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Chapter 1

Introduction

Every computer science curriculum in the world includes a course on data structures
and algorithms. Data structures are that important; they improve our quality of life and
even save lives on a regular basis. Many multi-million and several multi-billion dollar
companies have been built around data structures.

How can this be? If we stop to think about it, we realize that we interact with data
structures constantly.

• Open a file: File system data structures are used to locate the parts of that file on
disk so they can be retrieved. This isn’t easy; disks contain hundreds of millions
of blocks. The contents of your file could be stored on any one of them.

• Look up a contact on your phone: A data structure is used to look up a phone
number in your contact list based on partial information even before you finish
dialing/typing. This isn’t easy; your phone may contain information about a lot of
people—everyone you have ever contacted via phone or email—and your phone
doesn’t have a very fast processor or a lot of memory.

• Log in to your favourite social network: The network servers use your login in-
formation to look up your account information. This isn’t easy; the most popular
social networks have hundreds of millions of active users.

• Do a web search: The search engine uses data structures to find the web pages
containing your search terms. This isn’t easy; there are over 8.5 billion web pages
on the Internet and each page contains a lot of potential search terms.

• Phone emergency services (9-1-1): The emergency services network looks up
your phone number in a data structure that maps phone numbers to addresses
so that police cars, ambulances, or fire trucks can be sent there without delay.
This is important; the person making the call may not be able to provide the exact
address they are calling from and a delay can mean the difference between life or
death.
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1.1 The Need for Efficiency

In the next section, we look at the operations supported by the most commonly used
data structures. Anyone with a bit of programming experience will see that these op-
erations are not hard to implement correctly. We can store the data in an array or a
linked list and each operation can be implemented by iterating over all the elements of
the array or list and possibly adding or removing an element.

This kind of implementation is easy, but not very efficient. Does this really matter?
Computers are becoming faster and faster. Maybe the obvious implementation is good
enough. Let’s do some rough calculations to find out.

Number of operations: Imagine an application with a moderately-sized data set, say
of one million (106), items. It is reasonable, in most applications, to assume that the
application will want to look up each item at least once. This means we can expect
to do at least one million (106) searches in this data. If each of these 106 searches
inspects each of the 106 items, this gives a total of 106 × 106 = 1012 (one thousand
billion) inspections.

Processor speeds: At the time of writing, even a very fast desktop computer can not
do more than one billion (109) operations per second.1 This means that this application
will take at least 1012/109 = 1000 seconds, or roughly 16 minutes and 40 seconds.
Sixteen minutes is an eon in computer time, but a person might be willing to put up with
it (if he or she were headed out for a coffee break).

Bigger data sets: Now consider a company like Google, that indexes over 8.5 billion
web pages. By our calculations, doing any kind of query over this data would take at
least 8.5 seconds. We already know that this isn’t the case; web searches complete
in much less than 8.5 seconds, and they do much more complicated queries than just
asking if a particular page is in their list of indexed pages. At the time of writing, Google
receives approximately 4,500 queries per second, meaning that they would require at
least 4,500× 8.5 = 38,250 very fast servers just to keep up.

The solution: These examples tell us that the obvious implementations of data struc-
tures do not scale well when the number of items, n, in the data structure and the num-
ber of operations, m, performed on the data structure are both large. In these cases,
the time (measured in, say, machine instructions) is roughly n×m.

The solution, of course, is to carefully organize data within the data structure so
that not every operation requires every data item to be inspected. Although it sounds
impossible at first, we will see data structures where a search requires looking at only

1Computer speeds are at most a few gigahertz (billions of cycles per second), and each operation typically
takes a few cycles.
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two items on average, independent of the number of items stored in the data structure.
In our billion instruction per second computer it takes only 0.000000002 seconds to
search in a data structure containing a billion items (or a trillion, or a quadrillion, or even
a quintillion items).

We will also see implementations of data structures that keep the items in sorted
order, where the number of items inspected during an operation grows very slowly as a
function of the number of items in the data structure. For example, we can maintain a
sorted set of one billion items while inspecting at most 60 items during any operation. In
our billion instruction per second computer, these operations take 0.00000006 seconds
each.

The remainder of this chapter briefly reviews some of the main concepts used
throughout the rest of the book. Section 1.2 describes the interfaces implemented by all
of the data structures described in this book and should be considered required reading.
The remaining sections discuss:

• some mathematical review including exponentials, logarithms, factorials, asymp-
totic (big-Oh) notation, probability, and randomization;

• the model of computation;

• correctness, running time, and space;

• an overview of the rest of the chapters; and

• the sample code and typesetting conventions.

A reader with or without a background in these areas can easily skip them now and
come back to them later if necessary.

1.2 Interfaces

When discussing data structures, it is important to understand the difference between
a data structure’s interface and its implementation. An interface describes what a data
structure does, while an implementation describes how the data structure does it.

An interface, sometimes also called an abstract data type, defines the set of opera-
tions supported by a data structure and the semantics, or meaning, of those operations.
An interface tells us nothing about how the data structure implements these operations;
it only provides a list of supported operations along with specifications about what types
of arguments each operation accepts and the value returned by each operation.

A data structure implementation, on the other hand, includes the internal represen-
tation of the data structure as well as the definitions of the algorithms that implement the
operations supported by the data structure. Thus, there can be many implementations
of a single interface. For example, in Chapter 2, we will see implementations of the List
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x · · ·

add(x)/enqueue(x) remove()/dequeue()

Figure 1.1: A FIFO Queue.

interface using arrays and in Chapter 3 we will see implementations of the List interface
using pointer-based data structures. Each implements the same interface, List, but in
different ways.

1.2.1 The Queue, Stack, and Deque Interfaces

The Queue interface represents a collection of elements to which we can add elements
and remove the next element. More precisely, the operations supported by the Queue
interface are

• add(x): add the value x to the Queue

• remove(): remove the next (previously added) value, y, from the Queue and re-
turn y

Notice that the remove() operation takes no argument. The Queue’s queueing disci-
pline decides which element should be removed. There are many possible queueing
disciplines, the most common of which include FIFO, priority, and LIFO.

A FIFO (first-in-first-out) Queue, which is illustrated in Figure 1.1, removes items in
the same order they were added, much in the same way a queue (or line-up) works
when checking out at a cash register in a grocery store. This is the most common kind
of Queue so the qualifier FIFO is often omitted. In other texts, the add(x) and remove()
operations on a FIFO Queue are often called enqueue(x) and dequeue(), respectively.

A priority Queue, illustrated in Figure 1.2, always removes the smallest element
from the Queue, breaking ties arbitrarily. This is similar to the way in which patients are
triaged in a hospital emergency room. As patients arrive they are evaluated and then
placed in a waiting room. When a doctor becomes available he or she first treats the
patient with the most life-threatening condition. The remove() operation on a priority
Queue is usually called delete min() in other texts.

A very common queueing discipline is the LIFO (last-in-first-out) discipline, illus-
trated in Figure 1.3. In a LIFO Queue, the most recently added element is the next
one removed. This is best visualized in terms of a stack of plates; plates are placed
on the top of the stack and also removed from the top of the stack. This structure is so
common that it gets its own name: Stack. Often, when discussing a Stack, the names
of add(x) and remove() are changed to push(x) and pop(); this is to avoid confusing
the LIFO and FIFO queueing disciplines.
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Figure 1.2: A priority Queue.
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Figure 1.3: A stack.

A Deque is a generalization of both the FIFO Queue and LIFO Queue (Stack). A
Deque represents a sequence of elements, with a front and a back. Elements can
be added at the front of the sequence or the back of the sequence. The names of
the Deque operations are self-explanatory: add first(x), remove first(), add last(x),
and remove last(). It is worth noting that a Stack can be implemented using only
add first(x) and remove first() while a FIFO Queue can be implemented using add last(x)
and remove first().

1.2.2 The List Interface: Linear Sequences

This book will talk very little about the FIFO Queue, Stack, or Deque interfaces. This
is because these interfaces are subsumed by the List interface. A List, illustrated in
Figure 1.4, represents a sequence, x0, . . . ,xn−1, of values. The List interface includes
the following operations:

1. size(): return n, the length of the list

2. get(i): return the value xi

3. set(i,x): set the value of xi equal to x

4. add(i,x): add x at position i, displacing xi, . . . ,xn−1;
Set xj+1 = xj , for all j ∈ {n− 1, . . . , i}, increment n, and set xi = x

5. remove(i) remove the value xi, displacing xi+1, . . . ,xn−1;
Set xj = xj+1, for all j ∈ {i, . . . ,n− 2} and decrement n
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Figure 1.4: A List represents a sequence indexed by 0,1,2, . . . ,n − 1. In this List a call to get(2)
would return the value c.

Notice that these operations are easily sufficient to implement the Deque interface:

add first(x) ⇒ add(0,x)

remove first() ⇒ remove(0)

add last(x) ⇒ add(size(),x)

remove last() ⇒ remove(size()− 1)

Although we will normally not discuss the Stack, Deque and FIFO Queue interfaces
in subsequent chapters, the terms Stack and Deque are sometimes used in the names
of data structures that implement the List interface. When this happens, it highlights the
fact that these data structures can be used to implement the Stack or Deque interface
very efficiently. For example, the ArrayDeque class is an implementation of the List
interface that implements all the Deque operations in constant time per operation.

1.2.3 The USet Interface: Unordered Sets

The USet interface represents an unordered set of unique elements, which mimics a
mathematical set. A USet contains n distinct elements; no element appears more than
once; the elements are in no specific order. A USet supports the following operations:

1. size(): return the number, n, of elements in the set

2. add(x): add the element x to the set if not already present;
Add x to the set provided that there is no element y in the set such that x equals
y. Return true if x was added to the set and false otherwise.

3. remove(x): remove x from the set;
Find an element y in the set such that x equals y and remove y. Return y, or nil
if no such element exists.

4. find(x): find x in the set if it exists;
Find an element y in the set such that y equals x. Return y, or nil if no such
element exists.

These definitions are a bit fussy about distinguishing x, the element we are removing
or finding, from y, the element we may remove or find. This is because x and y might
actually be distinct objects that are nevertheless treated as equal. Such a distinction
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is useful because it allows for the creation of dictionaries or maps that map keys onto
values.

To create a dictionary/map, one forms compound objects called Pairs, each of which
contains a key and a value. Two Pairs are treated as equal if their keys are equal. If
we store some pair (k,v) in a USet and then later call the find(x) method using the pair
x = (k,nil) the result will be y = (k,v). In other words, it is possible to recover the value,
v, given only the key, k.

1.2.4 The SSet Interface: Sorted Sets

The SSet interface represents a sorted set of elements. An SSet stores elements from
some total order, so that any two elements x and y can be compared. In code examples,
this will be done with a method called compare(x,y) in which

compare(x,y)


< 0 if x < y
> 0 if x > y
= 0 if x = y

An SSet supports the size(), add(x), and remove(x) methods with exactly the same
semantics as in the USet interface. The difference between a USet and an SSet is in
the find(x) method:

4. find(x): locate x in the sorted set;
Find the smallest element y in the set such that y ≥ x. Return y or nil if no such
element exists.

This version of the find(x) operation is sometimes referred to as a successor search.
It differs in a fundamental way from USet.find(x) since it returns a meaningful result
even when there is no element equal to x in the set.

The distinction between the USet and SSet find(x) operations is very important
and often missed. The extra functionality provided by an SSet usually comes with a
price that includes both a larger running time and a higher implementation complexity.
For example, most of the SSet implementations discussed in this book all have find(x)
operations with running times that are logarithmic in the size of the set. On the other
hand, the implementation of a USet as a ChainedHashTable in Chapter 7 has a find(x)
operation that runs in constant expected time. When choosing which of these structures
to use, one should always use a USet unless the extra functionality offered by an SSet
is truly needed.

1.3 Mathematical Background

In this section, we review some mathematical notations and tools used throughout this
book, including logarithms, big-Oh notation, and probability theory. This review will be
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brief and is not intended as an introduction. Readers who feel they are missing this
background are encouraged to read, and do exercises from, the appropriate sections of
the very good (and free) textbook on mathematics for computer science [29].

1.3.1 Exponentials and Logarithms

The expression bx denotes the number b raised to the power of x. If x is a positive
integer, then this is just the value of b multiplied by itself x − 1 times:

bx = b × b × · · · × b︸         ︷︷         ︸
x

.

When x is a negative integer, b−x = 1/bx. When x = 0, bx = 1. When b is not an integer,
we can still define exponentiation in terms of the exponential function ex (see below),
which is itself defined in terms of the exponential series, but this is best left to a calculus
text.

In this book, the expression logb k denotes the base-b logarithm of k. That is, the
unique value x that satisfies

bx = k .

Most of the logarithms in this book are base 2 (binary logarithms). For these, we omit
the base, so that logk is shorthand for log2 k.

An informal, but useful, way to think about logarithms is to think of logb k as the
number of times we have to divide k by b before the result is less than or equal to 1.
For example, when one does binary search, each comparison reduces the number of
possible answers by a factor of 2. This is repeated until there is at most one possible
answer. Therefore, the number of comparison done by binary search when there are
initially at most n+ 1 possible answers is at most dlog2(n+ 1)e.

Another logarithm that comes up several times in this book is the natural logarithm.
Here we use the notation lnk to denote loge k, where e — Euler’s constant — is given
by

e = lim
n→∞

(
1 +

1
n

)n
≈ 2.71828 .

The natural logarithm comes up frequently because it is the value of a particularly com-
mon integral: ∫ k

1
1/xdx = lnk .

Two of the most common manipulations we do with logarithms are removing them from
an exponent:

blogb k = k

and changing the base of a logarithm:

logb k =
loga k
loga b

.
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For example, we can use these two manipulations to compare the natural and binary
logarithms

lnk =
logk
loge

=
logk

(lne)/(ln2)
= (ln2)(logk) ≈ 0.693147logk .

1.3.2 Factorials

In one or two places in this book, the factorial function is used. For a non-negative
integer n, the notation n! (pronounced “n factorial”) is defined to mean

n! = 1 · 2 · 3 · · · · ·n .

Factorials appear because n! counts the number of distinct permutations, i.e., orderings,
of n distinct elements. For the special case n = 0, 0! is defined as 1.

The quantity n! can be approximated using Stirling’s Approximation:

n! =
√

2πn
(n
e

)n
eα(n) ,

where
1

12n+ 1
< α(n) <

1
12n

.

Stirling’s Approximation also approximates ln(n!):

ln(n!) = n lnn−n+
1
2

ln(2πn) +α(n)

(In fact, Stirling’s Approximation is most easily proven by approximating ln(n!) = ln1 +
ln2 + · · ·+ lnn by the integral

∫ n
1 lnndn = n lnn−n+ 1.)

Related to the factorial function are the binomial coefficients. For a non-negative
integer n and an integer k ∈ {0, . . . ,n}, the notation

(n
k

)
denotes:(

n
k

)
=

n!
k!(n− k)!

.

The binomial coefficient
(n
k

)
(pronounced “n choose k”) counts the number of subsets

of an n element set that have size k, i.e., the number of ways of choosing k distinct
integers from the set {1, . . . ,n}.

1.3.3 Asymptotic Notation

When analyzing data structures in this book, we want to talk about the running times
of various operations. The exact running times will, of course, vary from computer to
computer and even from run to run on an individual computer. When we talk about the
running time of an operation we are referring to the number of computer instructions
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performed during the operation. Even for simple code, this quantity can be difficult to
compute exactly. Therefore, instead of analyzing running times exactly, we will use the
so-called big-Oh notation: For a function f (n), O(f (n)) denotes a set of functions,

O(f (n)) =
{
g(n) : there exists c > 0, and n0 such that
g(n) ≤ c · f (n) for all n ≥ n0

}
.

Thinking graphically, this set consists of the functions g(n) where c · f (n) starts to dom-
inate g(n) when n is sufficiently large.

We generally use asymptotic notation to simplify functions. For example, in place of
5n logn+ 8n− 200 we can write O(n logn). This is proven as follows:

5n logn+ 8n− 200 ≤ 5n logn+ 8n

≤ 5n logn+ 8n logn for n ≥ 2 (so that logn ≥ 1)

≤ 13n logn .

This demonstrates that the function f (n) = 5n logn + 8n − 200 is in the set O(n logn)
using the constants c = 13 and n0 = 2.

A number of useful shortcuts can be applied when using asymptotic notation. First:

O(nc1 ) ⊂O(nc2 ) ,

for any c1 < c2. Second: For any constants a,b,c > 0,

O(a) ⊂O(logn) ⊂O(nb) ⊂O(cn) .

These inclusion relations can be multiplied by any positive value, and they still hold. For
example, multiplying by n yields:

O(n) ⊂O(n logn) ⊂O(n1+b) ⊂O(ncn) .

Continuing in a long and distinguished tradition, we will abuse this notation by writing
things like f1(n) = O(f (n)) when what we really mean is f1(n) ∈ O(f (n)). We will also
make statements like “the running time of this operation isO(f (n))” when this statement
should be “the running time of this operation is a member of O(f (n)).” These shortcuts
are mainly to avoid awkward language and to make it easier to use asymptotic notation
within strings of equations.

A particularly strange example of this occurs when we write statements like

T (n) = 2logn+O(1) .

Again, this would be more correctly written as

T (n) ≤ 2logn+ [some member of O(1)] .
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The expression O(1) also brings up another issue. Since there is no variable in
this expression, it may not be clear which variable is getting arbitrarily large. Without
context, there is no way to tell. In the example above, since the only variable in the rest
of the equation is n, we can assume that this should be read as T (n) = 2logn+O(f (n)),
where f (n) = 1.

Big-Oh notation is not new or unique to computer science. It was used by the num-
ber theorist Paul Bachmann as early as 1894, and is immensely useful for describing
the running times of computer algorithms. Consider the following piece of code: One
execution of this method involves

• 1 assignment (int i ← 0),

• n + 1 comparisons (i < n),

• n increments (i + +),

• n array offset calculations (a[i]), and

• n indirect assignments (a[i]← i).

So we could write this running time as

T (n) = a+ b(n + 1) + cn + dn + en ,

where a, b, c, d, and e are constants that depend on the machine running the code and
represent the time to perform assignments, comparisons, increment operations, array
offset calculations, and indirect assignments, respectively. However, if this expression
represents the running time of two lines of code, then clearly this kind of analysis will
not be tractable to complicated code or algorithms. Using big-Oh notation, the running
time can be simplified to

T (n) =O(n) .

Not only is this more compact, but it also gives nearly as much information. The fact
that the running time depends on the constants a, b, c, d, and e in the above example
means that, in general, it will not be possible to compare two running times to know
which is faster without knowing the values of these constants. Even if we make the
effort to determine these constants (say, through timing tests), then our conclusion will
only be valid for the machine we run our tests on.

Big-Oh notation allows us to reason at a much higher level, making it possible to
analyze more complicated functions. If two algorithms have the same big-Oh running
time, then we won’t know which is faster, and there may not be a clear winner. One may
be faster on one machine, and the other may be faster on a different machine. However,
if the two algorithms have demonstrably different big-Oh running times, then we can be
certain that the one with the smaller running time will be faster for large enough values
of n.
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An example of how big-Oh notation allows us to compare two different functions is
shown in Figure 1.5, which compares the rate of growth of f1(n) = 15n versus f2(n) =
2n logn. It might be that f1(n) is the running time of a complicated linear time algorithm
while f2(n) is the running time of a considerably simpler algorithm based on the divide-
and-conquer paradigm. This illustrates that, although f1(n) is greater than f2(n) for
small values of n, the opposite is true for large values of n. Eventually f1(n) wins out,
by an increasingly wide margin. Analysis using big-Oh notation told us that this would
happen, since O(n) ⊂O(n logn).

In a few cases, we will use asymptotic notation on functions with more than one
variable. There seems to be no standard for this, but for our purposes, the following
definition is sufficient:

O(f (n1, . . . ,nk)) =


g(n1, . . . ,nk) : there exists c > 0, and z such that
g(n1, . . . ,nk) ≤ c · f (n1, . . . ,nk)

for all n1, . . . ,nk such that g(n1, . . . ,nk) ≥ z

 .

This definition captures the situation we really care about: when the arguments n1, . . . ,nk
make g take on large values. This definition also agrees with the univariate definition of
O(f (n)) when f (n) is an increasing function of n. The reader should be warned that,
although this works for our purposes, other texts may treat multivariate functions and
asymptotic notation differently.

1.3.4 Randomization and Probability

Some of the data structures presented in this book are randomized ; they make random
choices that are independent of the data being stored in them or the operations being
performed on them. For this reason, performing the same set of operations more than
once using these structures could result in different running times. When analyzing
these data structures we are interested in their average or expected running times.

Formally, the running time of an operation on a randomized data structure is a ran-
dom variable, and we want to study its expected value. For a discrete random variable
X taking on values in some countable universe U , the expected value of X, denoted by
E[X], is given by the formula

E[X] =
∑
x∈U

x ·Pr{X = x} .

Here Pr{E} denotes the probability that the event E occurs. In all of the examples in
this book, these probabilities are only with respect to the random choices made by the
randomized data structure; there is no assumption that the data stored in the structure,
nor the sequence of operations performed on the data structure, is random.

One of the most important properties of expected values is linearity of expectation.
For any two random variables X and Y ,

E[X +Y ] = E[X] + E[Y ] .
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More generally, for any random variables X1, . . . ,Xk ,

E

 k∑
i=1

Xi

 =
k∑
i=1

E[Xi] .

Linearity of expectation allows us to break down complicated random variables (like the
left hand sides of the above equations) into sums of simpler random variables (the right
hand sides).

A useful trick, that we will use repeatedly, is defining indicator random variables.
These binary variables are useful when we want to count something and are best illus-
trated by an example. Suppose we toss a fair coin k times and we want to know the
expected number of times the coin turns up as heads. Intuitively, we know the answer
is k/2, but if we try to prove it using the definition of expected value, we get

E[X] =
k∑
i=0

i ·Pr{X = i}

=
k∑
i=0

i ·
(
k
i

)
/2k

= k ·
k−1∑
i=0

(
k − 1
i

)
/2k

= k/2 .

This requires that we know enough to calculate that Pr{X = i} =
(k
i

)
/2k , and that we

know the binomial identities i
(k
i

)
= k

(k−1
i−1

)
and

∑k
i=0

(k
i

)
= 2k .

Using indicator variables and linearity of expectation makes things much easier. For
each i ∈ {1, . . . , k}, define the indicator random variable

Ii =

1 if the ith coin toss is heads
0 otherwise.

Then
E[Ii] = (1/2)1 + (1/2)0 = 1/2 .

Now, X =
∑k
i=1 Ii , so

E[X] = E

 k∑
i=1

Ii


=

k∑
i=1

E[Ii]

=
k∑
i=1

1/2

= k/2 .
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This is a bit more long-winded, but doesn’t require that we know any magical identities
or compute any non-trivial probabilities. Even better, it agrees with the intuition that we
expect half the coins to turn up as heads precisely because each individual coin turns
up as heads with a probability of 1/2.

1.4 The Model of Computation

In this book, we will analyze the theoretical running times of operations on the data
structures we study. To do this precisely, we need a mathematical model of computation.
For this, we use the w-bit word-RAM model. RAM stands for Random Access Machine.
In this model, we have access to a random access memory consisting of cells, each of
which stores a w-bit word. This implies that a memory cell can represent, for example,
any integer in the set {0, . . . ,2w − 1}.

In the word-RAM model, basic operations on words take constant time. This in-
cludes arithmetic operations (+, −, ·, /, mod ), comparisons (<, >, =, ≤, ≥), and bitwise
boolean operations (bitwise-AND, OR, and exclusive-OR).

Any cell can be read or written in constant time. A computer’s memory is managed
by a memory management system from which we can allocate or deallocate a block of
memory of any size we would like. Allocating a block of memory of size k takes O(k)
time and returns a reference (a pointer) to the newly-allocated memory block. This
reference is small enough to be represented by a single word.

The word-size w is a very important parameter of this model. The only assumption
we will make about w is the lower-bound w ≥ logn, where n is the number of elements
stored in any of our data structures. This is a fairly modest assumption, since otherwise
a word is not even big enough to count the number of elements stored in the data
structure.

Space is measured in words, so that when we talk about the amount of space used
by a data structure, we are referring to the number of words of memory used by the
structure. All of our data structures store values of a generic type T, and we assume an
element of type T occupies one word of memory.

The data structures presented in this book don’t use any special tricks that are not
implementable

1.5 Correctness, Time Complexity, and Space Complexity

When studying the performance of a data structure, there are three things that matter
most:

Correctness: The data structure should correctly implement its interface.
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Time complexity: The running times of operations on the data structure should be as
small as possible.

Space complexity: The data structure should use as little memory as possible.

In this introductory text, we will take correctness as a given; we won’t consider data
structures that give incorrect answers to queries or don’t perform updates properly. We
will, however, see data structures that make an extra effort to keep space usage to a
minimum. This won’t usually affect the (asymptotic) running times of operations, but
can make the data structures a little slower in practice.

When studying running times in the context of data structures we tend to come
across three different kinds of running time guarantees:

Worst-case running times: These are the strongest kind of running time guarantees.
If a data structure operation has a worst-case running time of f (n), then one of
these operations never takes longer than f (n) time.

Amortized running times: If we say that the amortized running time of an operation
in a data structure is f (n), then this means that the cost of a typical operation
is at most f (n). More precisely, if a data structure has an amortized running
time of f (n), then a sequence of m operations takes at most mf (n) time. Some
individual operations may take more than f (n) time but the average, over the
entire sequence of operations, is at most f (n).

Expected running times: If we say that the expected running time of an operation
on a data structure is f (n), this means that the actual running time is a random
variable (see Section 1.3.4) and the expected value of this random variable is at
most f (n). The randomization here is with respect to random choices made by
the data structure.

To understand the difference between worst-case, amortized, and expected running
times, it helps to consider a financial example. Consider the cost of buying a house:

Worst-case versus amortized cost: Suppose that a home costs $120 000. In order to
buy this home, we might get a 120 month (10 year) mortgage with monthly payments of
$1 200 per month. In this case, the worst-case monthly cost of paying this mortgage is
$1 200 per month.

If we have enough cash on hand, we might choose to buy the house outright, with
one payment of $120 000. In this case, over a period of 10 years, the amortized monthly
cost of buying this house is

$120000/120 months = $1000 per month .

This is much less than the $1 200 per month we would have to pay if we took out a
mortgage.
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Worst-case versus expected cost: Next, consider the issue of fire insurance on our
$120 000 home. By studying hundreds of thousands of cases, insurance companies
have determined that the expected amount of fire damage caused to a home like ours
is $10 per month. This is a very small number, since most homes never have fires,
a few homes may have some small fires that cause a bit of smoke damage, and a
tiny number of homes burn right to their foundations. Based on this information, the
insurance company charges $15 per month for fire insurance.

