
Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Lab 7: Code checking tools

Comp Sci 1585
Data Structures Lab:

Tools for Computer Scientists



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Code Checking Tools

Today we will talk about tools that will help you find bugs in
your code.

• $ valgrind and its memcheck tool

• $ asan is part runtime library, part compiler feature that
instruments your code at compile time.

• $ cppcheck does static code checking (some overlap).



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Stack and Heap

Recall the stack frames in GDB
(which you can navigate through using bt, up, down, etc)



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Stack and Heap



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Stack and Heap

• The stack (on x86) starts at a high address and grows
down

• The heap (on x86) starts at the bottom and grows up

• Destructors on stack-allocated class instances are called
when the function returns

• Destructors on heap-allocated class instances are called
when delete is called on the pointer



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Types of problem

1 Uninitialized values

2 Unallocated or out-of-bounds read / write
• Out-of-bounds stack access
• Out-of-bounds heap access
• Use after free

3 Mismatched or double delete

4 Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Uninitialized Values: valgrind, memory-sanitizer

• Reading a value that hasn’t been initialized from the stack
or the heap.

• Especially dangerous when program flow depends on that
value.

• valgrind
$ valgrind --track-origins=yes keeps track of

where uninitialized values were allocated.

• asan is faster
$ g++ -g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack

and set environment variables (script provided today in
repo: symbolizer.sh )

• Some IDEs check unititialized values via plugins (e.g.,
CodeBlocks/KDevelop and Cppcheck plugin).



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Invalid Reads / Write: valgrind, address-sanitizer

• Reading or writing values from unallocated memory.

• Sometimes may result in a segfault, but not always.

• valgrind isn’t perfect:
you can invalidly read and write to things on the stack
without complaint, though it can detect out-of-bounds
heap access and use-after-free.

• asan works for all of these types:
$ g++ -g -fsanitize=address -fno-omit-frame-pointer invalid-stack.cpp -o invalid-stack



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Misused delete: valgrind, address-sanitizer

1 Mismatched delete, using:
new with delete[] or

new[] with delete

Both are problematic, why?

2 Double delete: deleting the same memory twice.
Why is this an issue?

valgrind and asan can both detect both



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Outline

1 Code checking tools

2 Background on memory allocation

3 Types of problem
Uninitialized values
Invalid read / write
Mis-used delete
Memory leaks



Code checking
tools

Background
on memory
allocation

Types of
problem

Uninitialized
values

Invalid read /
write

Mis-used delete

Memory leaks

Memory Leaks: valgrind

Valgrind runs leak checks after the program terminates:

• Directly lost: No pointer to that block anymore.

• Indirectly lost: A pointer to that block exists, but it’s in
a directly lost block.

• Still reachable: Still have a pointer to that block (don’t
worry about this)

• Possibly lost: No pointer to the beginning of the block,
but a pointer to somewhere inside the block.

• $ valgrind --leak-check=full may help you
determine where

• Valgrind Memcheck Manual:
http://valgrind.org/docs/manual/mc-manual.html

The first two are the important ones to check for on homeworks

http://valgrind.org/docs/manual/mc-manual.html

	Code checking tools
	Background on memory allocation
	Types of problem
	Uninitialized values
	Invalid read / write
	Mis-used delete
	Memory leaks


