We shall envision the mind (or brain) as composed of many partially autonomous "agents" as a "Society" of smaller minds. Each sub-society of mind must have its own internal epistemology and phenomenology, with most details private, not only from the central processes, but from one another. (Minsky, K-Lines; 1980)

Lesson in neuronal politics:

Strong local/individual policies have many strengths: sustainable, realistic, flexible, robust, and fault-tolerant

p. 1

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

At the end of this section you should be able to:

- Detail the basic features of biological neurons
- Draw and formulate the equations for a basic neuron and its structure
- Describe various network structures
- Understand various learning rules and their limitations

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Real neurons

Brains

Neurons

Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Pre- and Post- synaptic

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Action potentials

Li			
	11 1	1 11 1	
		1 11	
		1 811 881	
<u> </u>		I U U U	
L			
L	ll le l		
	10.10.10.1.00. 1.0		1 11 11
		1.1	1
	1 1 88 8 8 1 1		
1			-
p	III II II II I		
<u> </u>			
		II	
	U	1	

A 4 second recording of the neural activity recording from 30 neurons of the visual cortex of a monkey. Each vertical bar indicates a spike. The human brain can recognize a face within 150ms, which correlates to less than 3mm in this diagram; dramatic changes in firing frequency occur in this time span, neurons have to rely on information carried by solitary spikes.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Neurons spike to "think" (mostly)

Neurons are unequivocally the basis of human/animal thinking, learning, consciousness, etc.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Synapses: inter-neuron signaling / learning

- Rate-limited step is transmission between neurons
- Learning is mostly rooted in the synapses
- Neurons change their reactivity and weights to learn

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Diversity of neuron types

What magical trick makes us intelligent? The trick is that there is no trick. The power of intelligence stems from our vast diversity (and size), not from any single, perfect principle. (Marvin Minsky, Society of Mind; 1987)

Brains

Neurons Connections Signals **Diversity** Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Diversity of neuron types cont...

Network structure varies on a macro scale.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Level of abstraction

Which level of abstraction to model?

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Neurons are slow (compared to computers) and fairly small...

typical time-scales	
action potential:	$\sim 1msec$
reset time:	$\sim 3msec$
synapses:	$\sim 1msec$
pulse transport:	$\sim 5m/sec$

typical sizes	
cell body:	$\sim 50 \mu m$
axon diameter:	$\sim 1 \mu m$
synapse size:	$\sim 1 \mu m$
synaptic cleft:	$\sim 0.05 \mu m$

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Computer 10⁸ transistors

10e-6m

conventional computers				biological neural networks						
processors operation speed ~ $10^8 Hz$ signal /noise ~ ∞ signal velocity ~ $10^8 m/sec$ connections ~ 10				$\begin{array}{l} \mbox{neurons} \\ operation \ speed \sim 10^2 \ Hz \\ signal /noise \sim 1 \\ signal \ velocity \sim 1 \ m/sec \\ connections \sim 10^4 \end{array}$						
sequential operation program & data external programming			parallel operation connections, neuron thresholds self-programming & adaptation							
hardware failure: fatal no unforseen data			robust against hardware failure messy, unforseen data							
		process elements	element size	speed	computation	robust	learns	intelligent,	conscious	
	Brain	10 ¹ synapses	10e-6m	100Hz	parallel, distr	ves	ves	usually		

10⁹Hz serial, central no

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Error Corr. Multi-layer Error Backprop Reinforcement Overfitting

a little Debateably ves

Brains vs. Computers: Robustness

- performance degrades gracefully under partial damage. In contrast, most programs and engineered systems are brittle: if you remove some arbitrary parts, very likely the whole will cease to function.
- brain reorganizes itself from experience.
- it performs massively parallel computations extremely efficiently. For example, complex visual perception occurs within less than 30 ms, that is, 10 processing steps!
- Flexible, and can adjust to new environments
- Can tolerate (well) information that is fuzzy, inconsistent, probabalistic, noisy, or inconsistent
- Small and very energy efficient

Brains

Neurons Connections Signals Diversity Levels Scale **vs. Computers** Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Brains vs. Computers: function