Now it’s decision time. Should we pay the $15 worst-case monthly cost for fire
insurance, or should we gamble and self-insure at an expected cost of $10 per month?
Clearly, the $10 per month costs less in expectation, but we have to be able to accept
the possibility that the actual cost may be much higher. In the unlikely event that the
entire house burns down, the actual cost will be $120 000.

These financial examples also offer insight into why we sometimes settle for an
amortized or expected running time over a worst-case running time. It is often possible
to get a lower expected or amortized running time than a worst-case running time. At
the very least, it is very often possible to get a much simpler data structure if one is
willing to settle for amortized or expected running times.

1.6 Code Samples

The code samples in this book are written in pseudocode. These should be easy
enough to read for anyone who has any programming experience in any of the most
common programming languages of the last 40 years. To get an idea of what the pseu-
docode in this book looks like, here is a function that computes the average of an array,
a:

average(a)
s← 0
for i in 0,1,2, . . . , length(a)− 1 do

s← s + a[i]
return s/length(a)

As this code illustrates, assigning to a variable is done using the← notation. We use
the convention that the length of an array, a, is denoted by length(a) and array indices
start at zero, so that 0,1,2, . . . , length(a) − 1 are the valid indices for a. To shorten
code, and sometimes make it easier to read, our pseudocode allows for (sub)array
assignments. The following two functions are equivalent:
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left shift a(a)
for i in 0,1,2, . . . , length(a)− 2 do

a[i]← a[i + 1]
a[length(a)− 1]← nil

left shift b(a)
a[0,1, . . . , length(a)− 2]← a[1,2, . . . , length(a)− 1]
a[length(a)− 1]← nil

The following code sets all the values in an array to zero:

zero(a)
a[0,1, . . . , length(a)− 1]← 0

When analyzing the running time of code like this, we have to be careful; statements
like a[0,1, . . . , length(a)− 1]← 1 or a[1,2, . . . , length(a)− 1]← a[0,1, . . . , length(a)− 2]
do not run in constant time. They run in O(length(a)) time.

We take similar shortcuts with variable assignments, so that the code x, y ← 0,1
sets x to zero and y to 1 and the code x, y ← y,x swaps the values of the variables x
and y.

Our pseudocode uses a few operators that may be unfamiliar. As is standard in
mathematics, (normal) division is denoted by the / operator. In many cases, we want to
do integer division instead, in which case we use the div operator, so that adivb = ba/bc
is the integer part of a/b. So, for example, 3/2 = 1.5 but 3div2 = 1. Occasionally, we
also use the mod operator to obtain the remainder from integer division, but this will be
defined when it is used. Later in the book, we may use some bitwise operators including
left-shift (�), right shift (�), bitwise and (∧), and bitwise exclusive-or (⊕).

The pseudocode samples in this book are machine translations of Python code
that can be downloaded from the book’s website.2 If you ever encounter an ambiguity
in the pseudocode that you can’t resolve yourself, then you can always refer to the
corresponding Python code. If you don’t read Python, the code is also available in Java
and C++. If you can’t decipher the pseudocode, or read Python, C++, or Java, then you
may not be ready for this book.

2http://opendatastructures.org

http://opendatastructures.org
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List implementations
get(i)/set(i,x) add(i,x) / remove(i)

ArrayStack O(1) O(1 + n− i)A § 2.1
ArrayDeque O(1) O(1 + min{i,n− i})A § 2.4
DualArrayDeque O(1) O(1 + min{i,n− i})A § 2.5
RootishArrayStack O(1) O(1 + n− i)A § 2.6
DLList O(1 + min{i,n− i}) O(1 + min{i,n− i}) § 3.2
SEList O(1 + min{i,n− i}/b) O(b + min{i,n− i}/b)A § 3.3

USet implementations
find(x) add(x) / remove(x)

ChainedHashTable O(1)E O(1)A,E § 7.1
LinearHashTable O(1)E O(1)A,E § 7.2
A Denotes an amortized running time.
E Denotes an expected running time.

Table 1.1: Summary of List and USet implementations.

1.7 List of Data Structures

Tables 1.1 and 1.2 summarize the performance of data structures in this book that
implement each of the interfaces, List, USet, and SSet, described in Section 1.2.

1.8 Discussion and Exercises

The List, USet, and SSet interfaces described in Section 1.2 are influenced by the Java
Collections Framework [31]. These are essentially simplified versions of the List, Set,
Map, SortedSet, and SortedMap interfaces found in the Java Collections Framework.

For a superb (and free) treatment of the mathematics discussed in this chapter, in-
cluding asymptotic notation, logarithms, factorials, Stirling’s approximation, basic prob-
ability, and lots more, see the textbook by Leyman, Leighton, and Meyer [29]. For a
gentle calculus text that includes formal definitions of exponentials and logarithms, see
the (freely available) classic text by Thompson [39].

For more information on basic probability, especially as it relates to computer sci-
ence, see the textbook by Ross [34]. Another good reference, which covers both asymp-
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SSet implementations
find(x) add(x) / remove(x)

Binary Tree O(logw)A,E O(1) / O(logw)A,E § 4

(Priority) Queue implementations
find min() add(x) / remove()

BinaryHeap O(1) O(logn)A § 5.1
MeldableHeap O(1) O(logn)E § 5.2
I This structure can only store w-bit integer data.

Table 1.2: Summary of SSet and priority Queue implementations.

totic notation and probability, is the textbook by Graham, Knuth, and Patashnik [21].

Exercise 1.1. This exercise is designed to help familiarize the reader with choosing
the right data structure for the right problem. If implemented, the parts of this exercise
should be done by making use of an implementation of the relevant interface (Stack,
Queue, Deque, USet, or SSet) provided by the .

Solve the following problems by reading a text file one line at a time and perform-
ing operations on each line in the appropriate data structure(s). Your implementations
should be fast enough that even files containing a million lines can be processed in a
few seconds.

1. Read the input one line at a time and then write the lines out in reverse order, so
that the last input line is printed first, then the second last input line, and so on.

2. Read the first 50 lines of input and then write them out in reverse order. Read
the next 50 lines and then write them out in reverse order. Do this until there are
no more lines left to read, at which point any remaining lines should be output in
reverse order.

In other words, your output will start with the 50th line, then the 49th, then the
48th, and so on down to the first line. This will be followed by the 100th line,
followed by the 99th, and so on down to the 51st line. And so on.

Your code should never have to store more than 50 lines at any given time.

3. Read the input one line at a time. At any point after reading the first 42 lines, if
some line is blank (i.e., a string of length 0), then output the line that occured 42
lines prior to that one. For example, if Line 242 is blank, then your program should
output line 200. This program should be implemented so that it never stores more
than 43 lines of the input at any given time.

4. Read the input one line at a time and write each line to the output if it is not a
duplicate of some previous input line. Take special care so that a file with a lot of
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duplicate lines does not use more memory than what is required for the number
of unique lines.

5. Read the input one line at a time and write each line to the output only if you
have already read this line before. (The end result is that you remove the first
occurrence of each line.) Take special care so that a file with a lot of duplicate
lines does not use more memory than what is required for the number of unique
lines.

6. Read the entire input one line at a time. Then output all lines sorted by length, with
the shortest lines first. In the case where two lines have the same length, resolve
their order using the usual “sorted order.” Duplicate lines should be printed only
once.

7. Do the same as the previous question except that duplicate lines should be printed
the same number of times that they appear in the input.

8. Read the entire input one line at a time and then output the even numbered lines
(starting with the first line, line 0) followed by the odd-numbered lines.

9. Read the entire input one line at a time and randomly permute the lines before
outputting them. To be clear: You should not modify the contents of any line.
Instead, the same collection of lines should be printed, but in a random order.

Exercise 1.2. A Dyck word is a sequence of +1’s and -1’s with the property that the
sum of any prefix of the sequence is never negative. For example, +1,−1,+1,−1 is a
Dyck word, but +1,−1,−1,+1 is not a Dyck word since the prefix +1−1−1 < 0. Describe
any relationship between Dyck words and Stack push(x) and pop() operations.

Exercise 1.3. A matched string is a sequence of {, }, (, ), [, and ] characters that are
properly matched. For example, “{{()[]}}” is a matched string, but this “{{()]}” is not,
since the second { is matched with a ]. Show how to use a stack so that, given a string
of length n, you can determine if it is a matched string in O(n) time.

Exercise 1.4. Suppose you have a Stack, s, that supports only the push(x) and pop()
operations. Show how, using only a FIFO Queue, q, you can reverse the order of all
elements in s.

Exercise 1.5. Using a USet, implement a Bag. A Bag is like a USet—it supports the
add(x), remove(x) and find(x) methods—but it allows duplicate elements to be stored.
The find(x) operation in a Bag returns some element (if any) that is equal to x. In
addition, a Bag supports the find all(x) operation that returns a list of all elements in
the Bag that are equal to x.
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Exercise 1.6. From scratch, write and test implementations of the List, USet and SSet
interfaces. These do not have to be efficient. They can be used later to test the correct-
ness and performance of more efficient implementations. (The easiest way to do this is
to store the elements in an array.)

Exercise 1.7. Work to improve the performance of your implementations from the pre-
vious question using any tricks you can think of. Experiment and think about how you
could improve the performance of add(i,x) and remove(i) in your List implementation.
Think about how you could improve the performance of the find(x) operation in your
USet and SSet implementations. This exercise is designed to give you a feel for how
difficult it can be to obtain efficient implementations of these interfaces.



Chapter 2

Array-Based Lists

In this chapter, we will study implementations of the List and Queue interfaces where
the underlying data is stored in an array, called the backing array. The following table
summarizes the running times of operations for the data structures presented in this
chapter:

get(i)/set(i,x) add(i,x)/remove(i)
ArrayStack O(1) O(n− i)
ArrayDeque O(1) O(min{i,n− i})
DualArrayDeque O(1) O(min{i,n− i})
RootishArrayStack O(1) O(n− i)

Data structures that work by storing data in a single array have many advantages and
limitations in common:

• Arrays offer constant time access to any value in the array. This is what allows
get(i) and set(i,x) to run in constant time.

• Arrays are not very dynamic. Adding or removing an element near the middle of
a list means that a large number of elements in the array need to be shifted to
make room for the newly added element or to fill in the gap created by the deleted
element. This is why the operations add(i,x) and remove(i) have running times
that depend on n and i.

• Arrays cannot expand or shrink. When the number of elements in the data struc-
ture exceeds the size of the backing array, a new array needs to be allocated and
the data from the old array needs to be copied into the new array. This is an
expensive operation.

The third point is important. The running times cited in the table above do not include
the cost associated with growing and shrinking the backing array. We will see that, if
carefully managed, the cost of growing and shrinking the backing array does not add
much to the cost of an average operation. More precisely, if we start with an empty
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data structure, and perform any sequence of m add(i,x) or remove(i) operations, then
the total cost of growing and shrinking the backing array, over the entire sequence of
m operations is O(m). Although some individual operations are more expensive, the
amortized cost, when amortized over all m operations, is only O(1) per operation.

2.1 ArrayStack: Fast Stack Operations Using an Array

An ArrayStack implements the list interface using an array a, called the backing array.
The list element with index i is stored in a[i]. At most times, a is larger than strictly
necessary, so an integer n is used to keep track of the number of elements actually
stored in a. In this way, the list elements are stored in a[0],. . . ,a[n− 1] and, at all times,
length(a) ≥ n.

initialize()
a← new array(1)
n← 0

2.1.1 The Basics

Accessing and modifying the elements of an ArrayStack using get(i) and set(i,x) is
trivial. After performing any necessary bounds-checking we simply return or set, re-
spectively, a[i].

get(i)
return a[i]

set(i,x)
y← a[i]
a[i]← x

return y

The operations of adding and removing elements from an ArrayStack are illustrated
in Figure 2.1. To implement the add(i,x) operation, we first check if a is already full. If so,
we call the method resize() to increase the size of a. How resize() is implemented will
be discussed later. For now, it is sufficient to know that, after a call to resize(), we can be
sure that length(a) > n. With this out of the way, we now shift the elements a[i], . . . ,a[n−
1] right by one position to make room for x, set a[i] equal to x, and increment n.
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Figure 2.1: A sequence of add(i,x) and remove(i) operations on an ArrayStack. Arrows denote
elements being copied. Operations that result in a call to resize() are marked with an asterisk.
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add(i,x)
if n = length(a) then resize()
a[i + 1, i + 2, . . . ,n]← a[i, i + 1, . . . ,n− 1]
a[i]← x

n← n + 1

If we ignore the cost of the potential call to resize(), then the cost of the add(i,x)
operation is proportional to the number of elements we have to shift to make room for
x. Therefore the cost of this operation (ignoring the cost of resizing a) is O(n− i).

Implementing the remove(i) operation is similar. We shift the elements a[i+1], . . . ,a[n−
1] left by one position (overwriting a[i]) and decrease the value of n. After doing this,
we check if n is getting much smaller than length(a) by checking if length(a) ≥ 3n. If
so, then we call resize() to reduce the size of a.

remove(i)
x← a[i]
a[i, i + 1, . . . ,n− 2]← a[i + 1, i + 2, . . . ,n− 1]
n← n− 1
if length(a) ≥ 3 ·n then resize()
return x

If we ignore the cost of the resize() method, the cost of a remove(i) operation is
proportional to the number of elements we shift, which is O(n− i).

2.1.2 Growing and Shrinking

The resize() method is fairly straightforward; it allocates a new array b whose size is 2n
and copies the n elements of a into the first n positions in b, and then sets a to b. Thus,
after a call to resize(), length(a) = 2n.

resize()
b← new array(max(1,2 ·n))
b[0,1, . . . ,n− 1]← a[0,1, . . . ,n− 1]
a← b

Analyzing the actual cost of the resize() operation is easy. It allocates an array b of
size 2n and copies the n elements of a into b. This takes O(n) time.

The running time analysis from the previous section ignored the cost of calls to
resize(). In this section we analyze this cost using a technique known as amortized
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analysis. This technique does not try to determine the cost of resizing during each
individual add(i,x) and remove(i) operation. Instead, it considers the cost of all calls
to resize() during a sequence of m calls to add(i,x) or remove(i). In particular, we will
show:

Lemma 2.1. If an empty ArrayStack is created and any sequence of m ≥ 1 calls to
add(i,x) and remove(i) are performed, then the total time spent during all calls to
resize() is O(m).

Proof. We will show that any time resize() is called, the number of calls to add or remove
since the last call to resize() is at least n/2 − 1. Therefore, if ni denotes the value of
n during the ith call to resize() and r denotes the number of calls to resize(), then the
total number of calls to add(i,x) or remove(i) is at least

r∑
i=1

(ni /2− 1) ≤m ,

which is equivalent to
r∑
i=1

ni ≤ 2m+ 2r .

On the other hand, the total time spent during all calls to resize() is

r∑
i=1

O(ni) ≤O(m+ r) =O(m) ,

since r is not more than m. All that remains is to show that the number of calls to
add(i,x) or remove(i) between the (i − 1)th and the ith call to resize() is at least ni /2.

There are two cases to consider. In the first case, resize() is being called by add(i,x)
because the backing array a is full, i.e., length(a) = n = ni . Consider the previous call to
resize(): after this previous call, the size of a was length(a), but the number of elements
stored in a was at most length(a)/2 = ni /2. But now the number of elements stored in
a is ni = length(a), so there must have been at least ni /2 calls to add(i,x) since the
previous call to resize().

The second case occurs when resize() is being called by remove(i) because length(a) ≥
3n = 3ni . Again, after the previous call to resize() the number of elements stored in a
was at least length(a)/2 − 1.1 Now there are ni ≤ length(a)/3 elements stored in a.
Therefore, the number of remove(i) operations since the last call to resize() is at least

R ≥ length(a)/2− 1− length(a)/3

= length(a)/6− 1

= (length(a)/3)/2− 1

≥ ni /2− 1 .

1The − 1 in this formula accounts for the special case that occurs when n = 0 and length(a) = 1.
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In either case, the number of calls to add(i,x) or remove(i) that occur between the
(i − 1)th call to resize() and the ith call to resize() is at least ni /2 − 1, as required to
complete the proof.

2.1.3 Summary

The following theorem summarizes the performance of an ArrayStack:

Theorem 2.1. An ArrayStack implements the List interface. Ignoring the cost of calls to
resize(), an ArrayStack supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.

Furthermore, beginning with an empty ArrayStack and performing any sequence of m
add(i,x) and remove(i) operations results in a total of O(m) time spent during all calls
to resize().

The ArrayStack is an efficient way to implement a Stack. In particular, we can imple-
ment push(x) as add(n,x) and pop() as remove(n−1), in which case these operations
will run in O(1) amortized time.

2.2 FastArrayStack: An Optimized ArrayStack

Much of the work done by an ArrayStack involves shifting (by add(i,x) and remove(i))
and copying (by resize()) of data. In a naive implementation, this would be done using
for loops. It turns out that many programming environments have specific functions that
are very efficient at copying and moving blocks of data. In the C programming language,
there are the memcpy(d,s,n) and memmove(d,s,n) functions. In the C++ language
there is the stdcopy(a0,a1,b) algorithm. In Java there is the System.arraycopy(s, i,d, j,n)
method.

These functions are usually highly optimized and may even use special machine
instructions that can do this copying much faster than we could by using a for loop.
Although using these functions does not asymptotically decrease the running times, it
can still be a worthwhile optimization.

In our C++ and Java implementations, the use of fast array copying functions re-
sulted in speedups of a factor between 2 and 3, depending on the types of operations
performed. Your mileage may vary.
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2.3 ArrayQueue: An Array-Based Queue

In this section, we present the ArrayQueue data structure, which implements a FIFO
(first-in-first-out) queue; elements are removed (using the remove() operation) from the
queue in the same order they are added (using the add(x) operation).

Notice that an ArrayStack is a poor choice for an implementation of a FIFO queue.
It is not a good choice because we must choose one end of the list upon which to add
elements and then remove elements from the other end. One of the two operations
must work on the head of the list, which involves calling add(i,x) or remove(i) with a
value of i = 0. This gives a running time proportional to n.

To obtain an efficient array-based implementation of a queue, we first notice that the
problem would be easy if we had an infinite array a. We could maintain one index j that
keeps track of the next element to remove and an integer n that counts the number of
elements in the queue. The queue elements would always be stored in

a[j],a[j + 1], . . . ,a[j + n− 1] .

Initially, both j and n would be set to 0. To add an element, we would place it in a[j + n]
and increment n. To remove an element, we would remove it from a[j], increment j, and
decrement n.

Of course, the problem with this solution is that it requires an infinite array. An
ArrayQueue simulates this by using a finite array a and modular arithmetic. This is the
kind of arithmetic used when we are talking about the time of day. For example 10:00
plus five hours gives 3:00. Formally, we say that

10 + 5 = 15 ≡ 3 (mod 12) .

We read the latter part of this equation as “15 is congruent to 3 modulo 12.” We can
also treat mod as a binary operator, so that

15 mod 12 = 3 .

More generally, for an integer a and positive integer m, a mod m is the unique inte-
ger r ∈ {0, . . . ,m − 1} such that a = r + km for some integer k. Less formally, the value
r is the remainder we get when we divide a by m. In many programming languages,
including C, C++, and Java, the mod operate is represented using the % symbol.

Modular arithmetic is useful for simulating an infinite array, since i mod length(a)
always gives a value in the range 0, . . . , length(a)− 1. Using modular arithmetic we can
store the queue elements at array locations

a[j mod length(a)],a[(j + 1) mod length(a)], . . . ,a[(j + n− 1) mod length(a)] .

This treats the array a like a circular array in which array indices larger than length(a)−1
“wrap around” to the beginning of the array.
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Figure 2.2: A sequence of add(x) and remove(i) operations on an ArrayQueue. Arrows denote
elements being copied. Operations that result in a call to resize() are marked with an asterisk.

The only remaining thing to worry about is taking care that the number of elements
in the ArrayQueue does not exceed the size of a.

initialize()
a← new array(1)
j← 0
n← 0

A sequence of add(x) and remove() operations on an ArrayQueue is illustrated in
Figure 2.2. To implement add(x), we first check if a is full and, if necessary, call resize()
to increase the size of a. Next, we store x in a[(j + n) mod length(a)] and increment n.

add(x)
if n + 1 > length(a) then resize()
a[(j + n) mod length(a)]← x

n← n + 1
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return true

To implement remove(), we first store a[j] so that we can return it later. Next, we
decrement n and increment j (modulo length(a)) by setting j = (j + 1) mod length(a).
Finally, we return the stored value of a[j]. If necessary, we may call resize() to decrease
the size of a.

remove()
x← a[j]
j← (j + 1) mod length(a)
n← n− 1
if length(a) ≥ 3 ·n then resize()
return x

Finally, the resize() operation is very similar to the resize() operation of ArrayStack.
It allocates a new array, b, of size 2n and copies

a[j],a[(j + 1) mod length(a)], . . . ,a[(j + n− 1) mod length(a)]

onto
b[0],b[1], . . . ,b[n− 1]

and sets j = 0.

resize()
b← new array(max(1,2 ·n))
for k in 0,1,2, . . . ,n− 1 do

b[k]← a[(j + k) mod length(a)]
a← b

j← 0

2.3.1 Summary

The following theorem summarizes the performance of the ArrayQueue data structure:

Theorem 2.2. An ArrayQueue implements the (FIFO) Queue interface. Ignoring the
cost of calls to resize(), an ArrayQueue supports the operations add(x) and remove()
in O(1) time per operation. Furthermore, beginning with an empty ArrayQueue, any
sequence of m add(i,x) and remove(i) operations results in a total of O(m) time spent
during all calls to resize().
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2.4 ArrayDeque: Fast Deque Operations Using an Array

The ArrayQueue from the previous section is a data structure for representing a se-
quence that allows us to efficiently add to one end of the sequence and remove from
the other end. The ArrayDeque data structure allows for efficient addition and removal
at both ends. This structure implements the List interface by using the same circular
array technique used to represent an ArrayQueue.

initialize()
a← new array(1)
j← 0
n← 0

The get(i) and set(i,x) operations on an ArrayDeque are straightforward. They get
or set the array element a[(j + i) mod length(a)].

get(i)
return a[(i + j) mod length(a)]

set(i,x)
y← a[(i + j) mod length(a)]
a[(i + j) mod length(a)]← x

return y

The implementation of add(i,x) is a little more interesting. As usual, we first check if
a is full and, if necessary, call resize() to resize a. Remember that we want this operation
to be fast when i is small (close to 0) or when i is large (close to n). Therefore, we check
if i < n/2. If so, we shift the elements a[0], . . . ,a[i − 1] left by one position. Otherwise
(i ≥ n/2), we shift the elements a[i], . . . ,a[n−1] right by one position. See Figure 2.3 for
an illustration of add(i,x) and remove(x) operations on an ArrayDeque.

add(i,x)
if n = length(a) then resize()
if i < n/2 then

j← (j− 1) mod length(a)
for k in 0,1,2, . . . , i− 1 do

a[(j + k) mod length(a)]← a[(j + k + 1) mod length(a)]
else

for k in n,n− 1,n− 2, . . . , i + 1 do
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Figure 2.3: A sequence of add(i,x) and remove(i) operations on an ArrayDeque. Arrows denote
elements being copied.

a[(j + k) mod length(a)]← a[(j + k− 1) mod length(a)]
a[(j + i) mod length(a)]← x

n← n + 1

By doing the shifting in this way, we guarantee that add(i,x) never has to shift more
than min{i,n − i} elements. Thus, the running time of the add(i,x) operation (ignoring
the cost of a resize() operation) is O(1 + min{i,n− i}).

The implementation of the remove(i) operation is similar. It either shifts elements
a[0], . . . ,a[i−1] right by one position or shifts the elements a[i+1], . . . ,a[n−1] left by one
position depending on whether i < n/2. Again, this means that remove(i) never spends
more than O(1 + min{i,n− i}) time to shift elements.

remove(i)
x← a[(j + i) mod length(a)]
if i < n/2 then

for k in i, i− 1, i− 2, . . . ,1 do
a[(j + k) mod length(a)]← a[(j + k− 1) mod length(a)]

j← (j + 1) mod length(a)
else

for k in i, i + 1, i + 2, . . . ,n− 2 do
a[(j + k) mod length(a)]← a[(j + k + 1) mod length(a)]

n← n− 1
if length(a) ≥ 3 ·n then resize()
return x
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2.4.1 Summary

The following theorem summarizes the performance of the ArrayDeque data structure:

Theorem 2.3. An ArrayDeque implements the List interface. Ignoring the cost of calls
to resize(), an ArrayDeque supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty ArrayDeque, performing any sequence of m
add(i,x) and remove(i) operations results in a total of O(m) time spent during all calls
to resize().

2.5 DualArrayDeque: Building a Deque from Two Stacks

Next, we present a data structure, the DualArrayDeque that achieves the same perfor-
mance bounds as an ArrayDeque by using two ArrayStacks. Although the asymptotic
performance of the DualArrayDeque is no better than that of the ArrayDeque, it is still
worth studying, since it offers a good example of how to make a sophisticated data
structure by combining two simpler data structures.

A DualArrayDeque represents a list using two ArrayStacks. Recall that an Array-
Stack is fast when the operations on it modify elements near the end. A DualArray-
Deque places two ArrayStacks, called front and back, back-to-back so that operations
are fast at either end.

initialize()
front← ArrayStack()
back← ArrayStack()

A DualArrayDeque does not explicitly store the number, n, of elements it contains. It
doesn’t need to, since it contains n = front.size() + back.size() elements. Nevertheless,
when analyzing the DualArrayDeque we will still use n to denote the number of elements
it contains.

size()
return front.size() + back.size()

The front ArrayStack stores the list elements that whose indices are 0, . . . , front.size()−
1, but stores them in reverse order. The back ArrayStack contains list elements with in-
dices in front.size(), . . . ,size() − 1 in the normal order. In this way, get(i) and set(i,x)
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Figure 2.4: A sequence of add(i,x) and remove(i) operations on a DualArrayDeque. Arrows
denote elements being copied. Operations that result in a rebalancing by balance() are marked
with an asterisk.

translate into appropriate calls to get(i) or set(i,x) on either front or back, which take
O(1) time per operation.

get(i)
if i < front.size() then

return front.get(front.size()− i− 1)
else

return back.get(i− front.size())

set(i,x)
if i < front.size() then

return front.set(front.size()− i− 1,x)
else

return back.set(i− front.size(),x)

Note that if an index i < front.size(), then it corresponds to the element of front at
position front.size()− i− 1, since the elements of front are stored in reverse order.

