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Neural networks

We shall envision the mind (or brain) as composed of
many partially autonomous ”agents”as a ”Society” of
smaller minds. Each sub-society of mind must have its
own internal epistemology and phenomenology, with
most details private, not only from the central processes,
but from one another. (Minsky, K-Lines; 1980)

Lesson in neuronal politics:
Strong local/individual policies have many strengths:
sustainable, realistic, flexible, robust, and fault-tolerant
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Neural networks: Objectives

At the end of this section you should be able to:

Detail the basic features of biological neurons

Draw and formulate the equations for a basic
neuron and its structure

Describe various network structures

Understand various learning rules and their
limitations
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Real neurons
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Pre- and Post- synaptic
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Action potentials

A 4 second recording of the neural activity recording from 30 neurons of the visual cortex of a monkey.
Each vertical bar indicates a spike. The human brain can recognize a face within 150ms, which
correlates to less than 3mm in this diagram; dramatic changes in firing frequency occur in this time
span, neurons have to rely on information carried by solitary spikes.
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Neurons spike to “think” (mostly)

Neurons are unequivocally the basis of human/animal
thinking, learning, consciousness, etc.
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Synapses: inter-neuron signaling / learning

Rate-limited step is transmission between neurons

Learning is mostly rooted in the synapses

Neurons change their reactivity and weights to learn



p. 8

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

Diversity of neuron types

What magical trick
makes us intelligent?
The trick is that there
is no trick. The power
of intelligence stems
from our vast diversity
(and size), not from
any single, perfect
principle. (Marvin
Minsky, Society of
Mind; 1987)
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Diversity of neuron types cont...

Network structure varies on a macro scale.
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Level of abstraction

Which level of
abstraction to model?
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Neurons are slow (compared to

computers) and fairly small...
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Brains vs. Computers

process elements element size speed computation robust learns intelligent, conscious

Brain 1014 synapses 10e-6m 100Hz parallel, distr yes yes usually

Computer 108 transistors 10e-6m 109Hz serial, central no a little Debateably yes
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Brains vs. Computers: Robustness

performance degrades gracefully under partial
damage. In contrast, most programs and engineered
systems are brittle: if you remove some arbitrary
parts, very likely the whole will cease to function.

brain reorganizes itself from experience.

it performs massively parallel computations
extremely efficiently. For example, complex visual
perception occurs within less than 30 ms, that is,
10 processing steps!

Flexible, and can adjust to new environments

Can tolerate (well) information that is fuzzy,
inconsistent, probabalistic, noisy, or inconsistent

Small and very energy efficient
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Brains vs. Computers: function

Traditional computing excels in many areas, but not
in others.

A great definition: AI is the the development of
algorithms or paradigms that require machines to
perform cognitive tasks at which humans are
currently better.

Symbolic rules don’t reflect processes actually used
by humans



p. 15

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

Types of computation

Neural networks can be universal general purpose
computers, and in some app-specific hardware
instances do better than Turing machines.
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Types of computation

The use of neural networks may seem to challenge
the physical symbol system hypothesis, which relies
on symbols having meaning.

Although meaning is attached to the input and
output units, the designer does not associate a
meaning with the hidden units.

What the hidden units actually represent is
something that is learned.

After a neural network has been trained, it is often
possible to look inside the network to determine
what a particular hidden unit actually represents.

Arguably, the computer has an internal meaning; it
can explain its internal meaning by showing how
examples map into the values of the hidden unit.
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(Artificial) Neural networks

Massively parallel distributed processor made up of
simple units, which has a natural propensity for
storing and using experiential knowledge.

Knowledge is acquired by the network from its
environment through learning

Interconnection strengths (synaptic weights) store
acquired knowledge
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Domains studying NNs

Machine learning:
I Having a computer program itself from a set of

examples so you don’t have to program it yourself.
I Optimization: given a set of constraints and a

cost function, how do you find an optimal
solution? E.g. traveling salesman problem.

I Classification: grouping patterns into classes: i.e.
handwritten characters into letters.

I Associative memory: recalling a memory based
on a partial match.