- Traditional computing excels in many areas, but not in others.
- A great definition: Al is the the development of algorithms or paradigms that require machines to perform cognitive tasks at which humans are currently better.
- Symbolic rules don't reflect processes actually used by humans

Brain

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Types of computation

 Neural networks can be universal general purpose computers, and in some app-specific hardware instances do better than Turing machines.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Types of computation

- The use of neural networks may seem to challenge the physical symbol system hypothesis, which relies on symbols having meaning.
- Although meaning is attached to the input and output units, the designer does not associate a meaning with the hidden units.
- What the hidden units actually represent is something that is learned.
- After a neural network has been trained, it is often possible to look inside the network to determine what a particular hidden unit actually represents.
- Arguably, the computer has an internal meaning; it can explain its internal meaning by showing how examples map into the values of the hidden unit.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Veural network

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Massively parallel distributed processor made up of simple units, which has a natural propensity for storing and using experiential knowledge.
- Knowledge is acquired by the network from its environment through learning
- Interconnection strengths (synaptic weights) store acquired knowledge

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Domains studying NNs

Machine learning:

- Having a computer program itself from a set of examples so you don't have to program it yourself.
- Optimization: given a set of constraints and a cost function, how do you find an optimal solution? E.g. traveling salesman problem.
- Classification: grouping patterns into classes: i.e. handwritten characters into letters.
- Associative memory: recalling a memory based on a partial match.
- Regression: function mapping

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Domains studying NNs

• Cognitive science:

- Modelling higher level reasoning: language, problem solving
- Modelling lower level reasoning: vision, audition speech recognition, speech generation
- **Neurobiology:** Modelling models of how the brain works.
 - neuron-level
 - higher levels: vision, hearing, etc. Overlaps with cognitive folks.

Mathematics:

Nonparametric statistical analysis and regression.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Applications

- Signal processing: suppress line noise, with adaptive echo canceling, blind source separation
- Control: e.g. backing up a truck: cab position, rear position, and match with the dock get converted to steering instructions. Manufacturing plants for controlling automated machines.
- Siemens successfully uses neural networks for process automation in basic industries, e.g., in rolling mill control more than 100 neural networks do their job, 24 hours a day
- Robotics navigation, vision recognition
- Pattern recognition, i.e. recognizing handwritten characters, e.g. Apple's Newton used a neural net
- Medicine, i.e. storing medical records based on case information
- Speech production: reading text aloud (NETtalk)
- Speech recognition
- Vision: face recognition , edge detection, visual search engines
- Business,e.g.. rules for mortgage decisions are extracted from past decisions made by experienced evaluators, resulting in a network that has a high level of agreement with human experts.
- Financial Applications: time series analysis, stock market prediction
- Data Compression: speech signal, image, e.g. faces
- Game Playing: backgammon, chess, go, ...

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications

Models Activation func Stochasticity Signal flow Graph structure

Learning

Benefits of neural networks

- Nonlinearity: distributed throughout the network
- Input-output mapping: supervised learning
- Adaptivity: learn via synaptic weights
- Evidential response: give probability/confidence in decision
- Contextual information: distributed store of info, association
- Fault tolerance: individual neurons can be damaged
- VLSI implementability: hardware networks
- Standardized design, analysis, and theoretical literature
- Neurobiological analogy: much reciprocity between fields

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications

Models Activation func Stochasticity Signal flow Graph structure

Learning

Basic neuron model

Neuron operations:

- 1. Sum (inputs x weights)
- 2. Apply activation function
- 3. Transmit signal

p. 22

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Basic neuron model

• Often a bias θ can be applied/learned

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Basic neuron model

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Activation functions: many types

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks Applications

Models Activation func Stochasticity Signal flow Graph structure

Learning

Alternative: Probability-based firing

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Error Corr. Multi-layer Error Backprop Reinforcement Overfitting

$$x = \begin{cases} +1 & \text{with probability } P(v) \\ -1 & \text{with probability } 1 - P(v) \end{cases}$$
$$P(v) = \frac{1}{1 + \exp(-v/T)}$$

T is pseudo temperature used to control noise level (uncertainty)