Adding and removing elements from a DualArrayDeque is illustrated in Figure 2.4.
The add(i,x) operation manipulates either front or back, as appropriate:

add(i,x)
if i < front.size() then
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front.add(front.size()− i,x)
else

back.add(i− front.size(),x)
balance()

The add(i,x) method performs rebalancing of the two ArrayStacks front and back, by
calling the balance() method. The implementation of balance() is described below, but
for now it is sufficient to know that balance() ensures that, unless size() < 2, front.size()
and back.size() do not differ by more than a factor of 3. In particular, 3 · front.size() ≥
back.size() and 3 · back.size() ≥ front.size().

Next we analyze the cost of add(i,x), ignoring the cost of calls to balance(). If
i < front.size(), then add(i,x) gets implemented by the call to front.add(front.size()− i−
1,x). Since front is an ArrayStack, the cost of this is

O(front.size()− (front.size()− i− 1) + 1) =O(i + 1) . (2.1)

On the other hand, if i ≥ front.size(), then add(i,x) gets implemented as back.add(i −
front.size(),x). The cost of this is

O(back.size()− (i− front.size()) + 1) =O(n− i + 1) . (2.2)

Notice that the first case (2.1) occurs when i < n/4. The second case (2.2) occurs
when i ≥ 3n/4. When n/4 ≤ i < 3n/4, we cannot be sure whether the operation affects
front or back, but in either case, the operation takes O(n) = O(i) = O(n− i) time, since
i ≥ n/4 and n− i > n/4. Summarizing the situation, we have

Running time of add(i,x) ≤


O(1 + i) if i < n/4
O(n) if n/4 ≤ i < 3n/4
O(1 + n− i) if i ≥ 3n/4

Thus, the running time of add(i,x), if we ignore the cost of the call to balance(), is
O(1 + min{i,n− i}).

The remove(i) operation and its analysis resemble the add(i,x) operation and anal-
ysis.

remove(i)
if i < front.size() then

x← front.remove(front.size()− i− 1)
else

x← back.remove(i− front.size())
balance()
return x
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2.5.1 Balancing

Finally, we turn to the balance() operation performed by add(i,x) and remove(i). This
operation ensures that neither front nor back becomes too big (or too small). It ensures
that, unless there are fewer than two elements, each of front and back contain at least
n/4 elements. If this is not the case, then it moves elements between them so that front
and back contain exactly bn/2c elements and dn/2e elements, respectively.

balance()
n← size()
mid← ndiv2
if 3 · front.size() < back.size() or 3 · back.size() < front.size() then

f ← ArrayStack()
for i in 0,1,2, . . . ,mid− 1 do

f .add(i,get(mid− i− 1))
b← ArrayStack()
for i in 0,1,2, . . . ,n−mid− 1 do

b.add(i,get(mid + i))
front← f

back← b

Here there is little to analyze. If the balance() operation does rebalancing, then it
moves O(n) elements and this takes O(n) time. This is bad, since balance() is called
with each call to add(i,x) and remove(i). However, the following lemma shows that, on
average, balance() only spends a constant amount of time per operation.

Lemma 2.2. If an empty DualArrayDeque is created and any sequence of m ≥ 1 calls
to add(i,x) and remove(i) are performed, then the total time spent during all calls to
balance() is O(m).

Proof. We will show that, if balance() is forced to shift elements, then the number of
add(i,x) and remove(i) operations since the last time any elements were shifted by
balance() is at least n/2−1. As in the proof of Lemma 2.1, this is sufficient to prove that
the total time spent by balance() is O(m).

We will perform our analysis using a technique knows as the potential method. De-
fine the potential, Φ , of the DualArrayDeque as the difference in size between front and
back:

Φ = |front.size()− back.size()| .

The interesting thing about this potential is that a call to add(i,x) or remove(i) that does
not do any balancing can increase the potential by at most 1.
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Observe that, immediately after a call to balance() that shifts elements, the potential,
Φ0, is at most 1, since

Φ0 = |bn/2c − dn/2e| ≤ 1 .

Consider the situation immediately before a call to balance() that shifts elements
and suppose, without loss of generality, that balance() is shifting elements because
3front.size() < back.size(). Notice that, in this case,

n = front.size() + back.size()

< back.size()/3 + back.size()

=
4
3

back.size()

Furthermore, the potential at this point in time is

Φ1 = back.size()− front.size()

> back.size()− back.size()/3

=
2
3

back.size()

>
2
3
× 3

4
n

= n/2

Therefore, the number of calls to add(i,x) or remove(i) since the last time balance()
shifted elements is at least Φ1 −Φ0 > n/2− 1. This completes the proof.

2.5.2 Summary

The following theorem summarizes the properties of a DualArrayDeque:

Theorem 2.4. A DualArrayDeque implements the List interface. Ignoring the cost of
calls to resize() and balance(), a DualArrayDeque supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty DualArrayDeque, any sequence of m add(i,x)
and remove(i) operations results in a total of O(m) time spent during all calls to resize()
and balance().

2.6 RootishArrayStack: A Space-Efficient Array Stack

One of the drawbacks of all previous data structures in this chapter is that, because they
store their data in one or two arrays and they avoid resizing these arrays too often, the
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Figure 2.5: A sequence of add(i,x) and remove(i) operations on a RootishArrayStack. Arrows
denote elements being copied.

arrays frequently are not very full. For example, immediately after a resize() operation
on an ArrayStack, the backing array a is only half full. Even worse, there are times when
only one third of a contains data.

In this section, we discuss the RootishArrayStack data structure, that addresses
the problem of wasted space. The RootishArrayStack stores n elements using O(

√
n)

arrays. In these arrays, at most O(
√

n) array locations are unused at any time. All
remaining array locations are used to store data. Therefore, these data structures waste
at most O(

√
n) space when storing n elements.

A RootishArrayStack stores its elements in a list of r arrays called blocks that are
numbered 0,1, . . . ,r−1. See Figure 2.5. Block b contains b+ 1 elements. Therefore, all
r blocks contain a total of

1 + 2 + 3 + · · ·+ r = r(r + 1)/2

elements. The above formula can be obtained as shown in Figure 2.6.

initialize()
n← 0
blocks← ArrayStack()

As we might expect, the elements of the list are laid out in order within the blocks.
The list element with index 0 is stored in block 0, elements with list indices 1 and 2 are
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r
...

. . .

...
. . .

. . .

r +1

Figure 2.6: The number of white squares is 1+2+3+ · · ·+r. The number of shaded squares is the
same. Together the white and shaded squares make a rectangle consisting of r(r + 1) squares.

stored in block 1, elements with list indices 3, 4, and 5 are stored in block 2, and so on.
The main problem we have to address is that of determining, given an index i, which
block contains i as well as the index corresponding to i within that block.

Determining the index of i within its block turns out to be easy. If index i is in block
b, then the number of elements in blocks 0, . . . ,b− 1 is b(b + 1)/2. Therefore, i is stored
at location

j = i− b(b + 1)/2

within block b. Somewhat more challenging is the problem of determining the value of
b. The number of elements that have indices less than or equal to i is i+1. On the other
hand, the number of elements in blocks 0, . . . , b is (b + 1)(b + 2)/2. Therefore, b is the
smallest integer such that

(b + 1)(b + 2)/2 ≥ i + 1 .

We can rewrite this equation as

b2 + 3b− 2i ≥ 0 .

The corresponding quadratic equation b2 + 3b − 2i = 0 has two solutions: b = (−3 +√
9 + 8i)/2 and b = (−3 −

√
9 + 8i)/2. The second solution makes no sense in our

application since it always gives a negative value. Therefore, we obtain the solution
b = (−3 +

√
9 + 8i)/2. In general, this solution is not an integer, but going back to our

inequality, we want the smallest integer b such that b ≥ (−3 +
√

9 + 8i)/2. This is simply

b =
⌈
(−3 +

√
9 + 8i)/2

⌉
.

i2b(i)
return int value(ceil((−3.0 +

√
9 + 8 · i))/2.0)
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With this out of the way, the get(i) and set(i,x) methods are straightforward. We first
compute the appropriate block b and the appropriate index j within the block and then
perform the appropriate operation:

get(i)
b← i2b(i)
j← i− b · (b + 1)/2
return blocks.get(b)[j]

set(i,x)
b← i2b(i)
j← i− b · (b + 1)/2
y← blocks.get(b)[j]
blocks.get(b)[j]← x

return y

If we use any of the data structures in this chapter for representing the blocks list,
then get(i) and set(i,x) will each run in constant time.

The add(i,x) method will, by now, look familiar. We first check to see if our data
structure is full, by checking if the number of blocks, r, is such that r(r + 1)/2 = n. If
so, we call grow() to add another block. With this done, we shift elements with indices
i, . . . ,n− 1 to the right by one position to make room for the new element with index i:

add(i,x)
r← blocks.size()
if r · (r + 1)/2 < n + 1 then grow()
n← n + 1
for j in n− 1,n− 2,n− 3, . . . , i + 1 do

set(j,get(j− 1))
set(i,x)

The grow() method does what we expect. It adds a new block:

grow()
blocks.append(new array(blocks.size() + 1))

Ignoring the cost of the grow() operation, the cost of an add(i,x) operation is domi-
nated by the cost of shifting and is therefore O(1 + n− i), just like an ArrayStack.
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The remove(i) operation is similar to add(i,x). It shifts the elements with indices
i + 1, . . . ,n left by one position and then, if there is more than one empty block, it calls
the shrink() method to remove all but one of the unused blocks:

remove(i)
x← get(i)
for j in i, i + 1, i + 2, . . . ,n− 2 do

set(j,get(j + 1))
n← n− 1
r← blocks.size()
if (r− 2) · (r− 1)/2 ≥ n then shrink()
return x

shrink()
r← blocks.size()
while r > 0 and (r− 2) · (r− 1)/2 ≥ n do

blocks.remove(blocks.size()− 1)
r← r− 1

Once again, ignoring the cost of the shrink() operation, the cost of a remove(i)
operation is dominated by the cost of shifting and is therefore O(n− i).

2.6.1 Analysis of Growing and Shrinking

The above analysis of add(i,x) and remove(i) does not account for the cost of grow()
and shrink(). Note that, unlike the ArrayStack.resize() operation, grow() and shrink()
do not copy any data. They only allocate or free an array of size r. In some environ-
ments, this takes only constant time, while in others, it may require time proportional to
r.

We note that, immediately after a call to grow() or shrink(), the situation is clear.
The final block is completely empty, and all other blocks are completely full. Another
call to grow() or shrink() will not happen until at least r− 1 elements have been added
or removed. Therefore, even if grow() and shrink() take O(r) time, this cost can be
amortized over at least r − 1 add(i,x) or remove(i) operations, so that the amortized
cost of grow() and shrink() is O(1) per operation.

2.6.2 Space Usage

Next, we analyze the amount of extra space used by a RootishArrayStack. In particular,
we want to count any space used by a RootishArrayStack that is not an array element
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currently used to hold a list element. We call all such space wasted space.
The remove(i) operation ensures that a RootishArrayStack never has more than two

blocks that are not completely full. The number of blocks, r, used by a RootishArray-
Stack that stores n elements therefore satisfies

(r− 2)(r− 1)/2 ≤ n .

Again, using the quadratic equation on this gives

r ≤ 1
2

(
3 +
√

8n + 1
)

=O(
√

n) .

The last two blocks have sizes r and r− 1, so the space wasted by these two blocks is
at most 2r− 1 = O(

√
n). If we store the blocks in (for example) an ArrayStack, then the

amount of space wasted by the List that stores those r blocks is alsoO(r) =O(
√

n). The
other space needed for storing n and other accounting information is O(1). Therefore,
the total amount of wasted space in a RootishArrayStack is O(

√
n).

Next, we argue that this space usage is optimal for any data structure that starts out
empty and can support the addition of one item at a time. More precisely, we will show
that, at some point during the addition of n items, the data structure is wasting at least
in
√

n space (though it may be only wasted for a moment).
Suppose we start with an empty data structure and we add n items one at a time.

At the end of this process, all n items are stored in the structure and distributed among
a collection of r memory blocks. If r ≥

√
n, then the data structure must be using r

pointers (or references) to keep track of these r blocks, and these pointers are wasted
space. On the other hand, if r <

√
n then, by the pigeonhole principle, some block must

have size at least n/r >
√

n. Consider the moment at which this block was first allocated.
Immediately after it was allocated, this block was empty, and was therefore wasting

√
n

space. Therefore, at some point in time during the insertion of n elements, the data
structure was wasting

√
n space.

2.6.3 Summary

The following theorem summarizes our discussion of the RootishArrayStack data struc-
ture:

Theorem 2.5. A RootishArrayStack implements the List interface. Ignoring the cost of
calls to grow() and shrink(), a RootishArrayStack supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.

Furthermore, beginning with an empty RootishArrayStack, any sequence of m add(i,x)
and remove(i) operations results in a total of O(m) time spent during all calls to grow()
and shrink().
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The space (measured in words)2 used by a RootishArrayStack that stores n ele-
ments is n +O(

√
n).

2.7 Discussion and Exercises

Most of the data structures described in this chapter are folklore. They can be found in
implementations dating back over 30 years. For example, implementations of stacks,
queues, and deques, which generalize easily to the ArrayStack, ArrayQueue and Array-
Deque structures described here, are discussed by Knuth [25, Section 2.2.2].

Brodnik et al. [4] seem to have been the first to describe the RootishArrayStack and
prove a

√
n lower-bound like that in Section 2.6.2. They also present a different structure

that uses a more sophisticated choice of block sizes in order to avoid computing square
roots in the i2b(i) method. Within their scheme, the block containing i is block blog(i +
1)c, which is simply the index of the leading 1 bit in the binary representation of i +
1. Some computer architectures provide an instruction for computing the index of the
leading 1-bit in an integer.

A structure related to the RootishArrayStack is the two-level tiered-vector of Goodrich
and Kloss [20]. This structure supports the get(i,x) and set(i,x) operations in constant
time and add(i,x) and remove(i) in O(

√
n) time. These running times are similar to

what can be achieved with the more careful implementation of a RootishArrayStack
discussed in Exercise 2.10.

Exercise 2.1. The List method add all(i,c) inserts all elements of the Collection c into
the list at position i. (The add(i,x) method is a special case where c = {x}.) Explain
why, for the data structures in this chapter, it is not efficient to implement add all(i,c) by
repeated calls to add(i,x). Design and implement a more efficient implementation.

Exercise 2.2. Design and implement a RandomQueue. This is an implementation of
the Queue interface in which the remove() operation removes an element that is chosen
uniformly at random among all the elements currently in the queue. (Think of a Ran-
domQueue as a bag in which we can add elements or reach in and blindly remove some
random element.) The add(x) and remove() operations in a RandomQueue should run
in amortized constant time per operation.

Exercise 2.3. Design and implement a Treque (triple-ended queue). This is a List im-
plementation in which get(i) and set(i,x) run in constant time and add(i,x) and remove(i)
run in time

O(1 + min{i,n− i, |n/2− i|}) .

In other words, modifications are fast if they are near either end or near the middle of
the list.

2Recall Section 1.4 for a discussion of how memory is measured.
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Exercise 2.4. Implement a method rotate(a,r) that “rotates” the array a so that a[i]
moves to a[(i + r) mod length(a)], for all i ∈ {0, . . . , length(a)}.

Exercise 2.5. Implement a method rotate(r) that “rotates” a List so that list item i be-
comes list item (i + r) mod n. When run on an ArrayDeque, or a DualArrayDeque,
rotate(r) should run in O(1 + min{r,n− r}) time.

Exercise 2.6. This exercise is left out of the pseudocode edition.

Exercise 2.7. Modify the ArrayDeque implementation so that it does not use the mod
operator (which is expensive on some systems). Instead, it should make use of the fact
that, if length(a) is a power of 2, then

k mod length(a) = k∧ (length(a)− 1) .

(Here, ∧ is the bitwise-and operator.)

Exercise 2.8. Design and implement a variant of ArrayDeque that does not do any
modular arithmetic at all. Instead, all the data sits in a consecutive block, in order, inside
an array. When the data overruns the beginning or the end of this array, a modified
rebuild() operation is performed. The amortized cost of all operations should be the
same as in an ArrayDeque.
Hint: Getting this to work is really all about how you implement the rebuild() operation.
You would like rebuild() to put the data structure into a state where the data cannot run
off either end until at least n/2 operations have been performed.

Test the performance of your implementation against the ArrayDeque. Optimize
your implementation (by using System.arraycopy(a, i,b, i,n)) and see if you can get it to
outperform the ArrayDeque implementation.

Exercise 2.9. Design and implement a version of a RootishArrayStack that has only
O(
√

n) wasted space, but that can perform add(i,x) and remove(i,x) operations inO(1+
min{i,n− i}) time.

Exercise 2.10. Design and implement a version of a RootishArrayStack that has only
O(
√

n) wasted space, but that can perform add(i,x) and remove(i,x) operations inO(1+
min{

√
n,n− i}) time. (For an idea on how to do this, see Section 3.3.)

Exercise 2.11. Design and implement a version of a RootishArrayStack that has only
O(
√

n) wasted space, but that can perform add(i,x) and remove(i,x) operations inO(1+
min{i,

√
n,n− i}) time. (See Section 3.3 for ideas on how to achieve this.)

Exercise 2.12. Design and implement a CubishArrayStack. This three level structure
implements the List interface using O(n2/3) wasted space. In this structure, get(i) and
set(i,x) take constant time; while add(i,x) and remove(i) take O(n1/3) amortized time.





Chapter 3

Linked Lists

In this chapter, we continue to study implementations of the List interface, this time using
pointer-based data structures rather than arrays. The structures in this chapter are
made up of nodes that contain the list items. Using references (pointers), the nodes are
linked together into a sequence. We first study singly-linked lists, which can implement
Stack and (FIFO) Queue operations in constant time per operation and then move on
to doubly-linked lists, which can implement Deque operations in constant time.

Linked lists have advantages and disadvantages when compared to array-based
implementations of the List interface. The primary disadvantage is that we lose the
ability to access any element using get(i) or set(i,x) in constant time. Instead, we have
to walk through the list, one element at a time, until we reach the ith element. The
primary advantage is that they are more dynamic: Given a reference to any list node u,
we can delete u or insert a node adjacent to u in constant time. This is true no matter
where u is in the list.

3.1 SLList: A Singly-Linked List

An SLList (singly-linked list) is a sequence of Nodes. Each node u stores a data value
u.x and a reference u.next to the next node in the sequence. For the last node w in the
sequence, w.next = nil

For efficiency, an SLList uses variables head and tail to keep track of the first and
last node in the sequence, as well as an integer n to keep track of the length of the
sequence:

initialize()
n← 0
head← nil

tail← nil
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head tail

b c d e
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c d e

pop()

x

head tail

y c d e

push(y)

x

head tail

Figure 3.1: A sequence of Queue (add(x) and remove()) and Stack (push(x) and pop()) opera-
tions on an SLList.

A sequence of Stack and Queue operations on an SLList is illustrated in Figure 3.1.
An SLList can efficiently implement the Stack operations push() and pop() by adding

and removing elements at the head of the sequence. The push() operation simply cre-
ates a new node u with data value x, sets u.next to the old head of the list and makes
u the new head of the list. Finally, it increments n since the size of the SLList has
increased by one:

push(x)
u← new node(x)
u.next← head

head← u

if n = 0 then
tail← u

n← n + 1
return x

The pop() operation, after checking that the SLList is not empty, removes the head
by setting head← head.next and decrementing n. A special case occurs when the last
element is being removed, in which case tail is set to nil:

pop()
if n = 0 then return nil
x← head.x
head← head.next
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n← n− 1
if n = 0 then

tail← nil

return x

Clearly, both the push(x) and pop() operations run in O(1) time.

3.1.1 Queue Operations

An SLList can also implement the FIFO queue operations add(x) and remove() in con-
stant time. Removals are done from the head of the list, and are identical to the pop()
operation:

remove()
return pop()

Additions, on the other hand, are done at the tail of the list. In most cases, this
is done by setting tail.next = u, where u is the newly created node that contains x.
However, a special case occurs when n = 0, in which case tail = head = nil. In this
case, both tail and head are set to u.

add(x)
u← new node(x)
if n = 0 then

head← u

else
tail.next← u

tail← u

n← n + 1
return true

Clearly, both add(x) and remove() take constant time.

3.1.2 Summary

The following theorem summarizes the performance of an SLList:

Theorem 3.1. An SLList implements the Stack and (FIFO) Queue interfaces. The
push(x), pop(), add(x) and remove() operations run in O(1) time per operation.
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a b c d e

dummy

Figure 3.2: A DLList containing a,b,c,d,e.

An SLList nearly implements the full set of Deque operations. The only missing
operation is removing from the tail of an SLList. Removing from the tail of an SLList is
difficult because it requires updating the value of tail so that it points to the node w that
precedes tail in the SLList; this is the node w such that w.next = tail. Unfortunately, the
only way to get to w is by traversing the SLList starting at head and taking n− 2 steps.

3.2 DLList: A Doubly-Linked List

A DLList (doubly-linked list) is very similar to an SLList except that each node u in a
DLList has references to both the node u.next that follows it and the node u.prev that
precedes it.

When implementing an SLList, we saw that there were always several special cases
to worry about. For example, removing the last element from an SLList or adding an
element to an empty SLList requires care to ensure that head and tail are correctly up-
dated. In a DLList, the number of these special cases increases considerably. Perhaps
the cleanest way to take care of all these special cases in a DLList is to introduce a
dummy node. This is a node that does not contain any data, but acts as a placeholder
so that there are no special nodes; every node has both a next and a prev, with dummy
acting as the node that follows the last node in the list and that precedes the first node
in the list. In this way, the nodes of the list are (doubly-)linked into a cycle, as illustrated
in Figure 3.2.

initialize()
n← 0
dummy←DLList.Node(nil)
dummy.prev← dummy

dummy.next← dummy

Finding the node with a particular index in a DLList is easy; we can either start
at the head of the list (dummy.next) and work forward, or start at the tail of the list
(dummy.prev) and work backward. This allows us to reach the ith node in O(1 +
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min{i,n− i}) time:

get node(i)
if i < n/2 then

p← dummy.next
repeat i times

p← p.next
else

p← dummy

repeat n− i times
p← p.prev

return p

The get(i) and set(i,x) operations are now also easy. We first find the ith node and
then get or set its x value:

get(i)
return get node(i).x

set(i,x)
u← get node(i)
y← u.x
u.x← x

return y

The running time of these operations is dominated by the time it takes to find the ith
node, and is therefore O(1 + min{i,n− i}).

3.2.1 Adding and Removing

If we have a reference to a node w in a DLList and we want to insert a node u before
w, then this is just a matter of setting u.next = w, u.prev = w.prev, and then adjusting
u.prev.next and u.next.prev. (See Figure 3.3.) Thanks to the dummy node, there is no
need to worry about w.prev or w.next not existing.

add before(w,x)
u←DLList.Node(x)
u.prev← w.prev
u.next← w
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w

u

· · ·· · ·

u.nextu.prev

Figure 3.3: Adding the node u before the node w in a DLList.

u.next.prev← u

u.prev.next← u

n← n + 1
return u

Now, the list operation add(i,x) is trivial to implement. We find the ith node in the
DLList and insert a new node u that contains x just before it.

add(i,x)
add before(get node(i),x)

The only non-constant part of the running time of add(i,x) is the time it takes to find
the ith node (using get node(i)). Thus, add(i,x) runs in O(1 + min{i,n− i}) time.

Removing a node w from a DLList is easy. We only need to adjust pointers at w.next
and w.prev so that they skip over w. Again, the use of the dummy node eliminates the
need to consider any special cases:

remove(w)
w.prev.next← w.next
w.next.prev← w.prev
n← n− 1

Now the remove(i) operation is trivial. We find the node with index i and remove it:

remove(i)
remove(get node(i))

Again, the only expensive part of this operation is finding the ith node using get node(i),
so remove(i) runs in O(1 + min{i,n− i}) time.
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3.2.2 Summary

The following theorem summarizes the performance of a DLList:

Theorem 3.2. A DLList implements the List interface. In this implementation, the get(i),
set(i,x), add(i,x) and remove(i) operations run inO(1+min{i,n−i}) time per operation.

It is worth noting that, if we ignore the cost of the get node(i) operation, then all
operations on a DLList take constant time. Thus, the only expensive part of operations
on a DLList is finding the relevant node. Once we have the relevant node, adding,
removing, or accessing the data at that node takes only constant time.

This is in sharp contrast to the array-based List implementations of Chapter 2; in
those implementations, the relevant array item can be found in constant time. However,
addition or removal requires shifting elements in the array and, in general, takes non-
constant time.

For this reason, linked list structures are well-suited to applications where references
to list nodes can be obtained through external means.

3.3 SEList: A Space-Efficient Linked List

One of the drawbacks of linked lists (besides the time it takes to access elements that
are deep within the list) is their space usage. Each node in a DLList requires an addi-
tional two references to the next and previous nodes in the list. Two of the fields in a
Node are dedicated to maintaining the list, and only one of the fields is for storing data!

An SEList (space-efficient list) reduces this wasted space using a simple idea:
Rather than store individual elements in a DLList, we store a block (array) contain-
ing several items. More precisely, an SEList is parameterized by a block size b. Each
individual node in an SEList stores a block that can hold up to b + 1 elements.

For reasons that will become clear later, it will be helpful if we can do Deque opera-
tions on each block. The data structure that we choose for this is a BDeque (bounded
deque), derived from the ArrayDeque structure described in Section 2.4. The BDeque
differs from the ArrayDeque in one small way: When a new BDeque is created, the
size of the backing array a is fixed at b + 1 and never grows or shrinks. The important
property of a BDeque is that it allows for the addition or removal of elements at either
the front or back in constant time. This will be useful as elements are shifted from one
block to another.

An SEList is just a doubly-linked list of blocks. In addition to next and prev pointers,
each node u in an SEList contains a BDeque, u.d.
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3.3.1 Space Requirements

An SEList places very tight restrictions on the number of elements in a block: Unless a
block is the last block, then that block contains at least b−1 and at most b+1 elements.
This means that, if an SEList contains n elements, then it has at most

n/(b− 1) + 1 =O(n/b)

blocks. The BDeque for each block contains an array of length b + 1 but, for every
block except the last, at most a constant amount of space is wasted in this array. The
remaining memory used by a block is also constant. This means that the wasted space
in an SEList is only O(b + n/b). By choosing a value of b within a constant factor of

√
n,

we can make the space-overhead of an SEList approach the
√

n lower bound given in
Section 2.6.2.

3.3.2 Finding Elements

The first challenge we face with an SEList is finding the list item with a given index i.
Note that the location of an element consists of two parts:

1. The node u that contains the block that contains the element with index i; and

2. the index j of the element within its block.

