
Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Review, perspectives, lessons learned

Comp Sci 1575 Data Structures

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Almost done!

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

A quite high mean this semester

Significantly more than half the class has a B or higher. This
distribution is indicative of high grades being predictably
accessible with appropriately directed work. Based on this,
besides the possible CET bonus, definitely no global curve or
drop needed. Difficulty hype is not all it is made out to be (this
is a pretty typcial distribution).

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Data structures

Color key:

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Sorting algorithms

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Sorting algorithms

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

STL is now just part of standard namespace

• Old diagram of the Standard Template Library (STL)

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Main pillars of the STL

• Containers manage storage space for elements and
provide member functions to access them. Implemented as
templated classes, with flexibility of types as elements.

• Algorithms act on containers, and perform operations like
initialization, sorting, searching, and transforming of the
contents of the aforementioned containers.

• Iterators step through elements of collections of objects
in containers or subsets of containers. Pointer-like
iterators can traverse many container classes in modularly.

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Containers

• Containers library is a generic collection of class templates
and algorithms that allow programmers to easily
implement common data structures like queues, lists, and
stacks.

• Classes of containers, each of which is designed to support
a different set of operations:

1 sequence containers
2 associative containers
3 un-ordered associative containers
4 container adaptors (modify above)

• Containers manage storage space that is allocated for their
elements and provides member functions to access them,
either directly or through iterators (objects with properties
similar to pointers).

• The set of containers have at least several member
functions in common with each other, and share
functionalities.

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Containers

For a comprehensive list, see:

• http://en.cppreference.com/w/cpp/container

• http://www.cplusplus.com/reference/stl/

• https://en.wikipedia.org/wiki/Standard_

Template_Library

http://en.cppreference.com/w/cpp/container
http://www.cplusplus.com/reference/stl/
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Standard_Template_Library

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Simple utilities: pair, tuple

Not in the “Containers” but “Utilities”

• http://en.cppreference.com/w/cpp/utility/pair

• http://en.cppreference.com/w/cpp/utility/tuple

http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/tuple

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

How to choose your container?

•

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Iterators

An iterator can be imagined as a pointer to a given element in
the container, with overloaded operators to provide a subset of
well-defined functions normally provided by pointers:
• Operator∗ Dereferencing the iterator returns the element

that the iterator is currently pointing at.
• Operator + + Moves the iterator to the next element in

the container. Most iterators also provide Operator −− to
move to the previous element.

• Operator == and Operator ! = Basic comparison
operators to determine if two iterators point to the same
element. To compare the values that two iterators are
pointing at, dereference the iterators first, and then use a
comparison operator.

• Operator = Assign the iterator to a new position (typically
the start or end of the container’s elements). To assign
the value of the element the iterator is point at,
dereference the iterator first, then use the assign operator.

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Iterators

• Where does forward list go?
• http://en.cppreference.com/w/cpp/iterator
• http://www.cplusplus.com/reference/iterator/

http://en.cppreference.com/w/cpp/iterator
http://www.cplusplus.com/reference/iterator/

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Iterators

Each category of iterator is defined by the operations that can be performed on
it. Any type that supports the necessary operations can be used as an iterator,
e.g., pointers support all of the operations required by RandomAccessIterator, so
pointers can be used anywhere a RandomAccessIterator is expected.

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Iterators

Each container includes at least 4 member functions for the
operator= to set the values of named LHS iterators.

• begin() returns an iterator to the first element.
• end() returns an iterator one past the last element.
• cbegin() returns a const (read-only) iterator to the first

element.
• cend() returns a const (read-only) iterator one past the

last element.

end() doesn’t point to the last element in the list. This makes
looping easy: iterating over the elements can continue until the
iterator reaches end(), and then you know you’re done.

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

iterator example

#inc l u d e <i o s t r e a m>
#inc l u d e <v e c t o r>
#inc l u d e <s t r i n g>

i n t main ()
{

s t d : : v e c t o r<i n t> i n t s {1 , 2 , 4 , 8 , 16} ;
s t d : : v e c t o r<s t d : : s t r i n g> f r u i t s {” orange ” , ” a p p l e ” , ” r a s p b e r r y ”} ;
s t d : : v e c t o r<char> empty ;

// Sums a l l i n t e g e r s i n the v e c t o r i n t s (i f any) , p r i n t i n g on l y the r e s u l t .
i n t sum = 0 ;

f o r (auto i t = i n t s . c b e g i n () ; i t != i n t s . cend () ; i t ++)
sum += ∗ i t ;

s t d : : cout << ”Sum o f i n t s : ” << sum << ”\n” ;

// P r i n t s the f i r s t f r u i t i n the v e c t o r f r u i t s , w i thout check i ng
s t d : : cout << ” F i r s t f r u i t : ” << ∗ f r u i t s . b e g i n () << ”\n” ;

// checks
cout << empty . empty () ;
i f (empty . b e g i n () == empty . end ())

s t d : : cout << ” v e c t o r ’ empty ’ i s i n d e e d empty .\n” ;

// A l t e r n a t i v e s yn tax
auto i t 1 = i n t s . b e g i n () ;
auto i t 2 = s t d : : b e g i n (i n t s) ;

}

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Container have different iterator invalidation rules

Each container has different rules for when an iterator will be
invalidated after operations on the container:
http://en.cppreference.com/w/cpp/container

http://en.cppreference.com/w/cpp/container

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Outline

1 Data Structures Overview

2 STL
History
Containers
Iterators

3 Smart pointers

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Smart pointers

Want to avoid dynamic memory management, but still use it?

• https://en.cppreference.com/book/intro/smart_

pointers

• https://en.cppreference.com/w/cpp/memory

• https://www.learncpp.com/cpp-tutorial/

15-1-intro-to-smart-pointers-move-semantics/

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/w/cpp/memory
https://www.learncpp.com/cpp-tutorial/15-1-intro-to-smart-pointers-move-semantics/
https://www.learncpp.com/cpp-tutorial/15-1-intro-to-smart-pointers-move-semantics/

Data
Structures
Overview

STL

History

Containers

Iterators

Smart pointers

Final project code file overview

	Data Structures Overview
	STL
	History
	Containers
	Iterators

	Smart pointers

