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What is shell scripting good for?

Shell scripts are the duct tape and bailing wire of computer
programming.

You can use them:

• To automate repeated tasks

• For jobs that require a lot of interaction with files

• To set up the environment for big, complicated programs

• When you need to stick a bunch of programs together into
something useful

• To add customizations to your environment
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A practical example $ runit1.sh

#!/bin/bash

g++ *.cpp

./a.out
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Special Variables

• $? Exit code of the last command run

• $0 Name of command that started this script (almost
always the script’s name)

• $1, $2, ..., $9 Comand line arguments 1-9

• $@ All command line arguments except $0

• $# The number of command line arguments in $@

And now, a brief message from our sponsors:

• Bash really likes splitting things up into words.

• $ for arg in $@ will NOT do what you want.

• $ for arg in "$@" correctly handles args with spaces.

• In general, when using the value of a variable you don’t
control, it is wise to put " s around the variable.
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A Spiffier Example $ runit2.sh

#!/bin/bash

g++ *.cpp -o "$1"

./"$1"
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Conditional Statements $ if.sh

#!/bin/bash

# Emit the appropriate greeting for various people

if [[ $1 = "Jeff" ]]; then

echo "Hi, Jeff"

elif [[ $1 == "Maggie" ]]; then

echo "Hello, Maggie"

elif [[ $1 == *.txt ]]; then

echo "You’re a text file, $1"

elif [ "$1" = "Stallman" ]; then

echo "FREEDOM!"

else

echo "Who in blazes are you?"

fi
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Conditional Operators

• [ ] is shorthand for the $ test command.

• [[ ]] is a bash keyword.

• [ ] works on most shells, but [[ ]] is less confusing.

• (( )) is another bash keyword. It does arithmetic.



Shell scripts

Special
variables

Conditionals

Conditional
operators

Case

Loops

for

while

Functions

Extras

String Comparison Operators for [[ ]]

• =, == String equality OR pattern matching if the RHS is
a pattern.

• != String inequality.

• < The LHS sorts before the RHS.

• > The LHS sorts after the RHS.

• -z The string is empty (length is zero).

• -n The string is not empty (e.g. $ [[ -n "$var" ]] ).
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Numeric Comparison Operators for [[ ]]

• -eq Numeric equality (e.g. $ [[ 5 -eq 5 ]] ).

• -ne Numeric inequality.

• -lt Less than

• -gt Greater than

• -le Less than or equal to

• -ge Greater than or equal to
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File Operators for $ [[ ]]

• -e True if the file exists (e.g. $ [[ -e story.txt ]] )

• -f True if the file is a regular file

• -d True if the file is a directory

There are a lot more file operators that deal with even fancier
stuff.
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General Operators for [[ ]]

• && Logical AND

• || Logical OR

• ! Logical NOT

• You can use parentheses to group statements too.
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Shell Arithmetic with (( ))

• This mostly works just like C++ arithmetic does.

• ** does exponentiation

• You can do ternaries! (( 3 < 5 ? 3 : 5 ))

• You don’t need $ on the front of normal variables.

• Shell Arithmetic Manual

http://www.gnu.org/software/bash/manual/bash.html#Shell-Arithmetic
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Spiffy++ Example $ runit3.sh

#!/bin/bash

if (( $# > 0 ))

then

g++ *.cpp -o "$1"

exe="$1"

else

g++ *.cpp

exe=a.out

fi

if [[ $? -eq 0 ]]

then

./"$exe"

fi

(Could you spiff it up even more with file checks?)
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Case statements
#!/bin/bash

case $1 in

a)

echo "a, literally"

;;

b*)

echo "Something that starts with b"

;;

*c)

echo "Something that ends with c"

;;

"*d")

echo "*d, literally"

;;

*)

echo "Everything else"

;;

esac
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For Looping $ for.sh

#!/bin/bash

echo C-style:

for (( i=1; i < 9; i++ ))

do

echo $i;

done

echo BASH-style:

for file in *.sh

do

echo $file

done
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While Looping $ while.sh

#!/bin/bash

input=""

while [[ $input != "4" ]]

do

echo "Please enter the displayed number"

read input

done
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Functions $ function.sh

#!/bin/bash

parrot()

{

while (( $# > 0 ))

do

echo "$1"

shift

done

}

parrot These are "several arguments"
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Miscellany

• Escaping characters: use \ on \, `, $, ", ’, #

• $ pushd and $ popd create a stack of directories

• $ dirs lists the stack

• Use these instead of $ cd

• $ set -u gives an error if you try to use an unset
variable.

• $ set -x prints out commands as they are run.

• $ help COMMAND gives you help with builtins.
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