To find the block that contains a particular element, we proceed the same way as
we do in a DLList. We either start at the front of the list and traverse in the forward
direction, or at the back of the list and traverse backwards until we reach the node we
want. The only difference is that, each time we move from one node to the next, we skip
over a whole block of elements.

get location(i)
if i < ndiv2 then

u← dummy.next
while i ≥ u.d.size() do

i← i−u.d.size()
u← u.next

return u, i
else

u← dummy

idx← n

while i < idx do
u← u.prev
idx← idx−u.d.size()
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return u, i− idx

Remember that, with the exception of at most one block, each block contains at
least b − 1 elements, so each step in our search gets us b − 1 elements closer to the
element we are looking for. If we are searching forward, this means that we reach
the node we want after O(1 + i/b) steps. If we search backwards, then we reach the
node we want after O(1 + (n − i)/b) steps. The algorithm takes the smaller of these
two quantities depending on the value of i, so the time to locate the item with index i is
O(1 + min{i,n− i}/b).

Once we know how to locate the item with index i, the get(i) and set(i,x) operations
translate into getting or setting a particular index in the correct block:

get(i)
u, j← get location(i)
return u.d.get(j)

set(i,x)
u, j← get location(i)
return u.d.set(j,x)

The running times of these operations are dominated by the time it takes to locate
the item, so they also run in O(1 + min{i,n− i}/b) time.

3.3.3 Adding an Element

Adding elements to an SEList is a little more complicated. Before considering the gen-
eral case, we consider the easier operation, add(x), in which x is added to the end of
the list. If the last block is full (or does not exist because there are no blocks yet), then
we first allocate a new block and append it to the list of blocks. Now that we are sure
that the last block exists and is not full, we append x to the last block.

append(x)
last← dummy.prev
if last = dummy or last.d.size() = b + 1 then

last← add before(dummy)
last.d.append(x)
n← n + 1

Things get more complicated when we add to the interior of the list using add(i,x).
We first locate i to get the node u whose block contains the ith list item. The problem is
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Figure 3.4: The three cases that occur during the addition of an item x in the interior of an SEList.
(This SEList has block size b = 3.)

that we want to insert x into u’s block, but we have to be prepared for the case where
u’s block already contains b + 1 elements, so that it is full and there is no room for x.

Let u0,u1,u2, . . . denote u, u.next, u.next.next, and so on. We explore u0,u1,u2, . . .

looking for a node that can provide space for x. Three cases can occur during our space
exploration (see Figure 3.4):

1. We quickly (in r + 1 ≤ b steps) find a node ur whose block is not full. In this case,
we perform r shifts of an element from one block into the next, so that the free
space in ur becomes a free space in u0. We can then insert x into u0’s block.

2. We quickly (in r + 1 ≤ b steps) run off the end of the list of blocks. In this case, we
add a new empty block to the end of the list of blocks and proceed as in the first
case.

3. After b steps we do not find any block that is not full. In this case, u0, . . . ,ub−1 is
a sequence of b blocks that each contain b + 1 elements. We insert a new block
ub at the end of this sequence and spread the original b(b + 1) elements so that
each block of u0, . . . ,ub contains exactly b elements. Now u0’s block contains only
b elements so it has room for us to insert x.

add(i,x)
if i = n then
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append(x)
return

u, j← get location(i)
r← 0
w← u

while r < b and w , dummy and w.d.size() = b + 1 do
w← w.next
r← r + 1

if r = b then # b blocks, each with b+1 elements
spread(u)
w← u

if w = dummy then # ran off the end - add new node
w← add before(w)

while w , u do # work backwards, shifting elements as we go
w.d.add first(w.prev.d.remove last())
w← w.prev

w.d.add(j,x)
n← n + 1

The running time of the add(i,x) operation depends on which of the three cases
above occurs. Cases 1 and 2 involve examining and shifting elements through at most b
blocks and take O(b) time. Case 3 involves calling the spread(u) method, which moves
b(b + 1) elements and takes O(b2) time. If we ignore the cost of Case 3 (which we will
account for later with amortization) this means that the total running time to locate i and
perform the insertion of x is O(b + min{i,n− i}/b).

3.3.4 Removing an Element

Removing an element from an SEList is similar to adding an element. We first locate
the node u that contains the element with index i. Now, we have to be prepared for the
case where we cannot remove an element from u without causing u’s block to become
smaller than b− 1.

Again, let u0,u1,u2, . . . denote u, u.next, u.next.next, and so on. We examine
u0,u1,u2, . . . in order to look for a node from which we can borrow an element to make
the size of u0’s block at least b− 1. There are three cases to consider (see Figure 3.5):

1. We quickly (in r + 1 ≤ b steps) find a node whose block contains more than b− 1
elements. In this case, we perform r shifts of an element from one block into the
previous one, so that the extra element in ur becomes an extra element in u0. We
can then remove the appropriate element from u0’s block.

2. We quickly (in r+1 ≤ b steps) run off the end of the list of blocks. In this case, ur is
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Figure 3.5: The three cases that occur during the removal of an item x in the interior of an SEList.
(This SEList has block size b = 3.)

the last block, and there is no need for ur ’s block to contain at least b−1 elements.
Therefore, we proceed as above, borrowing an element from ur to make an extra
element in u0. If this causes ur ’s block to become empty, then we remove it.

3. After b steps, we do not find any block containing more than b−1 elements. In this
case, u0, . . . ,ub−1 is a sequence of b blocks that each contain b−1 elements. We
gather these b(b−1) elements into u0, . . . ,ub−2 so that each of these b−1 blocks
contains exactly b elements and we remove ub−1, which is now empty. Now u0’s
block contains b elements and we can then remove the appropriate element from
it.

remove(i)
u, j← get location(i)
y← u.d.get(j)
w← u

r← 0
while r < b and w , dummy and w.d.size() = b− 1 do

w← w.next
r← r + 1

if r = b then # b blocks, each with b-1 elements
gather(u)

u.d.remove(j)
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while u.d.size() < b− 1 and u.next , dummy do
u.d.add last(u.next.d.remove first())
u← u.next

if u.d.size() = 0 then remove node(u)
n← n− 1

Like the add(i,x) operation, the running time of the remove(i) operation is O(b +
min{i,n− i}/b) if we ignore the cost of the gather(u) method that occurs in Case 3.

3.3.5 Amortized Analysis of Spreading and Gathering

Next, we consider the cost of the gather(u) and spread(u) methods that may be exe-
cuted by the add(i,x) and remove(i) methods. For the sake of completeness, here they
are:

spread(u)
w← u

for j in 0,1,2, . . . ,b− 1 do
w← w.next

w← add before(w)
while w , u do

while w.d.size() < b do
w.d.add first(w.prev.d.remove last())

w← w.prev

gather(u)
w← u

for j in 0,1,2, . . . ,b− 2 do
while w.d.size() < b do

w.d.add last(w.next.d.remove first())
w← w.next

remove node(w)

The running time of each of these methods is dominated by the two nested loops.
Both the inner and outer loops execute at most b + 1 times, so the total running time of
each of these methods isO((b+1)2) =O(b2). However, the following lemma shows that
these methods execute on at most one out of every b calls to add(i,x) or remove(i).
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Lemma 3.1. If an empty SEList is created and any sequence of m ≥ 1 calls to add(i,x)
and remove(i) is performed, then the total time spent during all calls to spread() and
gather() is O(bm).

Proof. We will use the potential method of amortized analysis. We say that a node u
is fragile if u’s block does not contain b elements (so that u is either the last node, or
contains b−1 or b+1 elements). Any node whose block contains b elements is rugged.
Define the potential of an SEList as the number of fragile nodes it contains. We will
consider only the add(i,x) operation and its relation to the number of calls to spread(u).
The analysis of remove(i) and gather(u) is identical.

Notice that, if Case 1 occurs during the add(i,x) method, then only one node, ur has
the size of its block changed. Therefore, at most one node, namely ur , goes from being
rugged to being fragile. If Case 2 occurs, then a new node is created, and this node
is fragile, but no other node changes size, so the number of fragile nodes increases by
one. Thus, in either Case 1 or Case 2 the potential of the SEList increases by at most
one.

Finally, if Case 3 occurs, it is because u0, . . . ,ub−1 are all fragile nodes. Then
spread(u0) is called and these b fragile nodes are replaced with b + 1 rugged nodes.
Finally, x is added to u0’s block, making u0 fragile. In total the potential decreases by
b− 1.

In summary, the potential starts at 0 (there are no nodes in the list). Each time
Case 1 or Case 2 occurs, the potential increases by at most 1. Each time Case 3
occurs, the potential decreases by b − 1. The potential (which counts the number of
fragile nodes) is never less than 0. We conclude that, for every occurrence of Case 3,
there are at least b−1 occurrences of Case 1 or Case 2. Thus, for every call to spread(u)
there are at least b calls to add(i,x). This completes the proof.

3.3.6 Summary

The following theorem summarizes the performance of the SEList data structure:

Theorem 3.3. An SEList implements the List interface. Ignoring the cost of calls to
spread(u) and gather(u), an SEList with block size b supports the operations

• get(i) and set(i,x) in O(1 + min{i,n− i}/b) time per operation; and

• add(i,x) and remove(i) in O(b + min{i,n− i}/b) time per operation.

Furthermore, beginning with an empty SEList, any sequence ofm add(i,x) and remove(i)
operations results in a total of O(bm) time spent during all calls to spread(u) and
gather(u).

The space (measured in words)1 used by an SEList that stores n elements is n +
O(b + n/b).

1Recall Section 1.4 for a discussion of how memory is measured.
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The SEList is a trade-off between an ArrayList and a DLList where the relative mix
of these two structures depends on the block size b. At the extreme b = 2, each SEList
node stores at most three values, which is not much different than a DLList. At the other
extreme, b > n, all the elements are stored in a single array, just like in an ArrayList. In
between these two extremes lies a trade-off between the time it takes to add or remove
a list item and the time it takes to locate a particular list item.

3.4 Discussion and Exercises

Both singly-linked and doubly-linked lists are established techniques, having been used
in programs for over 40 years. They are discussed, for example, by Knuth [25, Sec-
tions 2.2.3–2.2.5]. Even the SEList data structure seems to be a well-known data struc-
tures exercise. The SEList is sometimes referred to as an unrolled linked list [36].

Another way to save space in a doubly-linked list is to use so-called XOR-lists. In
an XOR-list, each node, u, contains only one pointer, called u.nextprev, that holds the
bitwise exclusive-or of u.prev and u.next. The list itself needs to store two pointers,
one to the dummy node and one to dummy.next (the first node, or dummy if the list is
empty). This technique uses the fact that, if we have pointers to u and u.prev, then we
can extract u.next using the formula

u.next = u.prevˆu.nextprev .

(Here ˆ computes the bitwise exclusive-or of its two arguments.) This technique com-
plicates the code a little and is not possible in some languages, like Java and Python,
that have garbage collection but gives a doubly-linked list implementation that requires
only one pointer per node. See Sinha’s magazine article [37] for a detailed discussion
of XOR-lists.

Exercise 3.1. Why is it not possible to use a dummy node in an SLList to avoid all the
special cases that occur in the operations push(x), pop(), add(x), and remove()?

Exercise 3.2. Design and implement an SLList method, second last(), that returns the
second-last element of an SLList. Do this without using the member variable, n, that
keeps track of the size of the list.

Exercise 3.3. Implement the List operations get(i), set(i,x), add(i,x) and remove(i) on
an SLList. Each of these operations should run in O(1 + i) time.

Exercise 3.4. Design and implement an SLList method, reverse() that reverses the
order of elements in an SLList. This method should run in O(n) time, should not use
recursion, should not use any secondary data structures, and should not create any
new nodes.
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Exercise 3.5. Design and implement SLList and DLList methods called check size().
These methods walk through the list and count the number of nodes to see if this
matches the value, n, stored in the list. These methods return nothing, but throw an
exception if the size they compute does not match the value of n.

Exercise 3.6. Try to recreate the code for the add before(w) operation that creates a
node, u, and adds it in a DLList just before the node w. Do not refer to this chapter.
Even if your code does not exactly match the code given in this book it may still be
correct. Test it and see if it works.

The next few exercises involve performing manipulations on DLLists. You should
complete them without allocating any new nodes or temporary arrays. They can all be
done only by changing the prev and next values of existing nodes.

Exercise 3.7. Write a DLList method is palindrome() that returns true if the list is a
palindrome, i.e., the element at position i is equal to the element at position n− i −1 for
all i ∈ {0, . . . ,n− 1}. Your code should run in O(n) time.

Exercise 3.8. Implement a method rotate(r) that “rotates” a DLList so that list item i
becomes list item (i+ r) mod n. This method should run in O(1+min{r,n− r}) time and
should not modify any nodes in the list.

Exercise 3.9. Write a method, truncate(i), that truncates a DLList at position i. After
executing this method, the size of the list will be i and it should contain only the elements
at indices 0, . . . , i − 1. The return value is another DLList that contains the elements at
indices i, . . . ,n− 1. This method should run in O(min{i,n− i}) time.

Exercise 3.10. Write a DLList method, absorb(l2), that takes as an argument a DLList,
l2, empties it and appends its contents, in order, to the receiver. For example, if l1
contains a,b,c and l2 contains d,e, f , then after calling l1.absorb(l2), l1 will contain
a,b,c,d,e, f and l2 will be empty.

Exercise 3.11. Write a method deal() that removes all the elements with odd-numbered
indices from a DLList and return a DLList containing these elements. For example, if l1,
contains the elements a,b,c,d,e, f , then after calling l1.deal(), l1 should contain a,c, e
and a list containing b,d,f should be returned.

Exercise 3.12. Write a method, reverse(), that reverses the order of elements in a
DLList.

Exercise 3.13. This exercise walks you through an implementation of the merge-sort
algorithm for sorting a DLList, as discussed in Section 6.1.1.

1. Write a DLList method called take first(l2). This method takes the first node from
l2 and appends it to the the receiving list. This is equivalent to add(size(), l2.remove(0)),
except that it should not create a new node.
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2. Write a DLList static method, merge(l1, l2), that takes two sorted lists l1 and l2,
merges them, and returns a new sorted list containing the result. This causes
l1 and l2 to be emptied in the proces. For example, if l1 contains a,c,d and l2
contains b,e, f , then this method returns a new list containing a,b,c,d,e, f .

3. Write a DLList method sort() that sorts the elements contained in the list using
the merge sort algorithm. This recursive algorithm works in the following way:

(a) If the list contains 0 or 1 elements then there is nothing to do. Otherwise,

(b) Using the truncate(size()/2) method, split the list into two lists of approxi-
mately equal length, l1 and l2;

(c) Recursively sort l1;

(d) Recursively sort l2; and, finally,

(e) Merge l1 and l2 into a single sorted list.

The next few exercises are more advanced and require a clear understanding of
what happens to the minimum value stored in a Stack or Queue as items are added
and removed.

Exercise 3.14. Design and implement a MinStack data structure that can store com-
parable elements and supports the stack operations push(x), pop(), and size(), as well
as the min() operation, which returns the minimum value currently stored in the data
structure. All operations should run in constant time.

Exercise 3.15. Design and implement a MinQueue data structure that can store com-
parable elements and supports the queue operations add(x), remove(), and size(), as
well as the min() operation, which returns the minimum value currently stored in the
data structure. All operations should run in constant amortized time.

Exercise 3.16. Design and implement a MinDeque data structure that can store compa-
rable elements and supports all the deque operations add first(x), add last(x) remove first(),
remove last() and size(), and the min() operation, which returns the minimum value
currently stored in the data structure. All operations should run in constant amortized
time.

The next exercises are designed to test the reader’s understanding of the implemen-
tation and analysis of the space-efficient SEList:

Exercise 3.17. Prove that, if an SEList is used like a Stack (so that the only modifica-
tions to the SEList are done using push(x) ≡ add(size(),x) and pop() ≡ remove(size()−
1)), then these operations run in constant amortized time, independent of the value of
b.
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Exercise 3.18. Design and implement of a version of an SEList that supports all the
Deque operations in constant amortized time per operation, independent of the value
of b.

Exercise 3.19. Explain how to use the bitwise exclusive-or operator, ˆ, to swap the
values of two int variables without using a third variable.



Chapter 4

Binary Trees

This chapter introduces one of the most fundamental structures in computer science:
binary trees. The use of the word tree here comes from the fact that, when we draw
them, the resultant drawing often resembles the trees found in a forest. There are many
ways of ways of defining binary trees. Mathematically, a binary tree is a connected,
undirected, finite graph with no cycles, and no vertex of degree greater than three.

For most computer science applications, binary trees are rooted: A special node, r,
of degree at most two is called the root of the tree. For every node, u , r, the second
node on the path from u to r is called the parent of u. Each of the other nodes adjacent
to u is called a child of u. Most of the binary trees we are interested in are ordered, so
we distinguish between the left child and right child of u.

In illustrations, binary trees are usually drawn from the root downward, with the root
at the top of the drawing and the left and right children respectively given by left and
right positions in the drawing (Figure 4.1). For example, Figure 4.2.a shows a binary
tree with nine nodes.

Because binary trees are so important, a certain terminology has developed for
them: The depth of a node, u, in a binary tree is the length of the path from u to the
root of the tree. If a node, w, is on the path from u to r, then w is called an ancestor of
u and u a descendant of w. The subtree of a node, u, is the binary tree that is rooted

u

u.parent

u.left u.right

Figure 4.1: The parent, left child, and right child of the node u in a BinaryTree.
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Figure 4.2: A binary tree with (a) nine real nodes and (b) ten external nodes.

at u and contains all of u’s descendants. The height of a node, u, is the length of the
longest path from u to one of its descendants. The height of a tree is the height of its
root. A node, u, is a leaf if it has no children.

We sometimes think of the tree as being augmented with external nodes. Any node
that does not have a left child has an external node as its left child, and, correspondingly,
any node that does not have a right child has an external node as its right child (see
Figure 4.2.b). It is easy to verify, by induction, that a binary tree with n ≥ 1 real nodes
has n + 1 external nodes.

4.1 BinaryTree: A Basic Binary Tree

The simplest way to represent a node, u, in a binary tree is to explicitly store the (at most
three) neighbours of u. When one of these three neighbours is not present, we set it to
nil. In this way, both external nodes of the tree and the parent of the root correspond to
the value nil.

The binary tree itself can then be represented by a reference to its root node, r:

initialize()
r← nil

We can compute the depth of a node, u, in a binary tree by counting the number of
steps on the path from u to the root:

depth(u)
d← 0
while (u , r) do

u← u.parent
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d← d + 1
return d

4.1.1 Recursive Algorithms

Using recursive algorithms makes it very easy to compute facts about binary trees. For
example, to compute the size of (number of nodes in) a binary tree rooted at node u,
we recursively compute the sizes of the two subtrees rooted at the children of u, sum
up these sizes, and add one:

size(u)
if u = nil then return 0
return 1 + size(u.left) + size(u.right)

To compute the height of a node u, we can compute the height of u’s two subtrees,
take the maximum, and add one:

height(u)
if u = nil then return −1
return 1 + max(height(u.left),height(u.right))

4.1.2 Traversing Binary Trees

The two algorithms from the previous section both use recursion to visit all the nodes in
a binary tree. Each of them visits the nodes of the binary tree in the same order as the
following code:

traverse(u)
if u = nil then return
traverse(u.left)
traverse(u.right)

Using recursion this way produces very short, simple code, but it can also be prob-
lematic. The maximum depth of the recursion is given by the maximum depth of a node
in the binary tree, i.e., the tree’s height. If the height of the tree is very large, then this
recursion could very well use more stack space than is available, causing a crash.

To traverse a binary tree without recursion, you can use an algorithm that relies on
where it came from to determine where it will go next. See Figure 4.3. If we arrive
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u

u.parent

u.left u.right

r

Figure 4.3: The three cases that occur at node u when traversing a binary tree non-recursively,
and the resultant traversal of the tree.

at a node u from u.parent, then the next thing to do is to visit u.left. If we arrive at u
from u.left, then the next thing to do is to visit u.right. If we arrive at u from u.right,
then we are done visiting u’s subtree, and so we return to u.parent. The following code
implements this idea, with code included for handling the cases where any of u.left,
u.right, or u.parent is nil:

traverse2()
u← r

prv← nil

while u , nil do
if prv = u.parent then

if u.left , nil then nxt← u.lef t
else if u.right , nil nxt← u.right
else nxt← u.parent

else if prv = u.left
if u.right , nil then nxt← u.right
else nxt← u.parent

else
nxt← u.parent

prv← u

u← nxt

The same facts that can be computed with recursive algorithms can also be com-
puted in this way, without recursion. For example, to compute the size of the tree we
keep a counter, n, and increment n whenever visiting a node for the first time:
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size2()
u← r

prv← nil

n← 0
while u , nil do

if prv = u.parent then
n← n + 1
if u.left , nil then nxt← u.lef t
else if u.right , nil nxt← u.right
else nxt← u.parent

else if prv = u.left
if u.right , nil then nxt← u.right
else nxt← u.parent

else
nxt← u.parent

prv← u

u← nxt

return n

In some implementations of binary trees, the parent field is not used. When this is
the case, a non-recursive implementation is still possible, but the implementation has to
use a List (or Stack) to keep track of the path from the current node to the root.

A special kind of traversal that does not fit the pattern of the above functions is the
breadth-first traversal. In a breadth-first traversal, the nodes are visited level-by-level
starting at the root and moving down, visiting the nodes at each level from left to right
(see Figure 4.4). This is similar to the way that we would read a page of English text.
Breadth-first traversal is implemented using a queue, q, that initially contains only the
root, r. At each step, we extract the next node, u, from q, process u and add u.left and
u.right (if they are non-nil) to q:

bf traverse()
q← ArrayQueue()
if r , nil then q.add(r)
while q.size() > 0 do

u← q.remove()
if u.left , nil then q.add(u.left)
if u.right , nil then q.add(u.right)
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r

Figure 4.4: During a breadth-first traversal, the nodes of a binary tree are visited level-by-level,
and left-to-right within each level.

1

4 6 12 14

13

3

5

7

11

9

8

Figure 4.5: A binary search tree.

4.2 BinarySearchTree: An Unbalanced Binary Search Tree

A BinarySearchTree is a special kind of binary tree in which each node, u, also stores
a data value, u.x, from some total order. The data values in a binary search tree obey
the binary search tree property : For a node, u, every data value stored in the subtree
rooted at u.left is less than u.x and every data value stored in the subtree rooted at
u.right is greater than u.x. An example of a BinarySearchTree is shown in Figure 4.5.

4.2.1 Searching

The binary search tree property is extremely useful because it allows us to quickly
locate a value, x, in a binary search tree. To do this we start searching for x at the root,
r. When examining a node, u, there are three cases:

1. If x < u.x, then the search proceeds to u.left;

2. If x > u.x, then the search proceeds to u.right;
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3. If x = u.x, then we have found the node u containing x.

The search terminates when Case 3 occurs or when u← nil. In the former case, we
found x. In the latter case, we conclude that x is not in the binary search tree.

find eq(x)
w← r

while w , nil do
if x < w.x then

w← w.lef t
else if x > w.x

w← w.right
else

return w.x
return nil

Two examples of searches in a binary search tree are shown in Figure 4.6. As the
second example shows, even if we don’t find x in the tree, we still gain some valuable
information. If we look at the last node, u, at which Case 1 occurred, we see that u.x
is the smallest value in the tree that is greater than x. Similarly, the last node at which
Case 2 occurred contains the largest value in the tree that is less than x. Therefore,
by keeping track of the last node, z, at which Case 1 occurs, a BinarySearchTree can
implement the find(x) operation that returns the smallest value stored in the tree that is
greater than or equal to x:

find(x)
w← r

z← nil

while w , nil do
if x < w.x then

z← w

w← w.lef t
else if x > w.x

w← w.right
else

return w.x
if z = nil then return nil
return z.x
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Figure 4.6: An example of (a) a successful search (for 6) and (b) an unsuccessful search (for 10)
in a binary search tree.

4.2.2 Addition

To add a new value, x, to a BinarySearchTree, we first search for x. If we find it, then
there is no need to insert it. Otherwise, we store x at a leaf child of the last node, p,
encountered during the search for x. Whether the new node is the left or right child of p
depends on the result of comparing x and p.x.

add(x)
p← find last(x)
return add child(p,new node(x))

find last(x)
w← r

prev← nil

while w , nil do
prev← w

if (x < w.x) then
w← w.lef t

else if (x > w.x)
w← w.right

else
return w

return prev
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Figure 4.7: Inserting the value 8.5 into a binary search tree.

add child(p,u)
if p = nil then

r← u # inserting into empty tree
else

if u.x < p.x then
p.lef t← u

else if u.x > p.x
p.right← u

else
return false # u.x is already in the tree

u.parent← p

n← n + 1
return true

An example is shown in Figure 4.7. The most time-consuming part of this process
is the initial search for x, which takes an amount of time proportional to the height of
the newly added node u. In the worst case, this is equal to the height of the Binary-
SearchTree. In the average case, it is O(1), because half the values are leaves, and on
average, one only has to traverse halfway up the *values* in the tree.

4.2.3 Removal

Deleting a value stored in a node, u, of a BinarySearchTree is a little more difficult. If u
is a leaf, then we can just detach u from its parent. Even better: If u has only one child,
then we can splice u from the tree by having u.parent adopt u’s child (see Figure 4.8):
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Figure 4.8: Removing a leaf (6) or a node with only one child (9) is easy.

splice(u)
if u.left , nil then

s← u.lef t
else

s← u.right
if u = r then

r← s

p← nil

else
p← u.parent
if p.left = u then

p.lef t← s

else
p.right← s

if s , nil then
s.parent← p

n← n− 1

Things get tricky, though, when u has two children. In this case, the simplest thing
to do is to find a node, w, that has less than two children and such that w.x can replace
u.x. To maintain the binary search tree property, the value w.x should be close to the
value of u.x. For example, choosing w such that w.x is the smallest value greater than
u.x will work. Finding the node w is easy; it is the smallest value in the subtree rooted at
u.right. This node can be easily removed because it has no left child (see Figure 4.9).

remove node(u)
if u.left = nil or u.right = nil then

splice(u)
else
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Figure 4.9: Deleting a value (11) from a node, u, with two children is done by replacing u’s value
with the smallest value in the right subtree of u.

w← u.right
while w.left , nil do

w← w.lef t
u.x← w.x
splice(w)

4.2.4 Summary

The find(x), add(x), and remove(x) operations in a BinarySearchTree each involve
following a path from the root of the tree to some node in the tree. Without knowing more
about the shape of the tree it is difficult to say much about the length of this path, except
that it is less than n, the number of nodes in the tree. The following (unimpressive)
theorem summarizes the performance of the BinarySearchTree data structure:

Theorem 4.1. BinarySearchTree implements the SSet interface and supports the op-
erations add(x), remove(x), and find(x) in O(n) time per operation.

The problem with the BinarySearchTree structure is that it can become unbalanced.
Instead of looking like the tree in Figure 4.5 it can look like a long chain of n nodes, all
but the last having exactly one child.

