
Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Topological sort and shortest path finding

Comp Sci 1575 Data Structures



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Debugging

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

–Brian W. Kernighan



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Outline

1 Topological sort
Printing nodes

DFS
BFS

2 Shortest path problems
High level
Code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Problem: Plan your course schedule



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Task planning

Goal: organize the tasks into a linear order to complete them
one at a time without violating any prerequisites.

• Model the problem using a directed acyclic graph (DAG)

• One task is a prerequisite of another, represented by
vertices with a directed relationship.

• Cycle would indicate a conflicting series of prerequisites
that could not be completed without violating at least one
prerequisite.



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Outline

1 Topological sort
Printing nodes

DFS
BFS

2 Shortest path problems
High level
Code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

How to print the nodes in a valid task order?

• Can we use DFS of BFS?

• Do we use recursion?

• If so, when do we print?

• Which tasks can be done immediately?

• Which can be done after that?



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Option 1: DFS with post-print

• Process of laying out the vertices of a DAG in a linear
order to meet the prerequisite rules is called a topological
sort.

• Found by performing a DFS on the graph (then reversed).
• When a vertex is visited, no action is taken (i.e., function

PreVisit does nothing).
• When the recursion pops back to that vertex, function

PostVisit prints the vertex.
• Yields a topological sort in reverse order.



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Option 1: DFS with post-print

Look at code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Option 2: BFS with queue

• Visit all edges, counting the number of edges that lead to
each vertex (prerequisites). Store in an array.

• All vertices with no prerequisites are placed on a queue.

• When Vertex V is taken off of the queue and printed, all
neighbors of V (V as a prerequisite) have counts
decremented by one.

• Put any neighbor whose count becomes zero in queue

• If the queue becomes empty without printing all of the
vertices, then the graph contains a cycle, and there is no
valid ordering for the tasks.



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Option 2: BFS with queue

Look at code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Outline

1 Topological sort
Printing nodes

DFS
BFS

2 Shortest path problems
High level
Code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Single-source shortest-paths problem

• Given Vertex S in Graph G, find a shortest path from S to
every other vertex in G.

• Goal: shortest path between two vertices, d(S,T)

• But, in the worst case, while finding d(S,T), we might find
the shortest paths from S to every other vertex as well.



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Single-source shortest-paths problem

• Starting at node A, any ideas?



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Check shortest neighbors first

• Dijkstra’s algorithm finds the shortest paths between
nodes in a graph, and it comes in several varieties.

• In AI, variants known as uniform-cost search, formulated
as an instance of the more general idea of best-first search.



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Outline

1 Topological sort
Printing nodes

DFS
BFS

2 Shortest path problems
High level
Code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Dijkstra’s algorithm(s) overview

Let the node at which we are starting be called the initial node.
Let the distance of node Y be the distance from the initial
node to Y.

1 Assign all nodes a tentative distance: set to 0 for initial node and to
infinity for all others.

2 Set initial node as current. Mark all other nodes unvisited. Create a
set of all the unvisited nodes called the unvisited set.

3 For the current node, consider all of its unvisited neighbors and
calculate their tentative distances. Compare the newly calculated
tentative distance to the current assigned value and assign the
smaller one.

4 After processing all neighbors of the current node, mark the current
node as visited and remove it from the unvisited set. A visited node
will never be checked again.

5 If the destination node has been marked visited, or if the smallest
tentative distance among the nodes in the unvisited set is infinity
(when there is no connection between the initial node and remaining
unvisited nodes), then stop.

6 Otherwise, select the unvisited node that is marked with the smallest
tentative distance, set it as current, and go back to step 3 (How??)



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Single-source shortest-paths problem



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Outline

1 Topological sort
Printing nodes

DFS
BFS

2 Shortest path problems
High level
Code



Topological
sort

Printing nodes

DFS

BFS

Shortest path
problems

High level

Code

Dijkstra’s algorithm

Look at code, which is provided in two varieties, one with a
heap and one without (speeds up step 6 on previous slide).


	Topological sort
	Printing nodes

	Shortest path problems
	High level
	Code