I Regression: function mapping



p. 19

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

Domains studying NNs

Cognitive science:
I Modelling higher level reasoning: language,

problem solving
I Modelling lower level reasoning: vision, audition

speech recognition, speech generation

Neurobiology: Modelling models of how the brain
works.

I neuron-level
I higher levels: vision, hearing, etc. Overlaps with

cognitive folks.

Mathematics:
I Nonparametric statistical analysis and regression.
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Applications

Signal processing: suppress line noise, with adaptive echo canceling,
blind source separation

Control: e.g. backing up a truck: cab position, rear position, and
match with the dock get converted to steering instructions.
Manufacturing plants for controlling automated machines.

Siemens successfully uses neural networks for process automation in
basic industries, e.g., in rolling mill control more than 100 neural
networks do their job, 24 hours a day

Robotics - navigation, vision recognition

Pattern recognition, i.e. recognizing handwritten characters, e.g.
Apple’s Newton used a neural net

Medicine, i.e. storing medical records based on case information

Speech production: reading text aloud (NETtalk)

Speech recognition

Vision: face recognition , edge detection, visual search engines

Business,e.g.. rules for mortgage decisions are extracted from past
decisions made by experienced evaluators, resulting in a network that
has a high level of agreement with human experts.

Financial Applications: time series analysis, stock market prediction

Data Compression: speech signal, image, e.g. faces

Game Playing: backgammon, chess, go, ...
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Benefits of neural networks

Nonlinearity: distributed throughout the network

Input-output mapping: supervised learning

Adaptivity: learn via synaptic weights

Evidential response: give probability/confidence in
decision

Contextual information: distributed store of info,
association

Fault tolerance: individual neurons can be damaged

VLSI implementability: hardware networks

Standardized design, analysis, and theoretical
literature

Neurobiological analogy: much reciprocity between
fields
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Basic neuron model

Neuron operations:

1. Sum (inputs x weights)

2. Apply activation function

3. Transmit signal
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Basic neuron model

Often a bias θ can be applied/learned
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Basic neuron model
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Activation functions: many types

Note: exp(x) is ex
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Alternative: Probability-based firing

T is pseudo
temperature used to
control noise level
(uncertainty)
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Signal flow diagram
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Architectural graphs and recurrence
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Single layer network
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Multi-layer feed forward fully connected
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Recurrent network with no self feedback
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Recurrent network with hidden neurons
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Knowledge representation?

newsgroup example

Known New Short Home

H2
w8

H1
w3

Reads
w0

w1w2

w4
w5

w7

w12

w10

w11

w6
w9

Input Units

Hidden Units

Output Unit
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Knowledge? distributed / learned

Knowledge refers to stored information used to interpret,
predict, or respond to the outside world. In a neural
network:

Similar inputs should elicit similar
activations/representations in the network

The inverse: dissimilar items should be represented
very differently

Important features should end up dominating the
network

Prior information can be built into the network,
though it is not required, e.g., receptive fields
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Receptive fields: What is different here?
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Learning in NN

Learning is a process by which the free parameters
(synaptic weights) of the network are adapted
through a process of stimulation/activation by the
environment in which the network is embedded.

The type of learning is determined by the ways the
parameters are changed: e.g., Supervised (with
sub-types), Unsupervised (with sub-types), and
Reinforcement learning.

A set of well-defined rules for updating weights is
defined as a learning algorithm

The mapping from environment to network to task
is often coined the learning paradigm
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Unsupervised learning

E.g., clustering, auto-associative, etc
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Hebbian learning:

Hebbian theory is a theory in neuroscience that
proposes an explanation for the adaptation of
neurons in the brain during the learning process.

“Fire together, wire together”

∆wi = ηxiy
or the change in the ith synaptic weight wi is equal
to a learning rate η times the ith input xi times the
postsynaptic response y. Weights updated after
every training example

Variants of this are very successful at clustering
problems, and can provably perform ICA, PCA, etc.
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Associative learning (can be supervised)

Hebbian-like rule:

After learning, activate original from noisy version.
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Clustering

We’ll go over a little more in clustering, with spiking
networks Thursday



p. 41

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

Credit assignment problem

Structural: Which weights need changing due to
good/bad outcome?