There are a number of ways of avoiding unbalanced binary search trees, all of which
lead to data structures that have O(logn) time operations. O(logn) expected time
operations can be achieved with randomization. O(logn) amortized time operations
can be achieved with partial rebuilding operations. O(logn) worst-case time operations
can be achieved by simulating a tree that is not binary: one in which nodes can have up
to four children.
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4.3 Discussion and Exercises

Binary trees have been used to model relationships for thousands of years. One reason
for this is that binary trees naturally model (pedigree) family trees. These are the family
trees in which the root is a person, the left and right children are the person’s parents,
and so on, recursively. In more recent centuries binary trees have also been used to
model species trees in biology, where the leaves of the tree represent extant species
and the internal nodes of the tree represent speciation events in which two populations
of a single species evolve into two separate species.

Binary search trees appear to have been discovered independently by several groups
in the 1950s [27, Section 6.2.2]. Further references to specific kinds of binary search
trees are provided in subsequent chapters.

When implementing a binary tree from scratch, there are several design decisions
to be made. One of these is the question of whether or not each node stores a pointer
to its parent. If most of the operations simply follow a root-to-leaf path, then parent
pointers are unnecessary, waste space, and are a potential source of coding errors.
On the other hand, the lack of parent pointers means that tree traversals must be done
recursively or with the use of an explicit stack. Some other methods (like inserting or
deleting into some kinds of balanced binary search trees) are also complicated by the
lack of parent pointers.

Another design decision is concerned with how to store the parent, left child, and
right child pointers at a node. In the implementation given here, these pointers are
stored as separate variables. Another option is to store them in an array, p, of length
3, so that u.p[0] is the left child of u, u.p[1] is the right child of u, and u.p[2] is the
parent of u. Using an array this way means that some sequences of if statements can
be simplified into algebraic expressions.

An example of such a simplification occurs during tree traversal. If a traversal arrives
at a node u from u.p[i], then the next node in the traversal is u.p[(i + 1) mod 3]. Similar
examples occur when there is left-right symmetry. For example, the sibling of u.p[i] is
u.p[(i + 1) mod 2]. This trick works whether u.p[i] is a left child (i = 0) or a right child
(i = 1) of u. In some cases this means that some complicated code that would otherwise
need to have both a left version and right version can be written only once.

Exercise 4.1. Prove that a binary tree having n ≥ 1 nodes has n− 1 edges.

Exercise 4.2. Prove that a binary tree having n ≥ 1 real nodes has n+1 external nodes.

Exercise 4.3. Prove that, if a binary tree, T , has at least one leaf, then either (a) T ’s
root has at most one child or (b) T has more than one leaf.

Exercise 4.4. Implement a non-recursive method, size2(u), that computes the size of
the subtree rooted at node u.
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Figure 4.10: Pre-order, post-order, and in-order numberings of a binary tree.

Exercise 4.5. Write a non-recursive method, height2(u), that computes the height of
node u in a BinaryTree.

Exercise 4.6. A binary tree is size-balanced if, for every node u, the size of the sub-
trees rooted at u.left and u.right differ by at most one. Write a recursive method,
is balanced(), that tests if a binary tree is balanced. Your method should run in O(n)
time. (Be sure to test your code on some large trees with different shapes; it is easy to
write a method that takes much longer than O(n) time.)

A pre-order traversal of a binary tree is a traversal that visits each node, u, before
any of its children. An in-order traversal visits u after visiting all the nodes in u’s left
subtree but before visiting any of the nodes in u’s right subtree. A post-order traversal
visits u only after visiting all other nodes in u’s subtree. The pre/in/post-order numbering
of a tree labels the nodes of a tree with the integers 0, . . . ,n−1 in the order that they are
encountered by a pre/in/post-order traversal. See Figure 4.10 for an example.

Exercise 4.7. Create a subclass of BinaryTree whose nodes have fields for storing pre-
order, post-order, and in-order numbers. Write recursive methods pre orderNumber(),
in orderNumber(), and post orderNumbers() that assign these numbers correctly.
These methods should each run in O(n) time.

Exercise 4.8. Implement the non-recursive functions next preOrder(u), next inOrder(u),
and next postOrder(u) that return the node that follows u in a pre-order, in-order, or
post-order traversal, respectively. These functions should take amortized constant time;
if we start at any node u and repeatedly call one of these functions and assign the return
value to u until u = nil, then the cost of all these calls should be O(n).
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Exercise 4.9. Suppose we are given a binary tree with pre-, post-, and in-order num-
bers assigned to the nodes. Show how these numbers can be used to answer each of
the following questions in constant time:

1. Given a node u, determine the size of the subtree rooted at u.

2. Given a node u, determine the depth of u.

3. Given two nodes u and w, determine if u is an ancestor of w

Exercise 4.10. Suppose you are given a list of nodes with pre-order and in-order num-
bers assigned. Prove that there is at most one possible tree with this pre-order/in-order
numbering and show how to construct it.

Exercise 4.11. Show that the shape of any binary tree on n nodes can be represented
using at most 2(n−1) bits. (Hint: think about recording what happens during a traversal
and then playing back that recording to reconstruct the tree.)

Exercise 4.12. Illustrate what happens when we add the values 3.5 and then 4.5 to the
binary search tree in Figure 4.5.

Exercise 4.13. Illustrate what happens when we remove the values 3 and then 5 from
the binary search tree in Figure 4.5.

Exercise 4.14. Implement a BinarySearchTree method, get lE(x), that returns a list of
all items in the tree that are less than or equal to x. The running time of your method
should be O(n′ + h) where n′ is the number of items less than or equal to x and h is the
height of the tree.

Exercise 4.15. Describe how to add the elements {1, . . . ,n} to an initially empty Binary-
SearchTree in such a way that the resulting tree has height n− 1. How many ways are
there to do this?

Exercise 4.16. If we have some BinarySearchTree and perform the operations add(x)
followed by remove(x) (with the same value of x) do we necessarily return to the original
tree?

Exercise 4.17. Can a remove(x) operation increase the height of any node in a Binary-
SearchTree? If so, by how much?

Exercise 4.18. Can an add(x) operation increase the height of any node in a Binary-
SearchTree? Can it increase the height of the tree? If so, by how much?

Exercise 4.19. Design and implement a version of BinarySearchTree in which each
node, u, maintains values u.size (the size of the subtree rooted at u), u.depth (the depth
of u), and u.height (the height of the subtree rooted at u).

These values should be maintained, even during calls to the add(x) and remove(x)
operations, but this should not increase the cost of these operations by more than a
constant factor.



Chapter 5

Heaps

In this chapter, we discuss two implementations of the extremely useful priority Queue
data structure. Both of these structures are a special kind of binary tree called a heap,
which means “a disorganized pile.” This is in contrast to binary search trees that can be
thought of as a highly organized pile.

The first heap implementation uses an array to simulate a complete binary tree. This
very fast implementation is the basis of one of the fastest known sorting algorithms,
namely heapsort (see Section 6.1.3). The second implementation is based on more
flexible binary trees. It supports a meld(h) operation that allows the priority queue to
absorb the elements of a second priority queue h.

5.1 BinaryHeap: An Implicit Binary Tree

Our first implementation of a (priority) Queue is based on a technique that is over four
hundred years old. Eytzinger’s method allows us to represent a complete binary tree
as an array by laying out the nodes of the tree in breadth-first order (see Section 4.1.2).
In this way, the root is stored at position 0, the root’s left child is stored at position 1, the
root’s right child at position 2, the left child of the left child of the root is stored at position
3, and so on. See Figure 5.1.

If we apply Eytzinger’s method to a sufficiently large tree, some patterns emerge.
The left child of the node at index i is at index left(i) = 2i + 1 and the right child of the
node at index i is at index right(i) = 2i + 2. The parent of the node at index i is at index
parent(i) = (i− 1)/2.

left(i)
return 2 · i + 1

right(i)
return 2 · (i + 1)
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Figure 5.1: Eytzinger’s method represents a complete binary tree as an array.

parent(i)
return (i− 1)div2

A BinaryHeap uses this technique to implicitly represent a complete binary tree in
which the elements are heap-ordered : The value stored at any index i is not smaller
than the value stored at index parent(i), with the exception of the root value, i = 0. It
follows that the smallest value in the priority Queue is therefore stored at position 0 (the
root).

In a BinaryHeap, the n elements are stored in an array a:

initialize()
a← new array(1)
n← 0

Implementing the add(x) operation is fairly straightforward. As with all array-based
structures, we first check to see if a is full (by checking if length(a) = n) and, if so, we
grow a. Next, we place x at location a[n] and increment n. At this point, all that remains
is to ensure that we maintain the heap property. We do this by repeatedly swapping x
with its parent until x is no longer smaller than its parent. See Figure 5.2.

add(x)
if length(a) < n + 1 then

resize()
a[n]← x

n← n + 1
bubble up(n− 1)



81 BinaryHeap: An Implicit Binary Tree §5.1

return true

bubble up(i)
p← parent(i)
while i > 0 and a[i] < a[p] do

a[i],a[p]← a[p],a[i]
i← p

p← parent(i)

Implementing the remove() operation, which removes the smallest value from the
heap, is a little trickier. We know where the smallest value is (at the root), but we need
to replace it after we remove it and ensure that we maintain the heap property.

The easiest way to do this is to replace the root with the value a[n − 1], delete
that value, and decrement n. Unfortunately, the new root element is now probably not
the smallest element, so it needs to be moved downwards. We do this by repeatedly
comparing this element to its two children. If it is the smallest of the three then we
are done. Otherwise, we swap this element with the smallest of its two children and
continue.

remove()
x← a[0]
a[0]← a[n− 1]
n← n− 1
trickle down(0)
if 3 ·n < length(a) then

resize()
return x

trickle down(i)
while i ≥ 0 do

j←−1
r← right(i)
if r < n and a[r] < a[i] then
`← left(i)
if a[`] < a[r] then

j← `

else
j← r

else
`← left(i)
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Figure 5.2: Adding the value 6 to a BinaryHeap.
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if ` < n and a[`] < a[i] then
j← `

if j ≥ 0 then
a[j],a[i]← a[i],a[j]

i← j

As with other array-based structures, we will ignore the time spent in calls to resize(),
since these can be accounted for using the amortization argument from Lemma 2.1.
The running times of both add(x) and remove() then depend on the height of the (im-
plicit) binary tree. Luckily, this is a complete binary tree; every level except the last has
the maximum possible number of nodes. Therefore, if the height of this tree is h, then it
has at least 2h nodes. Stated another way

n ≥ 2h .

Taking logarithms on both sides of this equation gives

h ≤ logn .

Therefore, both the add(x) and remove() operation run in O(logn) time.

5.1.1 Summary

The following theorem summarizes the performance of a BinaryHeap:

Theorem 5.1. A BinaryHeap implements the (priority) Queue interface. Ignoring the
cost of calls to resize(), a BinaryHeap supports the operations add(x) and remove() in
O(logn) time per operation.

Furthermore, beginning with an empty BinaryHeap, any sequence of m add(x) and
remove() operations results in a total of O(m) time spent during all calls to resize().

5.2 MeldableHeap: A Randomized Meldable Heap

In this section, we describe the MeldableHeap, a priority Queue implementation in
which the underlying structure is also a heap-ordered binary tree. However, unlike a
BinaryHeap in which the underlying binary tree is completely defined by the number
of elements, there are no restrictions on the shape of the binary tree that underlies a
MeldableHeap; anything goes.

The add(x) and remove() operations in a MeldableHeap are implemented in terms
of the merge(h1,h2) operation. This operation takes two heap nodes h1 and h2 and
merges them, returning a heap node that is the root of a heap that contains all elements
in the subtree rooted at h1 and all elements in the subtree rooted at h2.
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The nice thing about a merge(h1,h2) operation is that it can be defined recursively.
See Figure 5.4. If either h1 or h2 is nil, then we are merging with an empty set, so we
return h2 or h1, respectively. Otherwise, assume h1.x ≤ h2.x since, if h1.x > h2.x, then
we can reverse the roles of h1 and h2. Then we know that the root of the merged heap
will contain h1.x, and we can recursively merge h2 with h1.left or h1.right, as we wish.
This is where randomization comes in, and we toss a coin to decide whether to merge
h2 with h1.left or h1.right:

merge(h1,h2)
if h1 = nil then return h2

if h2 = nil then return h1

if h2.x < h1.x then (h1,h2)← (h2,h1)
if random bit() then

h1.lef t←merge(h1.left,h2)
h1.left.parent← h1

else
h1.right←merge(h1.right,h2)
h1.right.parent← h1

return h1

In the next section, we show that merge(h1,h2) runs in O(logn) expected time,
where n is the total number of elements in h1 and h2.

With access to a merge(h1,h2) operation, the add(x) operation is easy. We create
a new node u containing x and then merge u with the root of our heap:

add(x)
u← new node(x)
r←merge(u,r)
r.parent← nil

n← n + 1
return true

This takes O(log(n + 1)) =O(logn) expected time.
The remove() operation is similarly easy. The node we want to remove is the root,

so we just merge its two children and make the result the root:

remove()
x← r.x
r←merge(r.left,r.right)
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if r , nil then r.parent← nil

n← n− 1
return x

Again, this takes O(logn) expected time.

Additionally, a MeldableHeap can implement many other operations in O(logn) ex-
pected time, including:

• remove(u): remove the node u (and its key u.x) from the heap.

• absorb(h): add all the elements of the MeldableHeap h to this heap, emptying h
in the process.

Each of these operations can be implemented using a constant number of merge(h1,h2)
operations that each take O(logn) expected time.

5.2.1 Analysis of merge(h1,h2)

The analysis of merge(h1,h2) is based on the analysis of a random walk in a binary
tree. A random walk in a binary tree starts at the root of the tree. At each step in the
random walk, a coin is tossed and, depending on the result of this coin toss, the walk
proceeds to the left or to the right child of the current node. The walk ends when it falls
off the tree (the current node becomes nil).

The following lemma is somewhat remarkable because it does not depend at all on
the shape of the binary tree:

Lemma 5.1. The expected length of a random walk in a binary tree with n nodes is at
most log(n + 1).

Proof. The proof is by induction on n. In the base case, n = 0 and the walk has length
0 = log(n + 1). Suppose now that the result is true for all non-negative integers n′ < n.

Let n1 denote the size of the root’s left subtree, so that n2 = n− n1 − 1 is the size of
the root’s right subtree. Starting at the root, the walk takes one step and then continues
in a subtree of size n1 or n2. By our inductive hypothesis, the expected length of the
walk is then

E[W ] = 1 +
1
2

log(n1 + 1) +
1
2

log(n2 + 1) ,

since each of n1 and n2 are less than n. Since log is a concave function, E[W ] is
maximized when n1 = n2 = (n − 1)/2. Therefore, the expected number of steps taken
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by the random walk is

E[W ] = 1 +
1
2

log(n1 + 1) +
1
2

log(n2 + 1)

≤ 1 + log((n− 1)/2 + 1)

= 1 + log((n + 1)/2)

= log(n + 1) .

We make a quick digression to note that, for readers who know a little about infor-
mation theory, the proof of Lemma 5.1 can be stated in terms of entropy.

Information Theoretic Proof of Lemma 5.1. Let di denote the depth of the ith external
node and recall that a binary tree with n nodes has n+1 external nodes. The probability
of the random walk reaching the ith external node is exactly pi = 1/2di , so the expected
length of the random walk is given by

H =
n∑
i=0

pidi =
n∑
i=0

pi log
(
2di

)
=

n∑
i=0

pi log(1/pi)

The right hand side of this equation is easily recognizable as the entropy of a probability
distribution over n + 1 elements. A basic fact about the entropy of a distribution over
n + 1 elements is that it does not exceed log(n + 1), which proves the lemma.

With this result on random walks, we can now easily prove that the running time of
the merge(h1,h2) operation is O(logn).

Lemma 5.2. If h1 and h2 are the roots of two heaps containing n1 and n2 nodes,
respectively, then the expected running time of merge(h1,h2) is at mostO(logn), where
n = n1 + n2.

Proof. Each step of the merge algorithm takes one step of a random walk, either in the
heap rooted at h1 or the heap rooted at h2. The algorithm terminates when either of
these two random walks fall out of its corresponding tree (when h1 = nil or h2 = nil).
Therefore, the expected number of steps performed by the merge algorithm is at most

log(n1 + 1) + log(n2 + 1) ≤ 2logn .

5.2.2 Summary

The following theorem summarizes the performance of a MeldableHeap:

Theorem 5.2. A MeldableHeap implements the (priority) Queue interface. A Meld-
ableHeap supports the operations add(x) and remove() in O(logn) expected time per
operation.



89 Discussion and Exercises §5.3

5.3 Discussion and Exercises

The implicit representation of a complete binary tree as an array, or list, seems to have
been first proposed by Eytzinger [14]. He used this representation in books containing
pedigree family trees of noble families. The BinaryHeap data structure described here
was first introduced by Williams [41].

The randomized MeldableHeap data structure described here appears to have first
been proposed by Gambin and Malinowski [19]. Other meldable heap implementations
exist, including leftist heaps [6, 27, Section 5.3.2], binomial heaps [40], Fibonacci heaps
[17], pairing heaps [16], and skew heaps [38], although none of these are as simple as
the MeldableHeap structure.

Some of the above structures also support a decrease key(u,y) operation in which
the value stored at node u is decreased to y. (It is a pre-condition that y ≤ u.x.) In
most of the preceding structures, this operation can be supported in O(logn) time by
removing node u and adding y. However, some of these structures can implement
decrease key(u,y) more efficiently. In particular, decrease key(u,y) takes O(1) amor-
tized time in Fibonacci heaps and O(loglogn) amortized time in a special version of
pairing heaps [13]. This more efficient decrease key(u,y) operation has applications in
speeding up several graph algorithms, including Dijkstra’s shortest path algorithm [17].

Exercise 5.1. Illustrate the addition of the values 7 and then 3 to the BinaryHeap shown
at the end of Figure 5.2.

Exercise 5.2. Illustrate the removal of the next two values (6 and 8) on the BinaryHeap
shown at the end of Figure 5.3.

Exercise 5.3. Implement the remove(i) method, that removes the value stored in a[i] in
a BinaryHeap. This method should run in O(logn) time. Next, explain why this method
is not likely to be useful.

Exercise 5.4. A d-ary tree is a generalization of a binary tree in which each internal
node has d children. Using Eytzinger’s method it is also possible to represent complete
d-ary trees using arrays. Work out the equations that, given an index i, determine the
index of i’s parent and each of i’s d children in this representation.

Exercise 5.5. Using what you learned in Exercise 5.4, design and implement a Dary-
Heap, the d-ary generalization of a BinaryHeap. Analyze the running times of op-
erations on a DaryHeap and test the performance of your DaryHeap implementation
against that of the BinaryHeap implementation given here.

Exercise 5.6. Illustrate the addition of the values 17 and then 82 in the MeldableHeap
h1 shown in Figure 5.4. Use a coin to simulate a random bit when needed.

Exercise 5.7. Illustrate the removal of the next two values (4 and 8) in the Meldable-
Heap h1 shown in Figure 5.4. Use a coin to simulate a random bit when needed.
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Exercise 5.8. Implement the remove(u) method, that removes the node u from a Meld-
ableHeap. This method should run in O(logn) expected time.

Exercise 5.9. Show how to find the second smallest value in a BinaryHeap or Meld-
ableHeap in constant time.

Exercise 5.10. Show how to find the kth smallest value in a BinaryHeap or Meldable-
Heap in O(k logk) time. (Hint: Using another heap might help.)

Exercise 5.11. Suppose you are given k sorted lists, of total length n. Using a heap,
show how to merge these into a single sorted list in O(n logk) time. (Hint: Starting with
the case k = 2 can be instructive.)



Chapter 6

Sorting Algorithms

This chapter discusses algorithms for sorting a set of n items. This might seem like a
strange topic for a book on data structures, but there are several good reasons for in-
cluding it here. The most obvious reason is that two of these sorting algorithms (quick-
sort and heap-sort) are intimately related to two of the data structures we have already
studied (random binary search trees and heaps, respectively).

The first part of this chapter discusses algorithms that sort using only comparisons
and presents three algorithms that run in O(n logn) time. As it turns out, all three
algorithms are asymptotically optimal; no algorithm that uses only comparisons can
avoid doing roughly n logn comparisons in the worst case and even the average case.

Before continuing, we should note that any of the SSet or priority Queue implemen-
tations presented in previous chapters can also be used to obtain an O(n logn) time
sorting algorithm. For example, we can sort n items by performing n add(x) operations
followed by n remove() operations on a BinaryHeap or MeldableHeap. Alternatively,
we can use n add(x) operations on any of the binary search tree data structures and
then perform an in-order traversal (Exercise 4.8) to extract the elements in sorted order.
However, in both cases we go through a lot of overhead to build a structure that is never
fully used. Sorting is such an important problem that it is worthwhile developing direct
methods that are as fast, simple, and space-efficient as possible.

The second part of this chapter shows that, if we allow other operations besides
comparisons, then all bets are off. Indeed, by using array-indexing, it is possible to sort
a set of n integers in the range {0, . . . ,nc − 1} in O(cn) time.

6.1 Comparison-Based Sorting

In this section, we present three sorting algorithms: merge-sort, quicksort, and heap-
sort. Each of these algorithms takes an input array a and sorts the elements of a into
non-decreasing order inO(n logn) (expected) time. These algorithms are all comparison-
based. These algorithms don’t care what type of data is being sorted; the only opera-
tion they do on the data is comparisons using the compare(a,b) method. Recall, from
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merge(a0,a1,a)

Figure 6.1: The execution of merge sort(a,c)

Section 1.2.4, that compare(a,b) returns a negative value if a < b, a positive value if
a > b, and zero if a = b.

6.1.1 Merge-Sort

The merge-sort algorithm is a classic example of recursive divide and conquer: If the
length of a is at most 1, then a is already sorted, so we do nothing. Otherwise, we split
a into two halves, a0 = a[0], . . . ,a[n/2 − 1] and a1 = a[n/2], . . . ,a[n − 1]. We recursively
sort a0 and a1, and then we merge (the now sorted) a0 and a1 to get our fully sorted
array a:

merge sort(a)
if length(a) ≤ 1 then

return a
m← length(a)div2
a0←merge sort(a[m])
a1←merge sort(a[m])
merge(a0,a1,a)
return a

An example is shown in Figure 6.1.
Compared to sorting, merging the two sorted arrays a0 and a1 is fairly easy. We add

elements to a one at a time. If a0 or a1 is empty, then we add the next elements from
the other (non-empty) array. Otherwise, we take the minimum of the next element in a0

and the next element in a1 and add it to a:
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merge(a0,a1,a)
i0← i1← 0
for i in 0,1,2, . . . , length(a)− 1 do

if i0 = length(a0) then
a[i]← a1[i1]
i1← i2

else if i1 = length(a1)
a[i]← a0[i0]
i0← i1

else if a0[i0] ≤ a1[i1]
a[i]← a0[i0]
i0← i1

else
a[i]← a1[i1]
i1← i2

Notice that the merge(a0,a1,a,c) algorithm performs at most n− 1 comparisons be-
fore running out of elements in one of a0 or a1.

To understand the running-time of merge-sort, it is easiest to think of it in terms of its
recursion tree. Suppose for now that n is a power of two, so that n = 2logn, and logn is
an integer. Refer to Figure 6.2. Merge-sort turns the problem of sorting n elements into
two problems, each of sorting n/2 elements. These two subproblem are then turned
into two problems each, for a total of four subproblems, each of size n/4. These four
subproblems become eight subproblems, each of size n/8, and so on. At the bottom of
this process, n/2 subproblems, each of size two, are converted into n problems, each of
size one. For each subproblem of size n/2i , the time spent merging and copying data
is O(n/2i). Since there are 2i subproblems of size n/2i , the total time spent working on
problems of size 2i , not counting recursive calls, is

2i ×O(n/2i) =O(n) .

Therefore, the total amount of time taken by merge-sort is

logn∑
i=0

O(n) =O(n logn) .

The proof of the following theorem is based on preceding analysis, but has to be a
little more careful to deal with the cases where n is not a power of 2.

Theorem 6.1. The merge sort(a) algorithm runs in O(n logn) time and performs at
most n logn comparisons.
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Figure 6.2: The merge-sort recursion tree.

Proof. The proof is by induction on n. The base case, in which n = 1, is trivial; when
presented with an array of length 0 or 1 the algorithm simply returns without performing
any comparisons.

Merging two sorted lists of total length n requires at most n − 1 comparisons. Let
C(n) denote the maximum number of comparisons performed by merge sort(a,c) on
an array a of length n. If n is even, then we apply the inductive hypothesis to the two
subproblems and obtain

C(n) ≤ n− 1 + 2C(n/2)

≤ n− 1 + 2((n/2)log(n/2))

= n− 1 + n log(n/2)

= n− 1 + n logn−n

< n logn .

The case where n is odd is slightly more complicated. For this case, we use two in-
equalities that are easy to verify:

log(x+ 1) ≤ log(x) + 1 , (6.1)

for all x ≥ 1 and

log(x+ 1/2) + log(x − 1/2) ≤ 2log(x) , (6.2)

for all x ≥ 1/2. Inequality (6.1) comes from the fact that log(x) + 1 = log(2x) while (6.2)
follows from the fact that log is a concave function. With these tools in hand we have,



95 Comparison-Based Sorting §6.1

for odd n,

C(n) ≤ n− 1 +C(dn/2e) +C(bn/2c)
≤ n− 1 + dn/2e logdn/2e+ bn/2c logbn/2c
= n− 1 + (n/2 + 1/2)log(n/2 + 1/2) + (n/2− 1/2)log(n/2− 1/2)

≤ n− 1 + n log(n/2) + (1/2)(log(n/2 + 1/2)− log(n/2− 1/2))

≤ n− 1 + n log(n/2) + 1/2

< n + n log(n/2)

= n + n(logn− 1)

= n logn .

6.1.2 Quicksort

The quicksort algorithm is another classic divide and conquer algorithm. Unlike merge-
sort, which does merging after solving the two subproblems, quicksort does all of its
work upfront.

Quicksort is simple to describe: Pick a random pivot element, x, from a; partition
a into the set of elements less than x, the set of elements equal to x, and the set
of elements greater than x; and, finally, recursively sort the first and third sets in this
partition. An example is shown in Figure 6.3.

quick sort(a)
quick sort(a,0, length(a))

quick sort(a, i,n)
if n ≤ 1 then return
x← a[i + random int(n)]
(p, j,q)← (i− 1, i, i + n)
while j < q do

if a[j] < x then
p← p + 1
a[j],a[p]← a[p],a[j]
j← j + 1

else if a[j] > x
q← q− 1
a[j],a[q]← a[q],a[j]

else
j← j + 1

quick sort(a, i,p− i + 1)
quick sort(a,q,n− (q− i))
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Figure 6.3: An example execution of quick sort(a,0,14)

All of this is done in place, so that instead of making copies of subarrays being
sorted, the quick sort(a, i,n,c) method only sorts the subarray a[i], . . . ,a[i + n− 1]. Ini-
tially, this method is invoked with the arguments quick sort(a,0, length(a), c).

