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Graphs and networks big picture

• Mathematical structure used to model pairwise relations
between objects.
• Objects correspond to mathematical abstractions called

vertices (also called nodes or points) and each of the
related pairs of vertices is called an edge (also called an
arc or line)
• Network theory is a part of graph theory: a network can

be defined as a graph in which nodes and/or edges have
attributes (e.g. names).
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Layouts do not necessarily imply position
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Graphs and networks big picture

• Ordered collection of data (there may be a connection
between any two data values in the collection)

• Non-linear (every element doesn’t just have a previous and
next element like linked lists)

• Differs from tree in that there is no “root” node, each
node can have more than 1 “parent”, and there can be
loops
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Applications of graph theory

Very widely used at a higher-level problem solving

• Modeling social networks, the spread of ideas or diseases

• Modeling brain networks

• Modeling networks of gene-protein interactions

• Modeling connectivity in computer and communications networks.

• Integrated circuit design

• Representing a travel map as a set of locations with distances
between locations; used to compute shortest routes between
locations.

• Modeling flow capacities in transportation networks.

• Finding a path from a starting condition to a goal condition; for
example, in artificial intelligence problem solving.

• Modeling computer algorithms, showing transitions from one
program state to another.

• Finding an acceptable order for finishing sub-tasks in a complex
activity, such as constructing large buildings.

• Modeling relationships such as family trees, business or military
organizations, and scientific taxonomies.

• Modeling relationships between businesses, markets, and economies
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Graphs

• Finite set of vertices, nodes, or points which are connected
by edges, arcs, or lines defined as a set of pairs of:
1) unordered nodes to define edges, arcs, or lines for an
undirected graph, or
2) ordered pairs to define directed edges, directed arcs, or
directed lines, or arrows for a directed graph.
• May also associate with each edge some edge value, such

as a symbolic label or a numeric attribute (cost, capacity,
length, etc.).
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Graphs

• A graph G = (V ,E ) consists of a set of vertices V and a
set of edges E , such that each edge in E is a connection
between a pair of vertices in V (and defined by that pair).

• The number of vertices is written |V |, and the number of
edges is written |E |. |E | can range from zero to a
maximum of |V |2 − |V |. Why?? Draw it
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Graphs

(a) A graph. (b) A directed graph (digraph). (c) A labeled
(directed) graph with weights associated with the edges. In
this example, there is a simple path from Vertex 0 to Vertex 3
containing Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1
also form a path, but not a simple path because Vertex 1
appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.
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Connected components

• Undirected graph is connected if there is at least one path
from any vertex to any other.

• Maximally connected subgraphs of an undirected graph
are called connected components (3 above)

• Vertices 0, 1, 2, 3, and 4 form one connected component.

• Vertices 5 and 6 form a second connected component.

• Vertex 7 by itself forms a third connected component.
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Types of graph

Simple (a-d); Complete (c); Multigraph (e); Pseudograph (f);
Circuit in a digraph (g); Cycle in the digraph
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Degree

• indegree of vertex: for digraph this is number of
incoming edges (not depicted above)
• outdegree of vertex: for digraph this is number of

outgoing edges (not depicted above)
• degree of vertex: in undirected graph this is number of

edges incident on vertex; note: a loop in an undirected
graph counts as 2
• degree of graph: in digraph this is sum of indegree and

outdegree of every vertex; in undirected graph this is sum
of degree of every vertex; number of edges * 2
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Common operations

• adjacent(G , x , y): tests whether there is an edge from the vertex x to
the vertex y;

• neighbors(G , x): lists all vertices y such that there is an edge from
the vertex x to the vertex y; note: directed graphs just include
outgoing neighbors in this list

• add vertex(G , x): adds vertex x, if it is not there;

• remove vertex(G , x): removes vertex x, if it is there;

• add edge(G , x , y): adds edge from vertex x to vertex y, if it is not
there;

• remove edge(G , x , y): removes edge from vertex x to vertex y, if it is
there;

• get vertex value(G , x): returns value associated with vertex x;

• set vertex value(G , x , v): sets value associated with vertex x to v.

• get edge value(G , x , y): returns value associated with edge (x, y);

• set edge value(G , x , y , v): sets value associated with edge (x, y) to v.
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Adjacency with a directed graph (a) below

• (b) Adjacency matrix |V |x |V | array. Vertices: v0 through
vn−1. Space use is Θ((|V |)2). Data are weights, or 0/1.
• (c) Adjacency list |V | items long, with position i storing

edges for Vertex vi . Space use is Θ(|V |+ |E |)
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Adjacency with an undirected graph (a) below

• (b) Adjacency matrix |V |x |V | array. Vertices: v0 through
vn−1. Space use is Θ(|V |)2). Data are weights or 0/1.
• (c) Adjacency list |V | items long, with position i storing

edges for Vertex vi
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Adjacency with undirected graph: table vs. array

a Graph

b Adjacency list (table)

c Adjacency list (linked)

d Adjacency matrix
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Incidence matrix

• An edge connecting Vertices U and V is written (U, V).
Such an edge is said to be incident on Vertices U and V.
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Edge list
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Asymptotic comparison

Adjacency list Adjacency matrix Incidence matrix
Store graph O(|V |+ |E |) O(|V |2) O(|V | ∗ |E |)
Add vertex O(1) O(|V |2) O(|V | ∗ |E |)
Add edge O(1) O(1) O(|V | ∗ |E |)
Remove vertex O(|E |) O(|V |2) O(|V | ∗ |E |)
Remove edge O(|V |) O(1) O(|V | ∗ |E |)
Query adjacency O(|V |) O(1) O(|E |)

• Adjacency list: Slow to remove vertices and edges,
because it needs to find all vertices or edges

• Adjacency matrix: Slow to add or remove vertices,
because matrix must be resized/copied

• Incidence matrix: Slow to add or remove vertices and
edges, because matrix must be resized/copied
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