Temporal: Which preceding internal decisions
resulted in the delayed reward?
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Learning with a teacher

Supervised learning: attempts to minimize the error
between the actual outputs, i.e., the activation at
the output layer and the desired or target
activation, by changing the values of the weights.
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Competitive learning

Winner-takes all based weight updates (inhibition of
lateral neighbors). Similar to functions in retina
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Basic error correction learning

Error:

Minimize:

Update via:
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AND, OR, NOT

Easy for linear single layer network with 2 neurons
and a bias, with step activation.
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XOR

Problem: Requires a hidden layer (for
non-linearity)
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Solution: N-layer network

Solution: Can solve any non-linear function



p. 48

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

XOR

Separation into 3D via hidden layer allows solving
XOR

Problem: How to solve for errors in hidden layer??
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Neural network for traveling example

Culture Fly Hot Music

H2
w9

H1
w3

Likes
w0

w1w2

w7w6

w4

w10

w12
w11

w5 w13

Input Units

Hidden Units

Output Unit

Nature

w14

w8
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Neural network for traveling example

Culture Fly Hot Music

H2
w9

H1
w3

Likes
w0

w1w2

w7w6

w4

w10

w12
w11

w5 w13

Input Units

Hidden Units

Output Unit

Nature

w14

w8

Given input example, e, what is output prediction?
val(e,H1) = f (w3 + w4val(e,Culture) + w5val(e,Fly) +
w6val(e,Hot) + w7val(e,Music) + w8val(e,Nature)

val(e,H2) = f (w9 + w10val(e,Culture) + w11val(e,Fly) +
w12val(e,Hot) + w13val(e,Music) + w14val(e,Nature))

pval(e, Likes) = f (w0 + w1val(e,H1) + w2val(e,H2))
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Error gradients

Top left: original samples; Top right: network
approximation;

Bottom left: true function which generated
samples; Bottom right: raw error
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Error gradients: simple

Error (vertical) as function of 2 weights (x1 and x2)
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Error

How much should we change each weight?

In proportion to its influence on the error.

The bigger the influence of weight wm , the greater
the reduction of error that can induced by changing
it

This influence wouldn’t be the same everywhere:
changing any particular weight will generally make
all the others more or less influential on the error,
including the weight we have changed.
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Solution: Error backpropagation

Step 1: Propagation: Each propagation involves the
following:

Forward propagation of a training pattern’s input
through the neural network in order to generate the
propagation’s output activations.

Backward propagation of the propagation’s output
activations through the neural network using the
training pattern target in order to generate the
deltas (difference between the input and output
values) of all output and hidden neurons.
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Solution: Error backpropagation

Step 2: Weight update: For each weight-synapse do the
following:

Multiply its output delta and input activation to get
the gradient of the weight.

Subtract a ratio (percentage) of the gradient from
the weight.

The ratio (percentage) influences the speed and quality
of learning; it is called the learning rate. The greater the
ratio, the faster the neuron trains; the lower the ratio,
the more accurate the training is. The sign of the
gradient of a weight indicates where the error is
increasing, this is why the weight must be updated in
the opposite direction.

Finally: Repeat step 1 and 2 until the performance of
the network is satisfactory.
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Learning rate is too large



p. 57

Brains

Neurons

Connections

Signals

Diversity

Levels

Scale

vs. Computers

Computation

Neural networks

Applications

Models

Activation func

Stochasticity

Signal flow

Graph structure

Learning

Unsupervised

Hebbian

Associative

Credit

Supervised

Competitive

Error Corr.