At the heart of the quicksort algorithm is the in-place partitioning algorithm. This
algorithm, without using any extra space, swaps elements in a and computes indices p
and q so that

a[i]


< x if 0 ≤ i ≤ p
= x if p < i < q
> x if q ≤ i ≤ n− 1

This partitioning, which is done by the while loop in the code, works by iteratively in-
creasing p and decreasing q while maintaining the first and last of these conditions.
At each step, the element at position j is either moved to the front, left where it is, or
moved to the back. In the first two cases, j is incremented, while in the last case, j is
not incremented since the new element at position j has not yet been processed.

Quicksort is very closely related to the random binary search trees studied in Sec-
tion 4. In fact, if the input to quicksort consists of n distinct elements, then the quicksort
recursion tree is a random binary search tree. To see this, recall that when constructing
a random binary search tree the first thing we do is pick a random element x and make
it the root of the tree. After this, every element will eventually be compared to x, with
smaller elements going into the left subtree and larger elements into the right.

In quicksort, we select a random element x and immediately compare everything to
x, putting the smaller elements at the beginning of the array and larger elements at the
end of the array. Quicksort then recursively sorts the beginning of the array and the end
of the array, while the random binary search tree recursively inserts smaller elements in
the left subtree of the root and larger elements in the right subtree of the root.

The above correspondence between random binary search trees and quicksort
means that we can translate to a statement about quicksort:
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Lemma 6.1. When quicksort is called to sort an array containing the integers 0, . . . ,n−1,
the expected number of times element i is compared to a pivot element is at most
Hi+1 +Hn−i.

A little summing up of harmonic numbers gives us the following theorem about the
running time of quicksort:

Theorem 6.2. When quicksort is called to sort an array containing n distinct elements,
the expected number of comparisons performed is at most 2n lnn +O(n).

Proof. Let T be the number of comparisons performed by quicksort when sorting n
distinct elements. Using Lemma 6.1 and linearity of expectation, we have:

E[T ] =
n−1∑
i=0

(Hi+1 +Hn−i)

= 2
n∑
i=1

Hi

≤ 2
n∑
i=1

Hn

≤ 2n lnn + 2n = 2n lnn +O(n)

Theorem 6.3 describes the case where the elements being sorted are all distinct.
When the input array, a, contains duplicate elements, the expected running time of
quicksort is no worse, and can be even better; any time a duplicate element x is chosen
as a pivot, all occurrences of x get grouped together and do not take part in either of
the two subproblems.

Theorem 6.3. The quick sort(a,c) method runs in O(n logn) expected time and the
expected number of comparisons it performs is at most 2n lnn +O(n).

6.1.3 Heap-sort

The heap-sort algorithm is another in-place sorting algorithm. Heap-sort uses the bi-
nary heaps discussed in Section 5.1. Recall that the BinaryHeap data structure repre-
sents a heap using a single array. The heap-sort algorithm converts the input array a
into a heap and then repeatedly extracts the minimum value.

More specifically, a heap stores n elements in an array, a, at array locations a[0], . . . ,a[n−
1] with the smallest value stored at the root, a[0]. After transforming a into a Binary-
Heap, the heap-sort algorithm repeatedly swaps a[0] and a[n − 1], decrements n, and
calls trickle down(0) so that a[0], . . . ,a[n− 2] once again are a valid heap representa-
tion. When this process ends (because n = 0) the elements of a are stored in decreasing
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Figure 6.4: A snapshot of the execution of heap sort(a,c). The shaded part of the array is already
sorted. The unshaded part is a BinaryHeap. During the next iteration, element 5 will be placed
into array location 8.

order, so a is reversed to obtain the final sorted order.1 Figure 6.4 shows an example
of the execution of heap sort(a,c).

heap sort(a)
h← BinaryHeap()
h.a← a

h.n← length(a)
m← h.ndiv2
for i in m− 1,m− 2,m− 3, . . . ,0 do

h.trickle down(i)
while h.n > 1 do

h.n← h.n− 1
h.a[h.n],h.a[0]← h.a[0],h.a[h.n]
h.trickle down(0)

a.reverse()

A key subroutine in heap sort is the constructor for turning an unsorted array a into a
heap. It would be easy to do this inO(n logn) time by repeatedly calling the BinaryHeap
add(x) method, but we can do better by using a bottom-up algorithm. Recall that, in a
binary heap, the children of a[i] are stored at positions a[2i + 1] and a[2i + 2]. This
implies that the elements a[bn/2c], . . . ,a[n − 1] have no children. In other words, each
of a[bn/2c], . . . ,a[n − 1] is a sub-heap of size 1. Now, working backwards, we can call
trickle down(i) for each i ∈ {bn/2c − 1, . . . ,0}. This works, because by the time we call

1The algorithm could alternatively redefine the compare(x,y) function so that the heap sort algorithm
stores the elements directly in ascending order.
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trickle down(i), each of the two children of a[i] are the root of a sub-heap, so calling
trickle down(i) makes a[i] into the root of its own subheap.

The interesting thing about this bottom-up strategy is that it is more efficient than
calling add(x) n times. To see this, notice that, for n/2 elements, we do no work at all,
for n/4 elements, we call trickle down(i) on a subheap rooted at a[i] and whose height
is one, for n/8 elements, we call trickle down(i) on a subheap whose height is two,
and so on. Since the work done by trickle down(i) is proportional to the height of the
sub-heap rooted at a[i], this means that the total work done is at most

logn∑
i=1

O((i − 1)n/2i) ≤
∞∑
i=1

O(in/2i) =O(n)
∞∑
i=1

i/2i =O(2n) =O(n) .

The second-last equality follows by recognizing that the sum
∑∞
i=1 i/2

i is equal, by
definition of expected value, to the expected number of times we toss a coin up to and
including the first time the coin comes up as heads.

The following theorem describes the performance of heap sort(a,c).

Theorem 6.4. The heap sort(a,c) method runs in O(n logn) time and performs at most
2n logn +O(n) comparisons.

Proof. The algorithm runs in three steps: (1) transforming a into a heap, (2) repeatedly
extracting the minimum element from a, and (3) reversing the elements in a. We have
just argued that step 1 takes O(n) time and performs O(n) comparisons. Step 3 takes
O(n) time and performs no comparisons. Step 2 performs n calls to trickle down(0).
The ith such call operates on a heap of size n − i and performs at most 2log(n − i)
comparisons. Summing this over i gives

n−i∑
i=0

2log(n− i) ≤
n−i∑
i=0

2logn = 2n logn

Adding the number of comparisons performed in each of the three steps completes the
proof.

6.1.4 A Lower-Bound for Comparison-Based Sorting

We have now seen three comparison-based sorting algorithms that each run inO(n logn)
time. By now, we should be wondering if faster algorithms exist. The short answer to
this question is no. If the only operations allowed on the elements of a are comparisons,
then no algorithm can avoid doing roughly n logn comparisons. This is not difficult to
prove, but requires a little imagination. Ultimately, it follows from the fact that

log(n!) = logn + log(n− 1) + · · ·+ log(1) = n logn−O(n) .

(Proving this fact is left as Exercise 6.10.)
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Figure 6.5: A comparison tree for sorting an array a[0],a[1],a[2] of length n← 3.

We will start by focusing our attention on deterministic algorithms like merge-sort
and heap-sort and on a particular fixed value of n. Imagine such an algorithm is being
used to sort n distinct elements. The key to proving the lower-bound is to observe that,
for a deterministic algorithm with a fixed value of n, the first pair of elements that are
compared is always the same. For example, in heap sort(a,c), when n is even, the first
call to trickle down(i) is with i← n/2−1 and the first comparison is between elements
a[n/2− 1] and a[n− 1].

Since all input elements are distinct, this first comparison has only two possible
outcomes. The second comparison done by the algorithm may depend on the outcome
of the first comparison. The third comparison may depend on the results of the first
two, and so on. In this way, any deterministic comparison-based sorting algorithm can
be viewed as a rooted binary comparison tree. Each internal node, u, of this tree is
labelled with a pair of indices u.i and u.j. If a[u.i] < a[u.j] the algorithm proceeds to the
left subtree, otherwise it proceeds to the right subtree. Each leaf w of this tree is labelled
with a permutation w.p[0], . . . ,w.p[n−1] of 0, . . . ,n−1. This permutation represents the
one that is required to sort a if the comparison tree reaches this leaf. That is,

a[w.p[0]] < a[w.p[1]] < · · · < a[w.p[n− 1]] .

An example of a comparison tree for an array of size n← 3 is shown in Figure 6.5.
The comparison tree for a sorting algorithm tells us everything about the algorithm.

It tells us exactly the sequence of comparisons that will be performed for any input array,
a, having n distinct elements and it tells us how the algorithm will reorder a in order to
sort it. Consequently, the comparison tree must have at least n! leaves; if not, then
there are two distinct permutations that lead to the same leaf; therefore, the algorithm
does not correctly sort at least one of these permutations.

For example, the comparison tree in Figure 6.6 has only 4 < 3! = 6 leaves. Inspect-
ing this tree, we see that the two input arrays 3,1,2 and 3,2,1 both lead to the rightmost
leaf. On the input 3,1,2 this leaf correctly outputs a[1] = 1,a[2] = 2,a[0] = 3. How-
ever, on the input 3,2,1, this node incorrectly outputs a[1] = 2,a[2] = 1,a[0] = 3. This
discussion leads to the primary lower-bound for comparison-based algorithms.
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Figure 6.6: A comparison tree that does not correctly sort every input permutation.

Theorem 6.5. For any deterministic comparison-based sorting algorithm A and any
integer n ≥ 1, there exists an input array a of length n such that A performs at least
log(n!) = n logn−O(n) comparisons when sorting a.

Proof. By the preceding discussion, the comparison tree defined by A must have at
least n! leaves. An easy inductive proof shows that any binary tree with k leaves has a
height of at least logk. Therefore, the comparison tree for A has a leaf, w, with a depth
of at least log(n!) and there is an input array a that leads to this leaf. The input array a
is an input for which A does at least log(n!) comparisons.

Theorem 6.5 deals with deterministic algorithms like merge-sort and heap-sort, but
doesn’t tell us anything about randomized algorithms like quicksort. Could a randomized
algorithm beat the log(n!) lower bound on the number of comparisons? The answer,
again, is no. Again, the way to prove it is to think differently about what a randomized
algorithm is.

In the following discussion, we will assume that our decision trees have been “cleaned
up” in the following way: Any node that can not be reached by some input array a is re-
moved. This cleaning up implies that the tree has exactly n! leaves. It has at least n!
leaves because, otherwise, it could not sort correctly. It has at most n! leaves since
each of the possible n! permutation of n distinct elements follows exactly one root to
leaf path in the decision tree.

We can think of a randomized sorting algorithm, R, as a deterministic algorithm
that takes two inputs: The input array a that should be sorted and a long sequence
b = b1,b2,b3, . . . , bm of random real numbers in the range [0,1]. The random numbers
provide the randomization for the algorithm. When the algorithm wants to toss a coin
or make a random choice, it does so by using some element from b. For example, to
compute the index of the first pivot in quicksort, the algorithm could use the formula
bnb1c.

Now, notice that if we fix b to some particular sequence b̂ then R becomes a deter-
ministic sorting algorithm, R(b̂), that has an associated comparison tree, T (b̂). Next,
notice that if we select a to be a random permutation of {1, . . . ,n}, then this is equivalent
to selecting a random leaf, w, from the n! leaves of T (b̂).
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Exercise 6.12 asks you to prove that, if we select a random leaf from any binary
tree with k leaves, then the expected depth of that leaf is at least logk. Therefore, the
expected number of comparisons performed by the (deterministic) algorithmR(b̂) when
given an input array containing a random permutation of {1, . . . ,n} is at least log(n!).
Finally, notice that this is true for every choice of b̂, therefore it holds even for R. This
completes the proof of the lower-bound for randomized algorithms.

Theorem 6.6. For any integer n ≥ 1 and any (deterministic or randomized) comparison-
based sorting algorithm A, the expected number of comparisons done by A when sort-
ing a random permutation of {1, . . . ,n} is at least log(n!) = n logn−O(n).

6.2 Counting Sort and Radix Sort

In this section we study two sorting algorithms that are not comparison-based. Special-
ized for sorting small integers, these algorithms elude the lower-bounds of Theorem 6.5
by using (parts of) the elements in a as indices into an array. Consider a statement of
the form

c[a[i]] = 1 .

This statement executes in constant time, but has length(c) possible different outcomes,
depending on the value of a[i]. This means that the execution of an algorithm that
makes such a statement cannot be modelled as a binary tree. Ultimately, this is the
reason that the algorithms in this section are able to sort faster than comparison-based
algorithms.

6.2.1 Counting Sort

Suppose we have an input array a consisting of n integers, each in the range 0, . . . ,k−1.
The counting-sort algorithm sorts a using an auxiliary array c of counters. It outputs a
sorted version of a as an auxiliary array b.

The idea behind counting-sort is simple: For each i ∈ {0, . . . ,k−1}, count the number
of occurrences of i in a and store this in c[i]. Now, after sorting, the output will look like
c[0] occurrences of 0, followed by c[1] occurrences of 1, followed by c[2] occurrences
of 2,. . . , followed by c[k− 1] occurrences of k− 1. The code that does this is very slick,
and its execution is illustrated in Figure 6.7:

counting sort(a,k)
c← new zero array(k)
for i in 0,1,2, . . . , length(a)− 1 do

c[a[i]]← c[a[i]] + 1
for i in 1,2,3, . . . ,k− 1 do
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7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9
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3 5 8 9 11 12 13 15 20c′
0 1 2 3 4 5 6 78 9

Figure 6.7: The operation of counting sort on an array of length n = 20 that stores integers
0, . . . ,k− 1 = 9.

c[i]← c[i] + c[i− 1]
b← new array(length(a))
for i in length(a)− 1, length(a)− 2, length(a)− 3, . . . ,0 do

c[a[i]]← c[a[i]]− 1
b[c[a[i]]]← a[i]

return b

The first for loop in this code sets each counter c[i] so that it counts the number
of occurrences of i in a. By using the values of a as indices, these counters can all
be computed in O(n) time with a single for loop. At this point, we could use c to fill
in the output array b directly. However, this would not work if the elements of a have
associated data. Therefore we spend a little extra effort to copy the elements of a into
b.

The next for loop, which takes O(k) time, computes a running-sum of the counters
so that c[i] becomes the number of elements in a that are less than or equal to i. In
particular, for every i ∈ {0, . . . ,k− 1}, the output array, b, will have

b[c[i− 1]] = b[c[i− 1] + 1] = · · · = b[c[i]− 1] = i .

Finally, the algorithm scans a backwards to place its elements, in order, into an output
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array b. When scanning, the element a[i]← j is placed at location b[c[j] − 1] and the
value c[j] is decremented.

Theorem 6.7. The counting sort(a,k) method can sort an array a containing n integers
in the set {0, . . . ,k− 1} in O(n + k) time.

The counting-sort algorithm has the nice property of being stable; it preserves the
relative order of equal elements. If two elements a[i] and a[j] have the same value, and
i < j then a[i] will appear before a[j] in b. This will be useful in the next section.

6.2.2 Radix-Sort

Counting-sort is very efficient for sorting an array of integers when the length, n, of the
array is not much smaller than the maximum value, k−1, that appears in the array. The
radix-sort algorithm, which we now describe, uses several passes of counting-sort to
allow for a much greater range of maximum values.

Radix-sort sorts w-bit integers by using w/d passes of counting-sort to sort these
integers d bits at a time.2 More precisely, radix sort first sorts the integers by their least
significant d bits, then their next significant d bits, and so on until, in the last pass, the
integers are sorted by their most significant d bits.

radix sort(a)
for p in 0,1,2, . . . ,wdivd− 1 do

c← new zero array2d

b← new array(length(a))
for i in 0,1,2, . . . , length(a)− 1 do

bits← (a[i]� d · p)∧ (2d − 1)
c[bits]← c[bits] + 1

for i in 1,2,3, . . . ,2d − 1 do
c[i]← c[i] + c[i− 1]

for i in length(a)− 1, length(a)− 2, length(a)− 3, . . . ,0 do
bits← (a[i]� d · p)∧ (2d − 1)
c[bits]← c[bits]− 1
b[c[bits]]← a[i]

a← b

return b

(In this code, the expression (a[i]� d ·p)∧(2d−1) extracts the integer whose binary
representation is given by bits (p+1)d−1, . . . ,pd of a[i].) An example of the steps of this
algorithm is shown in Figure 6.8.

2We assume that d divides w, otherwise we can always increase w to ddw/de.
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Figure 6.8: Using radixsort to sort w = 8-bit integers by using 4 passes of counting sort on d = 2-
bit integers.

This remarkable algorithm sorts correctly because counting-sort is a stable sorting
algorithm. If x < y are two elements of a, and the most significant bit at which x differs
from y has index r, then x will be placed before y during pass br/dc and subsequent
passes will not change the relative order of x and y.

Radix-sort performs w/d passes of counting-sort. Each pass requires O(n + 2d)
time. Therefore, the performance of radix-sort is given by the following theorem.

Theorem 6.8. For any integer d > 0, the radix sort(a,k) method can sort an array a
containing n w-bit integers in O((w/d)(n + 2d)) time.

If we think, instead, of the elements of the array being in the range {0, . . . ,nc − 1},
and take d = dlogne we obtain the following version of Theorem 6.8.

Corollary 6.1. The radix sort(a,k) method can sort an array a containing n integer
values in the range {0, . . . ,nc − 1} in O(cn) time.

6.3 Discussion and Exercises

Sorting is the fundamental algorithmic problem in computer science, and it has a long
history. Knuth [27] attributes the merge-sort algorithm to von Neumann (1945). Quick-
sort is due to Hoare [22]. The original heap-sort algorithm is due to Williams [41], but the
version presented here (in which the heap is constructed bottom-up inO(n) time) is due
to Floyd [15]. Lower-bounds for comparison-based sorting appear to be folklore. The
following table summarizes the performance of these comparison-based algorithms:

comparisons in-place
Merge-sort n logn worst-case No
Quicksort 1.38n logn +O(n) expected Yes
Heap-sort 2n logn +O(n) worst-case Yes
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Each of these comparison-based algorithms has its advantages and disadvantages.
Merge-sort does the fewest comparisons and does not rely on randomization. Unfor-
tunately, it uses an auxilliary array during its merge phase. Allocating this array can
be expensive and is a potential point of failure if memory is limited. Quicksort is an
in-place algorithm and is a close second in terms of the number of comparisons, but is
randomized, so this running time is not always guaranteed. Heap-sort does the most
comparisons, but it is in-place and deterministic.

There is one setting in which merge-sort is a clear-winner; this occurs when sorting a
linked-list. In this case, the auxiliary array is not needed; two sorted linked lists are very
easily merged into a single sorted linked-list by pointer manipulations (see Exercise 6.2).

The counting-sort and radix-sort algorithms described here are due to Seward [35,
Section 2.4.6]. However, variants of radix-sort have been used since the 1920s to sort
punch cards using punched card sorting machines. These machines can sort a stack
of cards into two piles based on the existence (or not) of a hole in a specific location on
the card. Repeating this process for different hole locations gives an implementation of
radix-sort.

Finally, we note that counting sort and radix-sort can be used to sort other types
of numbers besides non-negative integers. Straightforward modifications of counting
sort can sort integers, in any interval {a, . . . ,b}, in O(n + b − a) time. Similarly, radix sort
can sort integers in the same interval in O(n(logn(b − a)) time. Finally, both of these
algorithms can also be used to sort floating point numbers in the IEEE 754 floating
point format. This is because the IEEE format is designed to allow the comparison
of two floating point numbers by comparing their values as if they were integers in a
signed-magnitude binary representation [1].

Exercise 6.1. Illustrate the execution of merge-sort and heap-sort on an input array
containing 1,7,4,6,2,8,3,5. Give a sample illustration of one possible execution of
quicksort on the same array.

Exercise 6.2. Implement a version of the merge-sort algorithm that sorts a DLList with-
out using an auxiliary array. (See Exercise 3.13.)

Exercise 6.3. Some implementations of quick sort(a, i,n,c) always use a[i] as a pivot.
Give an example of an input array of length n in which such an implementation would
perform

(n
2
)

comparisons.

Exercise 6.4. Some implementations of quick sort(a, i,n,c) always use a[i + n/2] as a
pivot. Given an example of an input array of length n in which such an implementation
would perform

(n
2
)

comparisons.

Exercise 6.5. Show that, for any implementation of quick sort(a, i,n,c) that chooses a
pivot deterministically, without first looking at any values in a[i], . . . ,a[i+n−1], there exists
an input array of length n that causes this implementation to perform

(n
2
)

comparisons.
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Exercise 6.6. Design a Comparator, c, that you could pass as an argument to quick sort(a, i,n,c)
and that would cause quicksort to perform

(n
2
)

comparisons. (Hint: Your comparator
does not actually need to look at the values being compared.)

Exercise 6.7. Analyze the expected number of comparisons done by Quicksort a little
more carefully than the proof of Theorem 6.3. In particular, show that the expected
number of comparisons is 2nHn −n +Hn.

Exercise 6.8. Describe an input array that causes heap sort to perform at least 2n logn−
O(n) comparisons. Justify your answer.

Exercise 6.9. Find another pair of permutations of 1,2,3 that are not correctly sorted
by the comparison tree in Figure 6.6.

Exercise 6.10. Prove that logn! = n logn−O(n).

Exercise 6.11. Prove that a binary tree with k leaves has height at least logk.

Exercise 6.12. Prove that, if we pick a random leaf from a binary tree with k leaves,
then the expected height of this leaf is at least logk.

Exercise 6.13. The implementation of radix sort(a,k) given here works when the input
array, a contains only integers.





Chapter 7

Hash Tables

Hash tables are an efficient method of storing a small number, n, of integers from a large
rangeU = {0, . . . ,2w−1}. The term hash table includes a broad range of data structures.
The first part of this chapter focuses on two of the most common implementations of
hash tables: hashing with chaining and linear probing.

Very often hash tables store types of data that are not integers. In this case, an
integer hash code is associated with each data item and is used in the hash table. The
second part of this chapter discusses how such hash codes are generated.

Some of the methods used in this chapter require random choices of integers in
some specific range. In the code samples, some of these “random” integers are hard-
coded constants. These constants were obtained using random bits generated from
atmospheric noise.

7.1 ChainedHashTable: Hashing with Chaining

A ChainedHashTable data structure uses hashing with chaining to store data as an
array, t, of lists. An integer, n, keeps track of the total number of items in all lists (see
Figure 7.1):

initialize()
d← 1
t← alloc table(2d)
z← random odd int()
n← 0

The hash value of a data item x, denoted hash(x) is a value in the range {0, . . . , length(t)−
1}. All items with hash value i are stored in the list at t[i]. To ensure that lists don’t get
too long, we maintain the invariant

n ≤ length(t)
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Figure 7.1: An example of a ChainedHashTable with n = 14 and length(t) = 16. In this example
hash(x) = 6

so that the average number of elements stored in one of these lists is n/length(t) ≤ 1.
To add an element, x, to the hash table, we first check if the length of t needs to be

increased and, if so, we grow t. With this out of the way we hash x to get an integer, i,
in the range {0, . . . , length(t)− 1}, and we append x to the list t[i]:

add(x)
if find(x) , nil then return false
if n + 1 > length(t) then resize()
t[hash(x)].append(x)
n← n + 1
return true

Growing the table, if necessary, involves doubling the length of t and reinserting all
elements into the new table. This strategy is exactly the same as the one used in the
implementation of ArrayStack and the same result applies: The cost of growing is only
constant when amortized over a sequence of insertions (see Lemma 2.1 on page 27).

Besides growing, the only other work done when adding a new value x to a Chained-
HashTable involves appending x to the list t[hash(x)]. For any of the list implementa-
tions described in Chapters 2 or 3, this takes only constant time.

To remove an element, x, from the hash table, we iterate over the list t[hash(x)] until
we find x so that we can remove it:

remove(x)
`← t[hash(x)]
for y in ` do

if y = x then
`.remove value(y)
n← n− 1
if 3 ·n < length(t) then resize()
return y
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return nil

This takes O(nhash(x)) time, where ni denotes the length of the list stored at t[i].
Searching for the element x in a hash table is similar. We perform a linear search

on the list t[hash(x)]:

find(x)
for y in t[hash(x)] do

if y = x then
return y

return nil

Again, this takes time proportional to the length of the list t[hash(x)].
The performance of a hash table depends critically on the choice of the hash func-

tion. A good hash function will spread the elements evenly among the length(t) lists,
so that the expected size of the list t[hash(x)] is O(n/length(t)) = O(1). On the other
hand, a bad hash function will hash all values (including x) to the same table location,
in which case the size of the list t[hash(x)] will be n. In the next section we describe a
good hash function.

7.1.1 Multiplicative Hashing

Multiplicative hashing is an efficient method of generating hash values based on mod-
ular arithmetic (discussed in Section 2.3) and integer division. It uses the div operator,
which calculates the integral part of a quotient, while discarding the remainder. For-
mally, for any integers a ≥ 0 and b ≥ 1, adivb = ba/bc.

In multiplicative hashing, we use a hash table of size 2d for some integer d (called
the dimension). The formula for hashing an integer x ∈ {0, . . . ,2w − 1} is

hash(x) = ((z · x) mod 2w)div2w−d .

Here, z is a randomly chosen odd integer in {1, . . . ,2w − 1}. This hash function can
be realized very efficiently by observing that, by default, operations on integers are
already done modulo 2w where w is the number of bits in an integer.1 (See Figure 7.2.)
Furthermore, integer division by 2w−d is equivalent to dropping the rightmost w− d bits
in a binary representation (which is implemented by shifting the bits right by w−d using
the� operator).

1This is true for most programming languages including C, C#, C++, and Java. Notable exceptions are
Python and Ruby, in which the result of a fixed-length w-bit integer operation that overflows is upgraded to a
variable-length representation.
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2w (4294967296) 100000000000000000000000000000000
z (4102541685) 11110100100001111101000101110101
x (42) 00000000000000000000000000101010
z · x 10100000011110010010000101110100110010
(z · x) mod 2w 00011110010010000101110100110010
((z · x) mod 2w)div2w−d 00011110

Figure 7.2: The operation of the multiplicative hash function with w = 32 and d = 8.

hash(x)
return ((z ·hash(x)) mod 2w)� (w− d)

The following lemma, whose proof is deferred until later in this section, shows that
multiplicative hashing does a good job of avoiding collisions:

Lemma 7.1. Let x and y be any two values in {0, . . . ,2w−1}with x , y. Then Pr{hash(x) =
hash(y)} ≤ 2/2d.

