
Introduction

Methodology

Catch

Gcov: code
coverage

Lab 8: Unit Testing

Comp Sci 1585
Data Structures Lab:

Tools for Computer Scientists



Introduction

Methodology

Catch

Gcov: code
coverage

Outline

1 Introduction

2 Methodology

3 Catch

4 Gcov: code coverage



Introduction

Methodology

Catch

Gcov: code
coverage

Unit Testing

Unit testing lets you test your code piece-by-piece, instead of
all at once at the end of development. It also automates the
testing process so you know when you introduce bugs into your
code. Some go so far as to write tests before writing code.
This is called test-driven development (TDD). Some
frameworks include

• Catch

• Boost Unit Test Framework (UTF)

• Google test

• Gcov: Code coverage tool



Introduction

Methodology

Catch

Gcov: code
coverage

Outline

1 Introduction

2 Methodology

3 Catch

4 Gcov: code coverage



Introduction

Methodology

Catch

Gcov: code
coverage

Unit Testing

• Each test should be testing one (and only one) small unit
of your software

• A single test is typically broken up into:
• Bootstrapping your test
• Expected behavior
• Actual behavior (running the code unit that is being

tested)
• Comparing expected to actual behavior
• If actual behavior does not match expected behavior, print

out an informative message describing the problem



Introduction

Methodology

Catch

Gcov: code
coverage

Super Simple Example

// Function to be tested

int add(int x, int y)

{

return x + y;

}



Introduction

Methodology

Catch

Gcov: code
coverage

Bootstrapping

#include "add.hpp"

#include "catch.hpp"

TEST_CASE("Integer Arithmetic", "[int]")

{

// Bootstrapping your test setup

int value_to_add = 1;

int initial_value = 4;

/* ... */

}



Introduction

Methodology

Catch

Gcov: code
coverage

Expected Behavior

TEST_CASE("Integer Arithmetic", "[int]") {

/* Bootstrapping up here */

SECTION("Adding 1 to a number increases it by 1")

{

// Defining expected behavior

int expected_value = 5;

}

}



Introduction

Methodology

Catch

Gcov: code
coverage

Actual Behavior

TEST_CASE("Integer Arithmetic", "[int]") {

/* Bootstrapping up here */

SECTION("Adding 1 to a number increases it by 1")

{

// Defining expected behavior

int expected_value = 5;

// Obtain actual behavior

int actual_value = add(initial_value, // = 4

value_to_add); // = 1

}

}



Introduction

Methodology

Catch

Gcov: code
coverage

Comparing Behavior

TEST_CASE("Integer Arithmetic", "[int]") {

/* Bootstrapping up here */

SECTION("Adding 1 to a number increases it by 1")

{

// Defining expected behavior

int expected_value = 5;

// Obtain actual behavior

int actual_value = add(initial_value, // = 4

value_to_add); // = 1

// Compare expected against actual

CHECK(expected_value == actual_value);

}

}



Introduction

Methodology

Catch

Gcov: code
coverage

Test Driven Development

Test Driven Development (TDD) emphasizes writing tests first
that guide the development of your code.

• Don’t write your code first!

• Instead, start by writing tests

• Progression of development: Fail, Pass, Repeat
• Scaffold your code:

Define interface (i.e. header files),
Return dummy values that do nothing and cause your test
to fail

• Implement a single test: bootstrap, expected behavior,
actual behavior, comparison

• Run your tests (it should fail)
• Go back to code and fix it
• Run your tests (it should pass)
• Move on to next test



Introduction

Methodology

Catch

Gcov: code
coverage

Outline

1 Introduction

2 Methodology

3 Catch

4 Gcov: code coverage



Introduction

Methodology

Catch

Gcov: code
coverage

Catch2: a simple unit testing framework

https://github.com/catchorg/Catch2

1 Make an simple .cpp (like test main.cpp ) with just:

#define CATCH CONFIG MAIN

#include "catch.hpp"

2 Write some tests in their own tests whatever.cpp and
include your code files to test in this file.

3 Compile the tests whatever.cpp like normal (or faster

with a makefile)

Check out some examples

https://github.com/catchorg/Catch2


Introduction

Methodology

Catch

Gcov: code
coverage

Outline

1 Introduction

2 Methodology

3 Catch

4 Gcov: code coverage



Introduction

Methodology

Catch

Gcov: code
coverage

Code Coverage

Are all lines of your code being executed by your tests?
Are there code blocks that are not being reached (and thus are
not being covered by your test)?
Goal: obtain 100% coverage with your tests



Introduction

Methodology

Catch

Gcov: code
coverage

Code Coverage

1 Compile your tests with the --coverage flag

2 Run your test suite executable

3 Run $ gcov -mr [.cpp files] with all .cpp files in
your project to compute code coverage

Check out the example


	Introduction
	Methodology
	Catch
	Gcov: code coverage