Multi-layer

Error

Backprop

Reinforcement

Overfitting

Learning rate

Learning rate is too small
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Solution: Error backpropagation

Overview and basic idea:

1 initialize network weights (often small random values)
2 do
3 for Each training example ex
4 prediction = neural-net-output(network, ex) // forward pass
5 actual = teacher-output(ex)
6 compute error (prediction − actual) at the output units, as 4
7 Starting with output layer, repeat until layer I (input):
7 propagate 4 values back to previous layer
9 update network weights between the two layers
10 until all examples classified correctly or another stopping criterion satisfied
11 return the network
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Backprop(from ArtInt)

This approach assumes

n input features, k

output features, and nh

hidden units. Both hw

and ow are

two-dimensional arrays

of weights. Note that

0 : nk means the index

ranges from 0 to nk

(inclusive) and 1 : nk

means the index ranges

from 1 to nk

(inclusive). This

algorithm assumes that

val(e,X0) = 1 for all e
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Backprop (from AIMA)

1 function BACK-PROP-LEARNING(examples, network, α) returns a neural network
2 inputs: examples, each of which has input vector x and output vector y
3 network with L layers, weights wi,j , activation function g
4. α: learning rate
5 local variables: 4, a vector of errors, indexed by network node
6 repeat
7 for each weight wi,j in network do
8 wi,j ← a small random number
9 for each example (x,y) in examples do
10 //Propagate the inputs forward to compute the outputs//
11 for each node i in the input layer do
12 ai ← xi
13 for l = 2 to L do
14 for each node j in layer l do
15 inj ←

∑
i wi,j ai

16 ai ← g(inj )
17 //Propagate deltas backward from output layer to input layer//
18 for each node j in the output layer do
19 4[j]← g′(inj )× (yj − aj )
20 for l = L− 1 to 1 do
21 for each node i in layer l do
22 4[i ]← g′(ini )

∑
j wi,j4[j]

23 //Update every weight in the network using deltas//
24 for each weight in wi,j in network do
25 wi,j ← wi,j + α× ai ×4[j]
26 until some stopping criterion is satisfied
27 return network
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Neural network for traveling example

Culture Fly Hot Music

H2
w9

H1
w3

Likes
w0

w1w2

w7w6

w4

w10

w12
w11

w5 w13

Input Units

Hidden Units

Output Unit

Nature

w14

w8

One hidden layer containing two units, trained on the
travel data, can perfectly fit. One run of
back-propagation with the learning rate =0.05, and
taking 10,000 steps, gave weights that accurately
predicted the training data:

H1 = f (−2.0Culture−4.43Fly + 2.5Hot + 2.4Music−6.1Nature + 1.63)

H2 = f (−0.7Culture + 3.0Fly + 5.8Hot + 2.0Music − 1.7Nature − 5.0)

Likes = f (−8.5H1− 8.8H2 + 4.36)
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Comparison: digit recognition
3 NN 300 Hidden NN LeNet Boosted LeNet SVM Virtual SVM Shape match

Error rate 2.4 1.6 0.9 0.7 1.1 0.56 0.63
Run time 1000 10 30 50 2000 200

Memory req 12 .49 0.012 0.21 11
Training time 0 7 14 30 10

% rejected to reach 0.5% 8.1 3.2 1.8 0.5 1.8

3-nearest neighbor (memory)

300 hidden, fully connected, 123,00 weights

LeNet (below) a convolution net

3 copies of LeNet

SVM, Virtual SVM, Shape match
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Prediction!

Neural networks can predict complex time-series,
e.g., prices, economies, etc
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Prediction!

Input can be given by experts via intervention
indicators
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Prediction!

Training via a shifting window
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Prediction!

Like other methods, training, validation, and testing
sets help
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Reinforcement learning

Temporal credit assignment problem

More to come with spiking networks Thursday
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Overfitting

Over-fitting impedes generalization
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Regularization

Straight line might be an underfit to these data
points
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Left, 10th order might be an overfit.

Right, the true function from which the data were
sampled
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Regularization

λ defined as a constant to penalize higher order
during the error calculation (for neurons)
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Regularization:

too little or too much

dotted = train, solid = test

y=error, x= λ, such that either too low or high
order is worse, with a happy medium in the middle.
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Regularization: Bayesian

Pre-specify your hypothesis about λ

Left, λ 1000

Right, λ 1
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Regularization: Bayesian

p(w |λ,H) ∝ exp[−λ
2
w 2]

p(w|D, λ,H) = p(D|w,γ,H)p(w|λ,H)
p(D|λ,H)

such that D are
data

p(w|D, λ,H) = p(D|w) ∝∏
u exp[−1

2
(yu − f (xu −w))2]
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