With Lemma 7.1, the performance of remove(x), and find(x) are easy to analyze:

Lemma 7.2. For any data value x, the expected length of the list t[hash(x)] is at most
nx + 2, where nx is the number of occurrences of x in the hash table.

Proof. Let S be the (multi-)set of elements stored in the hash table that are not equal to
x. For an element y ∈ S, define the indicator variable

Iy =
{

1 if hash(x) = hash(y)
0 otherwise

and notice that, by Lemma 7.1, E[Iy] ≤ 2/2d = 2/length(t). The expected length of the
list t[hash(x)] is given by

E[t[hash(x)].size()] = E

nx +
∑
y∈S

Iy


= nx +

∑
y∈S

E[Iy]

≤ nx +
∑
y∈S

2/length(t)

≤ nx +
∑
y∈S

2/n

≤ nx + (n−nx)2/n

≤ nx + 2 ,
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as required.

Now, we want to prove Lemma 7.1, but first we need a result from number the-
ory. In the following proof, we use the notation (br , . . . , b0)2 to denote

∑r
i=0 bi2

i , where
each bi is a bit, either 0 or 1. In other words, (br , . . . , b0)2 is the integer whose binary
representation is given by br , . . . , b0. We use ? to denote a bit of unknown value.

Lemma 7.3. Let S be the set of odd integers in {1, . . . ,2w − 1}; let q and i be any two
elements in S. Then there is exactly one value z ∈ S such that zq mod 2w = i.

Proof. Since the number of choices for z and i is the same, it is sufficient to prove that
there is at most one value z ∈ S that satisfies zq mod 2w = i.

Suppose, for the sake of contradiction, that there are two such values z and z′, with
z > z′. Then

zq mod 2w = z′q mod 2w = i

So
(z− z′)q mod 2w = 0

But this means that
(z− z′)q = k2w (7.1)

for some integer k. Thinking in terms of binary numbers, we have

(z− z′)q = k · (1,0, . . . ,0︸ ︷︷ ︸
w

)2 ,

so that the w trailing bits in the binary representation of (z− z′)q are all 0’s.
Furthermore k , 0, since q , 0 and z− z′ , 0. Since q is odd, it has no trailing 0’s in

its binary representation:
q = (?, . . . ,?,1)2 .

Since |z− z′ | < 2w, z− z′ has fewer than w trailing 0’s in its binary representation:

z− z′ = (?, . . . ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

Therefore, the product (z− z′)q has fewer than w trailing 0’s in its binary representation:

(z− z′)q = (?, · · · ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

Therefore (z−z′)q cannot satisfy (7.1), yielding a contradiction and completing the proof.

The utility of Lemma 7.3 comes from the following observation: If z is chosen uni-
formly at random from S, then zt is uniformly distributed over S. In the following proof,
it helps to think of the binary representation of z, which consists of w − 1 random bits
followed by a 1.
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Proof of Lemma 7.1. First we note that the condition hash(x) = hash(y) is equivalent
to the statement “the highest-order d bits of zx mod 2w and the highest-order d bits of
zy mod 2w are the same.” A necessary condition of that statement is that the highest-
order d bits in the binary representation of z(x − y) mod 2w are either all 0’s or all 1’s.
That is,

z(x− y) mod 2w = (0, . . . ,0︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 (7.2)

when zx mod 2w > zy mod 2w or

z(x− y) mod 2w = (1, . . . ,1︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 . (7.3)

when zx mod 2w < zy mod 2w. Therefore, we only have to bound the probability that
z(x− y) mod 2w looks like (7.2) or (7.3).

Let q be the unique odd integer such that (x − y) mod 2w = q2r for some integer
r ≥ 0. By Lemma 7.3, the binary representation of zq mod 2w has w − 1 random bits,
followed by a 1:

zq mod 2w = (bw−1, . . . , b1︸       ︷︷       ︸
w−1

,1)2

Therefore, the binary representation of z(x − y) mod 2w = zq2r mod 2w has w − r − 1
random bits, followed by a 1, followed by r 0’s:

z(x− y) mod 2w = zq2r mod 2w = (bw−r−1, . . . , b1︸          ︷︷          ︸
w−r−1

,1,0,0, . . . ,0︸    ︷︷    ︸
r

)2

We can now finish the proof: If r > w−d, then the d higher order bits of z(x−y) mod 2w

contain both 0’s and 1’s, so the probability that z(x− y) mod 2w looks like (7.2) or (7.3)
is 0. If r = w − d, then the probability of looking like (7.2) is 0, but the probability of
looking like (7.3) is 1/2d−1 = 2/2d (since we must have b1, . . . , bd−1 = 1, . . . ,1). If r <
w − d, then we must have bw−r−1, . . . , bw−r−d = 0, . . . ,0 or bw−r−1, . . . , bw−r−d = 1, . . . ,1.
The probability of each of these cases is 1/2d and they are mutually exclusive, so the
probability of either of these cases is 2/2d. This completes the proof.

7.1.2 Summary

The following theorem summarizes the performance of a ChainedHashTable data struc-
ture:

Theorem 7.1. A ChainedHashTable implements the USet interface. Ignoring the cost of
calls to grow(), a ChainedHashTable supports the operations add(x), remove(x), and
find(x) in O(1) expected time per operation.

Furthermore, beginning with an empty ChainedHashTable, any sequence ofm add(x)
and remove(x) operations results in a total ofO(m) time spent during all calls to grow().
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7.2 LinearHashTable: Linear Probing

The ChainedHashTable data structure uses an array of lists, where the ith list stores
all elements x such that hash(x) = i. An alternative, called open addressing is to store
the elements directly in an array, t, with each array location in t storing at most one
value. This approach is taken by the LinearHashTable described in this section. In
some places, this data structure is described as open addressing with linear probing.

The main idea behind a LinearHashTable is that we would, ideally, like to store
the element x with hash value i ← hash(x) in the table location t[i]. If we cannot do
this (because some element is already stored there) then we try to store it at location
t[(i + 1) mod length(t)]; if that’s not possible, then we try t[(i + 2) mod length(t)], and
so on, until we find a place for x.

There are three types of entries stored in t:

1. data values: actual values in the USet that we are representing;

2. nil values: at array locations where no data has ever been stored; and

3. del values: at array locations where data was once stored but that has since been
deleted.

In addition to the counter, n, that keeps track of the number of elements in the Linear-
HashTable, a counter, q, keeps track of the number of elements of Types 1 and 3. That
is, q is equal to n plus the number of del values in t. To make this work efficiently, we
need t to be considerably larger than q, so that there are lots of nil values in t. The
operations on a LinearHashTable therefore maintain the invariant that length(t) ≥ 2q.

To summarize, a LinearHashTable contains an array, t, that stores data elements,
and integers n and q that keep track of the number of data elements and non-nil values
of t, respectively. Because many hash functions only work for table sizes that are a
power of 2, we also keep an integer d and maintain the invariant that length(t) = 2d.

initialize()
del← object()

initialize()
d← 1
t← new array(2d)
q← 0
n← 0

The find(x) operation in a LinearHashTable is simple. We start at array entry
t[i] where i = hash(x) and search entries t[i], t[(i + 1) mod length(t)], t[(i + 2) mod
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length(t)], and so on, until we find an index i′ such that, either, t[i′]← x, or t[i′]← nil.
In the former case we return t[i′]. In the latter case, we conclude that x is not contained
in the hash table and return nil.

find(x)
i← hash(x)
while t[i] , nil do

if t[i] , del and x = t[i] then
return t[i]

i← (i + 1) mod length(t)

The add(x) operation is also fairly easy to implement. After checking that x is not
already stored in the table (using find(x)), we search t[i], t[(i+1) mod length(t)], t[(i+
2) mod length(t)], and so on, until we find a nil or del and store x at that location,
increment n, and q, if appropriate.

add(x)
if find(x) , nil then return false
if 2 · (q + 1) > length(t) then resize()
i← hash(x)
while t[i] , nil and t[i] , del do

i← (i + 1) mod length(t)
if t[i] = nil then q← q + 1
n← n + 1
t[i]← x

return true

By now, the implementation of the remove(x) operation should be obvious. We
search t[i], t[(i + 1) mod length(t)], t[(i + 2) mod length(t)], and so on until we find
an index i′ such that t[i′] ← x or t[i′] ← nil. In the former case, we set t[i′] ← del

and return true. In the latter case we conclude that x was not stored in the table (and
therefore cannot be deleted) and return false.

remove(x)
i← hash(x)
while t[i] , nil do

y← t[i]
if y , del and x = y then

t[i]← del
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n← n− 1
if 8 ·n < length(t) then resize()
return y

i← (i + 1) mod length(t)
return nil

The correctness of the find(x), add(x), and remove(x) methods is easy to verify,
though it relies on the use of del values. Notice that none of these operations ever sets
a non-nil entry to nil. Therefore, when we reach an index i′ such that t[i′]← nil, this
is a proof that the element, x, that we are searching for is not stored in the table; t[i′]
has always been nil, so there is no reason that a previous add(x) operation would have
proceeded beyond index i′.

The resize() method is called by add(x) when the number of non-nil entries exceeds
length(t)/2 or by remove(x) when the number of data entries is less than length(t)/8.
The resize() method works like the resize() methods in other array-based data struc-
tures. We find the smallest non-negative integer d such that 2d ≥ 3n. We reallocate
the array t so that it has size 2d, and then we insert all the elements in the old version
of t into the newly-resized copy of t. While doing this, we reset q equal to n since the
newly-allocated t contains no del values.

resize()
d← 1
while (2d < 3 ·n) do d← d + 1
told← t

t← new array(2d)
q← n

for x in told do
if x , nil and x , del then

i← hash(x)
while t[i] , nil do

i← (i + 1) mod length(t)
t[i]← x

7.2.1 Analysis of Linear Probing

Notice that each operation, add(x), remove(x), or find(x), finishes as soon as (or be-
fore) it discovers the first nil entry in t. The intuition behind the analysis of linear probing
is that, since at least half the elements in t are equal to nil, an operation should not take
long to complete because it will very quickly come across a nil entry. We shouldn’t rely
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too heavily on this intuition, though, because it would lead us to (the incorrect) conclu-
sion that the expected number of locations in t examined by an operation is at most
2.

For the rest of this section, we will assume that all hash values are independently
and uniformly distributed in {0, . . . , length(t) − 1}. This is not a realistic assumption,
but it will make it possible for us to analyze linear probing. Later in this section we
will describe a method, called tabulation hashing, that produces a hash function that is
“good enough” for linear probing. We will also assume that all indices into the positions
of t are taken modulo length(t), so that t[i] is really a shorthand for t[i mod length(t)].

We say that a run of length k that starts at i occurs when all the table entries t[i], t[i+
1], . . . , t[i+k−1] are non-nil and t[i−1] = t[i+k] = nil. The number of non-nil elements
of t is exactly q and the add(x) method ensures that, at all times, q ≤ length(t)/2.
There are q elements x1, . . . ,xq that have been inserted into t since the last resize()
operation. By our assumption, each of these has a hash value, hash(xj ), that is uniform
and independent of the rest. With this setup, we can prove the main lemma required to
analyze linear probing.

Lemma 7.4. Fix a value i ∈ {0, . . . , length(t) − 1}. Then the probability that a run of
length k starts at i is O(ck) for some constant 0 < c < 1.

Proof. If a run of length k starts at i, then there are exactly k elements xj such that
hash(xj ) ∈ {i, . . . , i + k − 1}. The probability that this occurs is exactly

pk =
(
q
k

)(
k

length(t)

)k ( length(t)− k
length(t)

)q−k
,

since, for each choice of k elements, these k elements must hash to one of the k

locations and the remaining q − k elements must hash to the other length(t) − k table
locations.2

In the following derivation we will cheat a little and replace r! with (r/e)r . Stirling’s
Approximation (Section 1.3.2) shows that this is only a factor of O(

√
r) from the truth.

This is just done to make the derivation simpler; Exercise 7.4 asks the reader to redo
the calculation more rigorously using Stirling’s Approximation in its entirety.

The value of pk is maximized when length(t) is minimum, and the data structure
maintains the invariant that length(t) ≥ 2q, so

pk ≤
(
q
k

)(
k

2q

)k (2q− k
2q

)q−k

=
(

q!
(q− k)!k!

)(
k

2q

)k (2q− k
2q

)q−k

2Note that pk is greater than the probability that a run of length k starts at i, since the definition of pk does
not include the requirement t[i− 1] = t[i + k] = nil.
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≈
(

qq

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k
[Stirling’s approximation]

=
(

qkqq−k

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k

=
(

qk
2qk

)k (q(2q− k)
2q(q− k)

)q−k

=
(1

2

)k ( (2q− k)
2(q− k)

)q−k

=
(1

2

)k (
1 +

k
2(q− k)

)q−k

≤
(√
e

2

)k
.

(In the last step, we use the inequality (1 + 1/x)x ≤ e, which holds for all x > 0.) Since√
e/2 < 0.824360636 < 1, this completes the proof.

Using Lemma 7.4 to prove upper-bounds on the expected running time of find(x),
add(x), and remove(x) is now fairly straightforward. Consider the simplest case, where
we execute find(x) for some value x that has never been stored in the LinearHashTable.
In this case, i = hash(x) is a random value in {0, . . . , length(t) − 1} independent of the
contents of t. If i is part of a run of length k, then the time it takes to execute the find(x)
operation is at most O(1 + k). Thus, the expected running time can be upper-bounded
by

O

1 +
(

1
length(t)

) length(t)∑
i=1

∞∑
k=0

kPr{i is part of a run of length k}

 .

Note that each run of length k contributes to the inner sum k times for a total contribution
of k2, so the above sum can be rewritten as

O

1 +
(

1
length(t)

) length(t)∑
i=1

∞∑
k=0

k2 Pr{i starts a run of length k}


≤O

1 +
(

1
length(t)

) length(t)∑
i=1

∞∑
k=0

k2pk


=O

1 +
∞∑
k=0

k2pk


=O

1 +
∞∑
k=0

k2 ·O(ck)


=O(1) .
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The last step in this derivation comes from the fact that
∑∞
k=0 k

2 ·O(ck) is an exponen-
tially decreasing series.3 Therefore, we conclude that the expected running time of the
find(x) operation for a value x that is not contained in a LinearHashTable is O(1).

If we ignore the cost of the resize() operation, then the above analysis gives us all
we need to analyze the cost of operations on a LinearHashTable.

First of all, the analysis of find(x) given above applies to the add(x) operation when
x is not contained in the table. To analyze the find(x) operation when x is contained in
the table, we need only note that this is the same as the cost of the add(x) operation
that previously added x to the table. Finally, the cost of a remove(x) operation is the
same as the cost of a find(x) operation.

In summary, if we ignore the cost of calls to resize(), all operations on a Linear-
HashTable run in O(1) expected time. Accounting for the cost of resize can be done
using the same type of amortized analysis performed for the ArrayStack data structure
in Section 2.1.

7.2.2 Summary

The following theorem summarizes the performance of the LinearHashTable data struc-
ture:

Theorem 7.2. A LinearHashTable implements the USet interface. Ignoring the cost of
calls to resize(), a LinearHashTable supports the operations add(x), remove(x), and
find(x) in O(1) expected time per operation.

Furthermore, beginning with an empty LinearHashTable, any sequence of m add(x)
and remove(x) operations results in a total ofO(m) time spent during all calls to resize().

7.2.3 Tabulation Hashing

While analyzing the LinearHashTable structure, we made a very strong assumption:
That for any set of elements, {x1, . . . ,xn}, the hash values hash(x1), . . . ,hash(xn) are
independently and uniformly distributed over the set {0, . . . , length(t) − 1}. One way to
achieve this is to store a giant array, tab, of length 2w, where each entry is a random w-
bit integer, independent of all the other entries. In this way, we could implement hash(x)
by extracting a d-bit integer from tab[x.hash code()]:

ideal hash(x)
return tab[x.hash code()� w− d]

3In the terminology of many calculus texts, this sum passes the ratio test: There exists a positive integer

k0 such that, for all k ≥ k0, (k+1)2ck+1

k2ck
< 1.
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Here,�, is the bitwise right shift operator, so x.hash code()� w− d extracts the d
most significant bits of x’s w-bit hash code.

Unfortunately, storing an array of size 2w is prohibitive in terms of memory usage.
The approach used by tabulation hashing is to, instead, treat w-bit integers as being
comprised of w/r integers, each having only r bits. In this way, tabulation hashing only
needs w/r arrays each of length 2r. All the entries in these arrays are independent
random w-bit integers. To obtain the value of hash(x) we split x.hash code() up into
w/r r-bit integers and use these as indices into these arrays. We then combine all
these values with the bitwise exclusive-or operator to obtain hash(x). The following
code shows how this works when w = 32 and r = 4:

hash(x)
h← hash code(x)
return (tab[0][h∧ff16]

⊕ tab[1][(h� 8)∧ff16]
⊕ tab[2][(h� 16)∧ff16]
⊕ tab[3][(h� 24)∧ff16])� (w− d)

In this case, tab is a two-dimensional array with four columns and 232/4 = 256 rows.
Quantities like ff16, used above, are hexadecimal numbers whose digits have 16 pos-
sible values 0–9, which have their usual meaning and a–f, which denote 10–15. The
number ff16 = 15 · 16 + 15 = 255. The ∧ symbol is the bitwise and operator, so code
like h� 8∧ff16 extracts bits with index 8 through 15 of h.

One can easily verify that, for any x, hash(x) is uniformly distributed over {0, . . . ,2d−
1}. With a little work, one can even verify that any pair of values have independent hash
values. This implies tabulation hashing could be used in place of multiplicative hashing
for the ChainedHashTable implementation.

However, it is not true that any set of n distinct values gives a set of n independent
hash values. Nevertheless, when tabulation hashing is used, the bound of Theorem 7.2
still holds. References for this are provided at the end of this chapter.

7.3 Hash Codes

The hash tables discussed in the previous section are used to associate data with inte-
ger keys consisting of w bits. In many cases, we have keys that are not integers. They
may be strings, objects, arrays, or other compound structures. To use hash tables for
these types of data, we must map these data types to w-bit hash codes. Hash code
mappings should have the following properties:

1. If x and y are equal, then x.hash code() and y.hash code() are equal.
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2. If x and y are not equal, then the probability that x.hash code() = y.hash code()
should be small (close to 1/2w).

The first property ensures that if we store x in a hash table and later look up a value
y equal to x, then we will find x—as we should. The second property minimizes the loss
from converting our objects to integers. It ensures that unequal objects usually have
different hash codes and so are likely to be stored at different locations in our hash
table.

7.3.1 Hash Codes for Primitive Data Types

Small primitive data types like char, byte, int, and float are usually easy to find hash
codes for. These data types always have a binary representation and this binary repre-
sentation usually consists of w or fewer bits. In these cases, we just treat these bits as
the representation of an integer in the range {0, . . . ,2w − 1}. If two values are different,
they get different hash codes. If they are the same, they get the same hash code.

A few primitive data types are made up of more than w bits, usually cw bits for some
constant integer c. (Java’s long and double types are examples of this with c = 2.) These
data types can be treated as compound objects made of c parts, as described in the
next section.

7.3.2 Hash Codes for Compound Objects

For a compound object, we want to create a hash code by combining the individual
hash codes of the object’s constituent parts. This is not as easy as it sounds. Although
one can find many hacks for this (for example, combining the hash codes with bitwise
exclusive-or operations), many of these hacks turn out to be easy to foil (see Exer-
cises 7.7–7.9). However, if one is willing to do arithmetic with 2w bits of precision, then
there are simple and robust methods available. Suppose we have an object made up of
several parts P0, . . . , Pr−1 whose hash codes are x0, . . . ,xr−1. Then we can choose mu-
tually independent random w-bit integers z0, . . . ,zr−1 and a random 2w-bit odd integer z
and compute a hash code for our object with

h(x0, . . . ,xr−1) =


z

r−1∑
i=0

zixi

 mod 22w

div2w .

Note that this hash code has a final step (multiplying by z and dividing by 2w) that uses
the multiplicative hash function from Section 7.1.1 to take the 2w-bit intermediate result
and reduce it to a w-bit final result. Here is an example of this method applied to a
simple compound object with three parts x0, x1, and x2:
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hash code()
z← [2058cc5016,cb19137e16,2cb6b6fd16]
zz← bea0107e5067d19d16

h← [x0.hash code(),x1.hash code(),x2.hash code()]
return (((z[0] · h[0] + z[1] · h[1] + z[2] · h[2]) · zz) mod 22 ·w))� w

The following theorem shows that, in addition to being straightforward to implement,
this method is provably good:

Theorem 7.3. Let x0, . . . ,xr−1 and y0, . . . ,yr−1 each be sequences of w bit integers in
{0, . . . ,2w − 1} and assume xi , yi for at least one index i ∈ {0, . . . , r − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ 3/2w .

Proof. We will first ignore the final multiplicative hashing step and see how that step
contributes later. Define:

h′(x0, . . . ,xr−1) =

 r−1∑
j=0

zjxj

 mod 22w .

Suppose that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1). We can rewrite this as:

zi(xi − yi) mod 22w = t (7.4)

where

t =

 i−1∑
j=0

zj (yj − xj ) +
r−1∑
j=i+1

zj (yj − xj )

 mod 22w

If we assume, without loss of generality that xi > yi , then (7.4) becomes

zi(xi − yi) = t , (7.5)

since each of zi and (xi−yi) is at most 2w−1, so their product is at most 22w−2w+1 +1 <
22w − 1. By assumption, xi − yi , 0, so (7.5) has at most one solution in zi . Therefore,
since zi and t are independent (z0, . . . ,zr−1 are mutually independent), the probability
that we select zi so that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) is at most 1/2w.

The final step of the hash function is to apply multiplicative hashing to reduce our
2w-bit intermediate result h′(x0, . . . ,xr−1) to a w-bit final result h(x0, . . . ,xr−1). By The-
orem 7.3, if h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1), then Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤
2/2w.
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To summarize,

Pr
{
h(x0, . . . ,xr−1)

= h(y0, . . . ,yr−1)

}

= Pr


h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) or
h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1)

and zh′(x0, . . . ,xr−1)div2w = zh′(y0, . . . ,yr−1)div2w


≤ 1/2w + 2/2w = 3/2w .

7.3.3 Hash Codes for Arrays and Strings

The method from the previous section works well for objects that have a fixed, constant,
number of components. However, it breaks down when we want to use it with objects
that have a variable number of components, since it requires a random w-bit integer zi
for each component. We could use a pseudorandom sequence to generate as many
zi ’s as we need, but then the zi ’s are not mutually independent, and it becomes difficult
to prove that the pseudorandom numbers don’t interact badly with the hash function we
are using. In particular, the values of t and zi in the proof of Theorem 7.3 are no longer
independent.

A more rigorous approach is to base our hash codes on polynomials over prime
fields; these are just regular polynomials that are evaluated modulo some prime number,
p. This method is based on the following theorem, which says that polynomials over
prime fields behave pretty-much like usual polynomials:

Theorem 7.4. Let p be a prime number, and let f (z) = x0z0 + x1z1 + · · · + xr−1zr−1 be
a non-trivial polynomial with coefficients xi ∈ {0, . . . ,p− 1}. Then the equation f (z) mod
p = 0 has at most r − 1 solutions for z ∈ {0, . . . ,p − 1}.

To use Theorem 7.4, we hash a sequence of integers x0, . . . ,xr−1 with each xi ∈
{0, . . . ,p− 2} using a random integer z ∈ {0, . . . ,p− 1} via the formula

h(x0, . . . ,xr−1) =
(
x0z0 + · · ·+ xr−1zr−1 + (p− 1)zr

)
mod p .

Note the extra (p− 1)zr term at the end of the formula. It helps to think of (p− 1) as
the last element, xr , in the sequence x0, . . . ,xr . Note that this element differs from every
other element in the sequence (each of which is in the set {0, . . . ,p− 2}). We can think
of p− 1 as an end-of-sequence marker.

The following theorem, which considers the case of two sequences of the same
length, shows that this hash function gives a good return for the small amount of ran-
domization needed to choose z:

Theorem 7.5. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr−1 each be se-
quences of w-bit integers in {0, . . . ,2w − 1}, and assume xi , yi for at least one index
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i ∈ {0, . . . , r − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ (r − 1)/p .

Proof. The equation h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1) can be rewritten as(
(x0 − y0)z0 + · · ·+ (xr−1 − yr−1)zr−1

)
mod p = 0. (7.6)

Since xi , yi, this polynomial is non-trivial. Therefore, by Theorem 7.4, it has at most
r−1 solutions in z. The probability that we pick z to be one of these solutions is therefore
at most (r − 1)/p.

Note that this hash function also deals with the case in which two sequences have
different lengths, even when one of the sequences is a prefix of the other. This is
because this function effectively hashes the infinite sequence

x0, . . . ,xr−1,p− 1,0,0, . . . .

This guarantees that if we have two sequences of length r and r ′ with r > r ′, then these
two sequences differ at index i = r. In this case, (7.6) becomesi=r

′−1∑
i=0

(xi − yi)z
i + (xr ′ − p + 1)zr

′
+
i=r−1∑
i=r ′+1

xiz
i + (p− 1)zr

 mod p = 0 ,

which, by Theorem 7.4, has at most r solutions in z. This combined with Theorem 7.5
suffice to prove the following more general theorem:

Theorem 7.6. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr ′−1 be distinct
sequences of w-bit integers in {0, . . . ,2w − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤max{r, r ′}/p .

The following example code shows how this hash function is applied to an object
that contains an array, x, of values:

hash code()
p← 232 − 5 # this is a prime number
z← 64b6055a16 # 32 bits from random.org
z2← 5067d19d16 # random odd 32 bit number
s← 0
zi← 1
for i in 0,1,2, . . . , length(x)− 1 do

# reduce to 31 bits
xi← ((x[i].hash code() · z2) mod 232)� 1
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s← (s + zi · xi) mod p
zi← (zi · z) mod p

s← (s + zi · (p− 1)) mod p
return s mod 232

The preceding code sacrifices some collision probability for implementation conve-
nience. In particular, it applies the multiplicative hash function from Section 7.1.1, with
d = 31 to reduce x[i].hash code() to a 31-bit value. This is so that the additions and
multiplications that are done modulo the prime p = 232 − 5 can be carried out using
unsigned 63-bit arithmetic. Thus the probability of two different sequences, the longer
of which has length r, having the same hash code is at most

2/231 + r/(232 − 5)

rather than the r/(232 − 5) specified in Theorem 7.6.

7.4 Discussion and Exercises

Hash tables and hash codes represent an enormous and active field of research that
is just touched upon in this chapter. The online Bibliography on Hashing [2] contains
nearly 2000 entries.

