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Lab 7: Code checking tools

Comp Sci 1585
Data Structures Lab:

Tools for Computer Scientists



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Code Checking Tools

Today we will talk about tools that will help you find bugs in
your code.

• $ valgrind and its memcheck tool

• $ asan is part runtime library, part compiler feature that
instruments your code at compile time.

• $ cppcheck does static code checking (some overlap).
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Stack and Heap

Recall the stack frames in GDB
(which you can navigate through using bt, up, down, etc)
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Stack and Heap

• The stack (on x86) starts at a high address and grows
down

• The heap (on x86) starts at the bottom and grows up

• Destructors on stack-allocated class instances are called
when the function returns

• Destructors on heap-allocated class instances are called
when delete is called on the pointer



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Types of problem

1 Uninitialized values

2 Unallocated or out-of-bounds read / write
• Out-of-bounds stack access
• Out-of-bounds heap access
• Use after free

3 Mismatched or double delete

4 Memory leaks
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Uninitialized Values: valgrind, memory-sanitizer

• Reading a value that hasn’t been initialized from the stack
or the heap.

• Especially dangerous when program flow depends on that
value.

• valgrind
$ valgrind --track-origins=yes keeps track of

where uninitialized values were allocated.

• asan is faster
$ g++ -g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack

and set environment variables (script provided today in
repo: symbolizer.sh )

• Some IDEs check unititialized values via plugins (e.g.,
CodeBlocks/KDevelop and Cppcheck plugin).
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Invalid Reads / Write: valgrind, address-sanitizer

• Reading or writing values from unallocated memory.

• Sometimes may result in a segfault, but not always.

• valgrind isn’t perfect:
you can invalidly read and write to things on the stack
without complaint, though it can detect out-of-bounds
heap access and use-after-free.

• asan works for all of these types:
$ g++ -g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack
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Misused delete: valgrind, address-sanitizer

1 Mismatched delete, using:
new with delete[] or

new[] with delete

Both are problematic, why?

2 Double delete: deleting the same memory twice.
Why is this an issue?

valgrind and asan can both detect both
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Memory Leaks: valgrind

Valgrind runs leak checks after the program terminates:

• Directly lost: No pointer to that block anymore.

• Indirectly lost: A pointer to that block exists, but it’s in
a directly lost block.

• Still reachable: Still have a pointer to that block (don’t
worry about this)

• Possibly lost: No pointer to the beginning of the block,
but a pointer to somewhere inside the block.

• $ valgrind --leak-check=full may help you
determine where

• Valgrind Memcheck Manual:
http://valgrind.org/docs/manual/mc-manual.html

The first two are the important ones to check for on homeworks

http://valgrind.org/docs/manual/mc-manual.html
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