc.).

(a) (b)

® A graph G = (V, E) consists of a set of vertices V and a
set of edges E, such that each edge in E is a connection
between a pair of vertices in V' (and defined by that pair).

® The number of vertices is written |V/|, and the number of

edges is written |E|. |E| can range from zero to a
maximum of |V|?> — |V|. Why?? Draw it

(@) (b)

(a) A graph. (b) A directed graph (digraph). (c) A labeled
(directed) graph with weights associated with the edges. In
this example, there is a simple path from Vertex 0 to Vertex 3
containing Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1
also form a path, but not a simple path because Vertex 1
appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.

Outline

@ Introductions

Connected components

Connected components

O & © O
()
9 ® ©

® Undirected graph is connected if there is at least one path
from any vertex to any other.

Maximally connected subgraphs of an undirected graph
are called connected components (3 above)

Vertices 0, 1, 2, 3, and 4 form one connected component.

Vertices 5 and 6 form a second connected component.
Vertex 7 by itself forms a third connected component.

Outline

@ Introductions

Graph types

Types of graph

(e) (f)

Simple (a-d); Complete (c); Multigraph (e); Pseudograph (f);
Circuit in a digraph (g); Cycle in the digraph

Outline

@ Introductions

Degree

Degree

O. & © O
(4)
D & ©

® indegree of vertex: for digraph this is number of
incoming edges (not depicted above)

® outdegree of vertex: for digraph this is number of
outgoing edges (not depicted above)

® degree of vertex: in undirected graph this is number of
edges incident on vertex; note: a loop in an undirected
graph counts as 2

® degree of graph: in digraph this is sum of indegree and
outdegree of every vertex; in undirected graph this is sum
of degree of every vertex; number of edges * 2

Outline

@ Introductions

Operations

Common operations

® adjacent(G, x,y): tests whether there is an edge from the vertex x to
the vertex vy;

® neighbors(G, x): lists all vertices y such that there is an edge from
the vertex x to the vertex y; note: directed graphs just include
outgoing neighbors in this list

® add_vertex(G, x): adds vertex x, if it is not there;
® remove_vertex(G, x): removes vertex x, if it is there;

® add_edge(G, x, y): adds edge from vertex x to vertex y, if it is not
there;

® remove_edge(G, x,y): removes edge from vertex x to vertex vy, if it is
there;

® get_vertex_value(G, x): returns value associated with vertex x;
® set_vertex_value(G, x, v): sets value associated with vertex x to v.
® get_edge_value(G,x,y): returns value associated with edge (x, y);

® set_edge_value(G,x,y,v): sets value associated with edge (x, y) to v.

Outline

Implementation

@ Implementation

Outline

@ Implementation
Adjacency

Adjacency with a directed graph (a) below

0 1. 2 3 4
1 1

A WO NV = O
-

i B I g
314

i %
-—=1A

i

(©

¢ (b) Adjacency matrix |V/|x|V/| array. Vertices: vy through
Vo_1. Space use is ©((|V|)?). Data are weights, or 0/1.

¢ (c) Adjacency list |V| items long, with position i storing
edges for Vertex v;. Space use is O(|V| + |E|)

Adjacency with an undirected graph (a) below

0 1 2 3 4
o] 1 1
1|1 11
2 11
3| 11
al1 1
(b)
o =~ [F=~[41]
1 =[BT I~ 17
2| =3[F~[417
3| [t [F=[2]1
4 =l [F+[2]]

(c)

¢ (b) Adjacency matrix |V|x|V/| array. Vertices: vy through
V1. Space use is ©(|V/)?). Data are weights or 0/1.

® (c) Adjacency list |V| items long, with position i storing
edges for Vertex v;

Adjacency with undirected graph: table vs. array

. b (21 =] (2] [T
.,/|\d/ AN E/Ij =
C e
N]
\
(a) -
[o] ~[e]
a]|c d f L3 4
b d e
c a f
. [d |
: b z e f a b ¢ d e f g
f a ¢ d a 0o 0 1 1 0 1 0
g b 0 0 0 I I 0 0
I 0 0 0 0 0
(b) [; 1 1 0 0 1 : 0
e 0O 1 0 10 0 0
f I 0o 1 I 0 0 0
g 0O 0 0 0O 0 0 0
() (d)
a Graph
b Adjacency list (table)
¢ Adjacency list (linked)
d Adjacency matrix

Outline

@ Implementation

Incidence

Incidence matrix

(G0)

N
oNaNoNe)
OO ||
ORI IOIN
OIFRIOIF|Ww
el le] (@] ol NN

® An edge connecting Vertices U and V is written (U, V).
Such an edge is said to be incident on Vertices U and V.

Outline

@ Implementation

Edge list

Edge]l.ist Edgle2Llst
12
23
25
B
43
45
55
54

Adjacency List (node list)

Edge list

Node List
i22
235
33
435
534

Edge list

Graph Representations

node list edge list

A-BCDEF AB EA

B-ACEH AC EB

C-ABDEH AD EC

D-ACFGH AE EF

E-ABCFG AF EG

F-ADEGH BA FA

G-DEFH BC FD

H-BCDFG BE FE

node list - lists the nodes connected to each node BH FG

adjacency matrix CA FH

edge list - lists each of the edges as a pair of nodes cCB GD

.)) ABCDEFGH gp g
undirected edges may be listed twice XY and YX A-1111100

in order to simplify algorithm implementation B1-101001 g E g E

C11-11001 pa He

adjacency matrix - foran n-node graphwebuldan D 1 0 1 - 0 1 1 1 DC HC

nxn array with 1'sindicating edges and O'snoedge E 1 1 1 0 - 1 1 0 pfF pHp

the main diagonal of the matrix is unused unlessa F 1 0 0 1 1 - 1 1 pg HF

node has an edge connected to itself. Ifgraphis & 0 00 1 1.1 — 1 py nyg
HO111011 -

weighted, 1's are replaced with edge weight values

30

37
Weights could be:

*Frequency of interaction in
period of observation
*Number of items
exchanged in period
*Individual perceptions of
strength of relationship
*Costs in communication or
exchange, eg. distance
*Combinations of these

Edge list

Edge list: add column of weights

| 2 30

[TV S T S |

3
3
4
4

5
22
2
37

Adjacency matrix: add weights instead of |

Vertex

22
2

T
- 30 5 0

22

37

2
37

Outline

@ Implementation

Asymptotic comparison

Asymptotic comparison

Adjacency list|Adjacency matrix|Incidence matrix
Store graph o(|V|+ |E]) |O(IV]?) O(|V| * |E)])
Add vertex 0(1) Oo(IV]?) O(|V| = |E])
Add edge o(1) o(1) O([V[*|E)
Remove vertex |O(|E|) Oo(|V]?) O(|V| = |E])
Remove edge |O(|V|) 0o(1) Oo(| V| * |E])
Query adjacency|O(]V]) 0O(1) O(|E|)

® Adjacency list: Slow to remove vertices and edges,
because it needs to find all vertices or edges

® Adjacency matrix: Slow to add or remove vertices,
because matrix must be resized/copied

® Incidence matrix: Slow to add or remove vertices and
edges, because matrix must be resized/copied

	Introductions
	Big picture
	Applications
	ADT and data structure
	Connected components
	Graph types
	Degree
	Operations

	Implementation
	Adjacency
	Incidence
	Edge list
	Asymptotic comparison