A variety of different hash table implementations exist. The one described in Sec-
tion 7.1 is known as hashing with chaining (each array entry contains a chain (List) of
elements). Hashing with chaining dates back to an internal IBM memorandum authored
by H. P. Luhn and dated January 1953. This memorandum also seems to be one of the
earliest references to linked lists.

An alternative to hashing with chaining is that used by open addressing schemes,
where all data is stored directly in an array. These schemes include the LinearHash-
Table structure of Section 7.2. This idea was also proposed, independently, by a group
at IBM in the 1950s. Open addressing schemes must deal with the problem of collision
resolution: the case where two values hash to the same array location. Different strate-
gies exist for collision resolution; these provide different performance guarantees and
often require more sophisticated hash functions than the ones described here.

Yet another category of hash table implementations are the so-called perfect hash-
ing methods. These are methods in which find(x) operations take O(1) time in the
worst-case. For static data sets, this can be accomplished by finding perfect hash func-
tions for the data; these are functions that map each piece of data to a unique array
location. For data that changes over time, perfect hashing methods include FKS two-
level hash tables [18, 12] and cuckoo hashing [32].

The hash functions presented in this chapter are probably among the most practical
methods currently known that can be proven to work well for any set of data. Other
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provably good methods date back to the pioneering work of Carter and Wegman who
introduced the notion of universal hashing and described several hash functions for
different scenarios [5]. Tabulation hashing, described in Section 7.2.3, is due to Carter
and Wegman [5], but its analysis, when applied to linear probing (and several other
hash table schemes) is due to Pǎtraşcu and Thorup [33].

The idea of multiplicative hashing is very old and seems to be part of the hashing
folklore [27, Section 6.4]. However, the idea of choosing the multiplier z to be a random
odd number, and the analysis in Section 7.1.1 is due to Dietzfelbinger et al. [11]. This
version of multiplicative hashing is one of the simplest, but its collision probability of
2/2d is a factor of two larger than what one could expect with a random function from
2w→ 2d. The multiply-add hashing method uses the function

h(x) = ((zx + b) mod 22w)div22w−d

where z and b are each randomly chosen from {0, . . . ,22w−1}. Multiply-add hashing has
a collision probability of only 1/2d [9], but requires 2w-bit precision arithmetic.

There are a number of methods of obtaining hash codes from fixed-length se-
quences of w-bit integers. One particularly fast method [3] is the function

h(x0, . . . ,xr−1)
=

(∑r/2−1
i=0 ((x2i + a2i) mod 2w)((x2i+1 + a2i+1) mod 2w)

)
mod 22w

where r is even and a0, . . . ,ar−1 are randomly chosen from {0, . . . ,2w}. This yields a
2w-bit hash code that has collision probability 1/2w. This can be reduced to a w-bit
hash code using multiplicative (or multiply-add) hashing. This method is fast because it
requires only r/2 2w-bit multiplications whereas the method described in Section 7.3.2
requires r multiplications. (The mod operations occur implicitly by using w and 2w-bit
arithmetic for the additions and multiplications, respectively.)

The method from Section 7.3.3 of using polynomials over prime fields to hash
variable-length arrays and strings is due to Dietzfelbinger et al. [10]. Due to its use
of the mod operator which relies on a costly machine instruction, it is, unfortunately,
not very fast. Some variants of this method choose the prime p to be one of the form
2w − 1, in which case the mod operator can be replaced with addition (+) and bitwise-
and (∧) operations [26, Section 3.6]. Another option is to apply one of the fast methods
for fixed-length strings to blocks of length c for some constant c > 1 and then apply the
prime field method to the resulting sequence of dr/ce hash codes.

Exercise 7.1. A certain university assigns each of its students student numbers the first
time they register for any course. These numbers are sequential integers that started
at 0 many years ago and are now in the millions. Suppose we have a class of one
hundred first year students and we want to assign them hash codes based on their
student numbers. Does it make more sense to use the first two digits or the last two
digits of their student number? Justify your answer.



§7.4 Hash Tables 128

Exercise 7.2. Consider the hashing scheme in Section 7.1.1, and suppose n = 2d and
d ≤ w/2.

1. Show that, for any choice of the muliplier, z, there exists n values that all have the
same hash code. (Hint: This is easy, and doesn’t require any number theory.)

2. Given the multiplier, z, describe n values that all have the same hash code. (Hint:
This is harder, and requires some basic number theory.)

Exercise 7.3. Prove that the bound 2/2d in Lemma 7.1 is the best possible bound by
showing that, if x = 2w−d−2 and y = 3x, then Pr{hash(x) = hash(y)} = 2/2d. (Hint look at
the binary representations of zx and z3x and use the fact that z3x = zx+ 2zx.)

Exercise 7.4. Reprove Lemma 7.4 using the full version of Stirling’s Approximation
given in Section 1.3.2.

Exercise 7.5. Consider the following simplified version of the code for adding an ele-
ment x to a LinearHashTable, which simply stores x in the first nil array entry it finds.
Explain why this could be very slow by giving an example of a sequence ofO(n) add(x),
remove(x), and find(x) operations that would take on the order of n2 time to execute.

add slow(x)
if 2 · (q + 1) > length(t) then resize()
i← hash(x)
while t[i] , nil do

if t[1] , del and x = t[i] then return false
i← (i + 1) mod len(t[i])

t[i]← x

n← n + 1
q← q + 1
return true

Exercise 7.6. Early versions of the Java hash code() method for the String class worked
by not using all of the characters found in long strings. For example, for a sixteen char-
acter string, the hash code was computed using only the eight even-indexed characters.
Explain why this was a very bad idea by giving an example of large set of strings that
all have the same hash code.

Exercise 7.7. Suppose you have an object made up of two w-bit integers, x and y.
Show why x⊕y does not make a good hash code for your object. Give an example of a
large set of objects that would all have hash code 0.

Exercise 7.8. Suppose you have an object made up of two w-bit integers, x and y.
Show why x + y does not make a good hash code for your object. Give an example of a
large set of objects that would all have the same hash code.
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Exercise 7.9. Suppose you have an object made up of two w-bit integers, x and y.
Suppose that the hash code for your object is defined by some deterministic function
h(x,y) that produces a single w-bit integer. Prove that there exists a large set of objects
that have the same hash code.

Exercise 7.10. Let p = 2w − 1 for some positive integer w. Explain why, for a positive
integer x

(x mod 2w) + (xdiv2w) ≡ x mod (2w − 1) .

(This gives an algorithm for computing x mod (2w − 1) by repeatedly setting until x ≤
2w − 1.)

Exercise 7.11. Find some commonly used hash table implementation such as the ( or
the HashTable or LinearHashTable implementations in this book, and design a program
that stores integers in this data structure so that there are integers, x, such that find(x)
takes linear time. That is, find a set of n integers for which there are cn elements that
hash to the same table location.

Depending on how good the implementation is, you may be able to do this just by
inspecting the code for the implementation, or you may have to write some code that
does trial insertions and searches, timing how long it takes to add and find particular
values. (This can be, and has been, used to launch denial of service attacks on web
servers [7].)





Chapter 8

Graphs

In this chapter, we study two representations of graphs and basic algorithms that use
these representations.

Mathematically, a (directed) graph is a pair G = (V ,E) where V is a set of vertices
and E is a set of ordered pairs of vertices called edges. An edge (i, j) is directed from
i to j; i is called the source of the edge and j is called the target. A path in G is a
sequence of vertices v0, . . . , vk such that, for every i ∈ {1, . . . , k}, the edge (vi−1,vi) is in
E. A path v0, . . . , vk is a cycle if, additionally, the edge (vk ,v0) is in E. A path (or cycle)
is simple if all of its vertices are unique. If there is a path from some vertex vi to some
vertex vj then we say that vj is reachable from vi . An example of a graph is shown in
Figure 8.1.

Due to their ability to model so many phenomena, graphs have an enormous num-
ber of applications. There are many obvious examples. Computer networks can be
modelled as graphs, with vertices corresponding to computers and edges correspond-
ing to (directed) communication links between those computers. City streets can be
modelled as graphs, with vertices representing intersections and edges representing
streets joining consecutive intersections.

Less obvious examples occur as soon as we realize that graphs can model any
pairwise relationships within a set. For example, in a university setting we might have a
timetable conflict graph whose vertices represent courses offered in the university and
in which the edge (i, j) is present if and only if there is at least one student that is taking
both class i and class j. Thus, an edge indicates that the exam for class i should not be
scheduled at the same time as the exam for class j.

Throughout this section, we will use n to denote the number of vertices of G and m
to denote the number of edges of G. That is, n = |V | and m = |E|. Furthermore, we will
assume that V = {0, . . . ,n − 1}. Any other data that we would like to associate with the
elements of V can be stored in an array of length n.

Some typical operations performed on graphs are:

• add edge(i, j): Add the edge (i, j) to E.

• remove edge(i, j): Remove the edge (i, j) from E.
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Figure 8.1: A graph with twelve vertices. Vertices are drawn as numbered circles and edges are
drawn as pointed curves pointing from source to target.

• has edge(i, j): Check if the edge (i, j) ∈ E

• out edges(i): Return a List of all integers j such that (i, j) ∈ E

• in edges(i): Return a List of all integers j such that (j, i) ∈ E

Note that these operations are not terribly difficult to implement efficiently. For exam-
ple, the first three operations can be implemented directly by using a USet, so they can
be implemented in constant expected time using the hash tables discussed in Chap-
ter 7. The last two operations can be implemented in constant time by storing, for each
vertex, a list of its adjacent vertices.

However, different applications of graphs have different performance requirements
for these operations and, ideally, we can use the simplest implementation that satisfies
all the application’s requirements. For this reason, we discuss two broad categories of
graph representations.

8.1 AdjacencyMatrix: Representing a Graph by a Matrix

An adjacency matrix is a way of representing an n vertex graph G = (V ,E) by an n× n
matrix, a, whose entries are boolean values.

initialize()
a← new boolean matrix(n,n)

The matrix entry a[i][j] is defined as

a[i][j] =

true if (i, j) ∈ E
false otherwise
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0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 0 0 0
2 1 0 0 1 0 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0 1 0 0 0 0
4 1 0 0 0 0 1 0 0 1 0 0 0
5 0 1 1 0 1 0 1 0 0 1 0 0
6 0 0 1 0 0 1 0 1 0 0 1 0
7 0 0 0 1 0 0 1 0 0 0 0 1
8 0 0 0 0 1 0 0 0 0 1 0 0
9 0 0 0 0 0 1 0 0 1 0 1 0
10 0 0 0 0 0 0 1 0 0 1 0 1
11 0 0 0 0 0 0 0 1 0 0 1 0

Figure 8.2: A graph and its adjacency matrix.

The adjacency matrix for the graph in Figure 8.1 is shown in Figure 8.2.

In this representation, the operations add edge(i, j), remove edge(i, j), and has edge(i, j)
just involve setting or reading the matrix entry a[i][j]:

add edge(i, j)
a[i][j]← true

remove edge(i, j)
a[i][j]← false

has edge(i, j)
return a[i][j]

These operations clearly take constant time per operation.
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Where the adjacency matrix performs poorly is with the out edges(i) and in edges(i)
operations. To implement these, we must scan all n entries in the corresponding row or
column of a and gather up all the indices, j, where a[i][j], respectively a[j][i], is true.
These operations clearly take O(n) time per operation.

Another drawback of the adjacency matrix representation is that it is large. It stores
an n× n boolean matrix, so it requires at least n2 bits of memory. The implementation
here uses a matrix of values so it actually uses on the order of n2 bytes of memory. A
more careful implementation, which packs w boolean values into each word of memory,
could reduce this space usage to O(n2/w) words of memory.

Theorem 8.1. The AdjacencyMatrix data structure implements the Graph interface. An
AdjacencyMatrix supports the operations

• add edge(i, j), remove edge(i, j), and has edge(i, j) in constant time per opera-
tion; and

• in edges(i), and out edges(i) in O(n) time per operation.

The space used by an AdjacencyMatrix is O(n2).

Despite its high memory requirements and poor performance of the in edges(i) and
out edges(i) operations, an AdjacencyMatrix can still be useful for some applications.
In particular, when the graph G is dense, i.e., it has close to n2 edges, then a memory
usage of n2 may be acceptable.

The AdjacencyMatrix data structure is also commonly used because algebraic op-
erations on the matrix a can be used to efficiently compute properties of the graph G.
This is a topic for a course on algorithms, but we point out one such property here: If
we treat the entries of a as integers (1 for true and 0 for false) and multiply a by itself
using matrix multiplication then we get the matrix a2. Recall, from the definition of matrix
multiplication, that

a⊕ 2[i][j] =
n−1∑
k=0

a[i][k] · a[k][j] .

Interpreting this sum in terms of the graphG, this formula counts the number of vertices,
k, such that G contains both edges (i,k) and (k, j). That is, it counts the number of
paths from i to j (through intermediate vertices, k) whose length is exactly two. This
observation is the foundation of an algorithm that computes the shortest paths between
all pairs of vertices in G using only O(logn) matrix multiplications.

8.2 AdjacencyLists: A Graph as a Collection of Lists

Adjacency list representations of graphs take a more vertex-centric approach. There
are many possible implementations of adjacency lists. In this section, we present a



135 AdjacencyLists: A Graph as a Collection of Lists §8.2

0 1 2 3

7654

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
1 0 1 2 0 1 5 6 4 8 9 10
4 2 3 7 5 2 2 3 9 5 6 7
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Figure 8.3: A graph and its adjacency lists

simple one. At the end of the section, we discuss different possibilities. In an adjacency
list representation, the graph G = (V ,E) is represented as an array, adj, of lists. The
list adj[i] contains a list of all the vertices adjacent to vertex i. That is, it contains every
index j such that (i, j) ∈ E.

initialize()
adj← new array(n)
for i in 0,1,2, . . . ,n− 1 do

adj[i]← ArrayStack()

(An example is shown in Figure 8.3.) In this particular implementation, we represent
each list in adj as ArrayStack, because we would like constant time access by position.
Other options are also possible. Specifically, we could have implemented adj as a
DLList.

The add edge(i, j) operation just appends the value j to the list adj[i]:

add edge(i, j)
adj[i].append(j)

This takes constant time.
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The remove edge(i, j) operation searches through the list adj[i] until it finds j and
then removes it:

remove edge(i, j)
for k in 0,1,2, . . . , length(adj[i])− 1 do

if adj[i].get(k) = j then
adj[i].remove(k)
return

This takesO(deg(i)) time, where deg(i) (the degree of i) counts the number of edges
in E that have i as their source.

The has edge(i, j) operation is similar; it searches through the list adj[i] until it finds
j (and returns true), or reaches the end of the list (and returns false):

has edge(i, j)
for k in adj[i] do

if k = j then
return true

return false

This also takes O(deg(i)) time.
The out edges(i) operation is very simple; it returns the list adj[i] :

out edges(i)
return adj[i]

The in edges(i) operation is much more work. It scans over every vertex j checking
if the edge (i, j) exists and, if so, adding j to the output list:

in edges(i)
out← ArrayStack()
for j in 0,1,2, . . . ,n− 1 do

if has edge(j, i) then out.append(j)
return out

This operation is very slow. It scans the adjacency list of every vertex, so it takes
O(n + m) time.

The following theorem summarizes the performance of the above data structure:
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Theorem 8.2. The AdjacencyLists data structure implements the Graph interface. An
AdjacencyLists supports the operations

• add edge(i, j) in constant time per operation;

• remove edge(i, j) and has edge(i, j) in O(deg(i)) time per operation;

• in edges(i) in O(n + m) time per operation.

The space used by a AdjacencyLists is O(n + m).

As alluded to earlier, there are many different choices to be made when implement-
ing a graph as an adjacency list. Some questions that come up include:

• What type of collection should be used to store each element of adj? One could
use an array-based list, a linked-list, or even a hashtable.

• Should there be a second adjacency list, inadj, that stores, for each i, the list of
vertices, j, such that (j, i) ∈ E? This can greatly reduce the running-time of the
in edges(i) operation, but requires slightly more work when adding or removing
edges.

• Should the entry for the edge (i, j) in adj[i] be linked by a reference to the corre-
sponding entry in inadj[j]?

• Should edges be first-class objects with their own associated data? In this way,
adj would contain lists of edges rather than lists of vertices (integers).

Most of these questions come down to a tradeoff between complexity (and space) of
implementation and performance features of the implementation.

8.3 Graph Traversal

In this section we present two algorithms for exploring a graph, starting at one of its
vertices, i, and finding all vertices that are reachable from i. Both of these algorithms
are best suited to graphs represented using an adjacency list representation. Therefore,
when analyzing these algorithms we will assume that the underlying representation is
an AdjacencyLists.

8.3.1 Breadth-First Search

The breadth-first-search algorithm starts at a vertex i and visits, first the neighbours of
i, then the neighbours of the neighbours of i, then the neighbours of the neighbours of
the neighbours of i, and so on.
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Figure 8.4: An example of breadth-first-search starting at node 0. Nodes are labelled with the
order in which they are added to q. Edges that result in nodes being added to q are drawn in
black, other edges are drawn in grey.

This algorithm is a generalization of the breadth-first traversal algorithm for binary
trees (Section 4.1.2), and is very similar; it uses a queue, q, that initially contains only i.
It then repeatedly extracts an element from q and adds its neighbours to q, provided that
these neighbours have never been in q before. The only major difference between the
breadth-first-search algorithm for graphs and the one for trees is that the algorithm for
graphs has to ensure that it does not add the same vertex to q more than once. It does
this by using an auxiliary boolean array, seen, that tracks which vertices have already
been discovered.

bfs(g,r)
seen← new boolean array(n)
q← SLList()
q.add(r)
seen[r]← true
while q.size() > 0 do

i← q.remove()
for j in g.out edges(i) do

if seen[j] = false then
q.add(j)
seen[j]← true

An example of running bfs(g,0) on the graph from Figure 8.1 is shown in Figure 8.4.
Different executions are possible, depending on the ordering of the adjacency lists;
Figure 8.4 uses the adjacency lists in Figure 8.3.

Analyzing the running-time of the bfs(g, i) routine is fairly straightforward. The use
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of the seen array ensures that no vertex is added to q more than once. Adding (and
later removing) each vertex from q takes constant time per vertex for a total of O(n)
time. Since each vertex is processed by the inner loop at most once, each adjacency
list is processed at most once, so each edge of G is processed at most once. This
processing, which is done in the inner loop takes constant time per iteration, for a total
of O(m) time. Therefore, the entire algorithm runs in O(n + m) time.

The following theorem summarizes the performance of the bfs(g,r) algorithm.

Theorem 8.3. When given as input a Graph, g, that is implemented using the Adjacen-
cyLists data structure, the bfs(g,r) algorithm runs in O(n + m) time.

A breadth-first traversal has some very special properties. Calling bfs(g,r) will even-
tually enqueue (and eventually dequeue) every vertex j such that there is a directed
path from r to j. Moreover, the vertices at distance 0 from r (r itself) will enter q before
the vertices at distance 1, which will enter q before the vertices at distance 2, and so
on. Thus, the bfs(g,r) method visits vertices in increasing order of distance from r and
vertices that cannot be reached from r are never visited at all.

A particularly useful application of the breadth-first-search algorithm is, therefore, in
computing shortest paths. To compute the shortest path from r to every other vertex,
we use a variant of bfs(g,r) that uses an auxilliary array, p, of length n. When a new
vertex j is added to q, we set p[j]← i. In this way, p[j] becomes the second last node
on a shortest path from r to j. Repeating this, by taking p[p[j], p[p[p[j]]], and so on we
can reconstruct the (reversal of) a shortest path from r to j.

8.3.2 Depth-First Search

The depth-first-search algorithm is similar to the standard algorithm for traversing binary
trees; it first fully explores one subtree before returning to the current node and then
exploring the other subtree. Another way to think of depth-first-search is by saying that
it is similar to breadth-first search except that it uses a stack instead of a queue.

During the execution of the depth-first-search algorithm, each vertex, i, is assigned
a colour, c[i]: white if we have never seen the vertex before, grey if we are currently
visiting that vertex, and black if we are done visiting that vertex. The easiest way to think
of depth-first-search is as a recursive algorithm. It starts by visiting r. When visiting a
vertex i, we first mark i as grey. Next, we scan i’s adjacency list and recursively visit
any white vertex we find in this list. Finally, we are done processing i, so we colour i
black and return.

dfs(g,r)
c← new array(g.n)
dfs(g,r,c)
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Figure 8.5: An example of depth-first-search starting at node 0. Nodes are labelled with the order
in which they are processed. Edges that result in a recursive call are drawn in black, other edges
are drawn in grey.

dfs(g, i,c)
c[i]← grey

for j in g.out edges(i) do
if c[j] = white then

c[j]← grey

dfs(g, j,c)
c[i]← black

An example of the execution of this algorithm is shown in Figure 8.5.
Although depth-first-search may best be thought of as a recursive algorithm, recur-

sion is not the best way to implement it. Indeed, the code given above will fail for many
large graphs by causing a stack overflow. An alternative implementation is to replace
the recursion stack with an explicit stack, s. The following implementation does just that:

dfs2(g,r)
c← new array(g.n)
s← SLList()
s.push(r)
while s.size() > 0 do

i← s.pop()
if c[i] = white then

c[i]← grey

for j in g.out edges(i) do
s.push(j)
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Figure 8.6: The depth-first-search algorithm can be used to detect cycles in G. The node j is
coloured grey while i is still grey. This implies that there is a path, P , from i to j in the depth-first-
search tree, and the edge (j, i) implies that P is also a cycle.

In the preceding code, when the next vertex, i, is processed, i is coloured grey and
then replaced, on the stack, with its adjacent vertices. During the next iteration, one of
these vertices will be visited.

Not surprisingly, the running times of dfs(g,r) and dfs2(g,r) are the same as that of
bfs(g,r):

Theorem 8.4. When given as input a Graph, g, that is implemented using the Adja-
cencyLists data structure, the dfs(g,r) and dfs2(g,r) algorithms each run in O(n + m)
time.

As with the breadth-first-search algorithm, there is an underlying tree associated
with each execution of depth-first-search. When a node i , r goes from white to grey,
this is because dfs(g, i,c) was called recursively while processing some node i′. (In the
case of dfs2(g,r) algorithm, i is one of the nodes that replaced i′ on the stack.) If we
think of i′ as the parent of i, then we obtain a tree rooted at r. In Figure 8.5, this tree is
a path from vertex 0 to vertex 11.

An important property of the depth-first-search algorithm is the following: Suppose
that when node i is coloured grey, there exists a path from i to some other node j that
uses only white vertices. Then j will be coloured first grey then black before i is coloured
black. (This can be proven by contradiction, by considering any path P from i to j.)

One application of this property is the detection of cycles. Refer to Figure 8.6.
Consider some cycle, C, that can be reached from r. Let i be the first node of C that is
coloured grey, and let j be the node that precedes i on the cycle C. Then, by the above
property, j will be coloured grey and the edge (j, i) will be considered by the algorithm
while i is still grey. Thus, the algorithm can conclude that there is a path, P , from i to j
in the depth-first-search tree and the edge (j, i) exists. Therefore, P is also a cycle.

8.4 Discussion and Exercises

The running times of the depth-first-search and breadth-first-search algorithms are some-
what overstated by the Theorems 8.3 and 8.4. Define nr as the number of vertices, i, of
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Figure 8.7: An example graph.

G, for which there exists a path from r to i. Define mr as the number of edges that have
these vertices as their sources. Then the following theorem is a more precise statement
of the running times of the breadth-first-search and depth-first-search algorithms. (This
more refined statement of the running time is useful in some of the applications of these
algorithms outlined in the exercises.)

Theorem 8.5. When given as input a Graph, g, that is implemented using the Adja-
cencyLists data structure, the bfs(g,r), dfs(g,r) and dfs2(g,r) algorithms each run in
O(nr + mr) time.

Breadth-first search seems to have been discovered independently by Moore [30]
and Lee [28] in the contexts of maze exploration and circuit routing, respectively.

Adjacency-list representations of graphs were presented by Hopcroft and Tarjan
[23] as an alternative to the (then more common) adjacency-matrix representation.
This representation, as well as depth-first-search, played a major part in the celebrated
Hopcroft-Tarjan planarity testing algorithm that can determine, in O(n) time, if a graph
can be drawn, in the plane, and in such a way that no pair of edges cross each other
[24].

In the following exercises, an undirected graph is one in which, for every i and j, the
edge (i, j) is present if and only if the edge (j, i) is present.

Exercise 8.1. Draw an adjacency list representation and an adjacency matrix repre-
sentation of the graph in Figure 8.7.

Exercise 8.2. The incidence matrix representation of a graph, G, is an n×m matrix, A,
where

Ai,j =


−1 if vertex i the source of edge j
+1 if vertex i the target of edge j
0 otherwise.
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1. Draw the incident matrix representation of the graph in Figure 8.7.

2. Design, analyze and implement an incidence matrix representation of a graph. Be
sure to analyze the space, the cost of add edge(i, j), remove edge(i, j), has edge(i, j),
in edges(i), and out edges(i).

Exercise 8.3. Illustrate an execution of the bfs(G,0) and dfs(G,0) on the graph, G, in
Figure 8.7.

Exercise 8.4. Let G be an undirected graph. We say G is connected if, for every pair
of vertices i and j in G, there is a path from i to j (since G is undirected, there is also a
path from j to i). Show how to test if G is connected in O(n + m) time.

Exercise 8.5. Let G be an undirected graph. A connected-component labelling of G
partitions the vertices of G into maximal sets, each of which forms a connected sub-
graph. Show how to compute a connected component labelling of G in O(n + m) time.

Exercise 8.6. Let G be an undirected graph. A spanning forest of G is a collection of
trees, one per component, whose edges are edges of G and whose vertices contain all
vertices of G. Show how to compute a spanning forest of of G in O(n + m) time.

Exercise 8.7. We say that a graph G is strongly-connected if, for every pair of vertices
i and j in G, there is a path from i to j. Show how to test if G is strongly-connected in
O(n + m) time.

Exercise 8.8. Given a graph G = (V ,E) and some special vertex r ∈ V , show how to
compute the length of the shortest path from r to i for every vertex i ∈ V .

Exercise 8.9. Give a (simple) example where the dfs(g,r) code visits the nodes of a
graph in an order that is different from that of the dfs2(g,r) code. Write a version of
dfs2(g,r) that always visits nodes in exactly the same order as dfs(g,r). (Hint: Just start
tracing the execution of each algorithm on some graph where r is the source of more
than 1 edge.)

Exercise 8.10. A universal sink in a graph G is a vertex that is the target of n−1 edges
and the source of no edges.1 Design and implement an algorithm that tests if a graph
G, represented as an AdjacencyMatrix, has a universal sink. Your algorithm should run
in O(n) time.

1A universal sink, v, is also sometimes called a celebrity : Everyone in the room recognizes v, but v doesn’t
recognize anyone else in the room.
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