Signal flow diagram

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity

Signal flow Graph structure

Learning

Architectural graphs and recurrence

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Single layer network

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Multi-layer feed forward fully connected

Input layer of source nodes Layer of hidden neurons Layer of output neurons

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Recurrent network with no self feedback

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Recurrent network with hidden neurons

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Knowledge representation? newsgroup example

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Knowledge refers to stored information used to interpret, predict, or respond to the outside world. In a neural network:

- Similar inputs should elicit similar activations/representations in the network
- The inverse: dissimilar items should be represented very differently
- Important features should end up dominating the network
- Prior information can be built into the network, though it is not required, e.g., receptive fields

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Receptive fields: What is different here?

p. 35

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Learning is a process by which the free parameters (synaptic weights) of the network are adapted through a process of stimulation/activation by the environment in which the network is embedded.
- The type of learning is determined by the ways the parameters are changed: e.g., Supervised (with sub-types), Unsupervised (with sub-types), and Reinforcement learning.
- A set of well-defined rules for updating weights is defined as a **learning algorithm**
- The mapping from environment to network to task is often coined the **learning paradigm**

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning
Unsupervised learning

• E.g., clustering, auto-associative, etc

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Hebbian theory is a theory in neuroscience that proposes an explanation for the adaptation of neurons in the brain during the learning process.
- "Fire together, wire together"
- $\Delta w_i = \eta x_i y$

or the change in the *ith* synaptic weight w_i is equal to a learning rate η times the *ith* input x_i times the postsynaptic response y. Weights updated after every training example

 Variants of this are very successful at clustering problems, and can provably perform ICA, PCA, etc.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Associative learning (can be supervised)

$$w_{i1}S_1(t) + \ldots + w_{iN}S_N(t) > 0: \quad S_i(t+1) = 1$$

$$w_{i1}S_1(t) + \ldots + w_{iN}S_N(t) < 0: \quad S_i(t+1) = -1$$

to be depicted as

•: $S_i = 1$ (neuron *i* firing) •: $S_i = -1$ (neuron *i* at rest) $input_i > 0$: $S_i \rightarrow 1$ $input_i < 0$: $S_i \rightarrow -1$ $input_i = w_{i1}S_1 + \ldots + w_{iN}S_N$

After learning, activate original from noisy version.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

We'll go over a little more in clustering, with spiking networks Thursday

p. 40

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- **Structural:** Which weights need changing due to good/bad outcome?
- **Temporal:** Which preceding internal decisions resulted in the delayed reward?

p. 41

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Learning with a teacher

• Supervised learning: attempts to minimize the error between the actual outputs, i.e., the activation at the output layer and the desired or target activation, by changing the values of the weights.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit

Supervised

Competitive Error Corr. Multi-layer Error Backprop Reinforcement Overfitting

Competitive learning

• Winner-takes all based weight updates (inhibition of lateral neighbors). Similar to functions in retina

Brain

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Basic error correction learning

(b) Signal-flow graph of output neuron

Error:
$$e_k(n) = d_k(n) - y_k(n)$$

Minimize:

$$\mathscr{E}(n) = \frac{1}{2} e_k^2(n)$$

Update via: $\Delta w_{kj}(n) = \eta e_k(n) x_j(n)$ $w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

AND, OR, NOT

Å

AND:	$\begin{array}{c cccc} x & y & x \land y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{c ccc} x+y-\frac{3}{2} & S \\ \hline -3/2 & 0 \\ -1/2 & 0 \\ -1/2 & 0 \\ 1/2 & 1 \end{array}$		$w_1 = w_2 = 1$ $\theta = \frac{3}{2}$	Brains Neurons Connecti Signals Diversity Levels Scale vs. Comp Computa
OR:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} x+y-\frac{1}{2} & S \\ \hline -1/2 & 0 \\ 1/2 & 1 \\ 1/2 & 1 \\ 3/2 & 1 \\ \end{array}$		$w_1 = w_2 = 1$ $\theta = \frac{1}{2}$	Neural r Applicati Models Activatio Stochast Signal flo Graph str Learning Unsuperv Hebbian
	NOT: $\begin{array}{c c} x & \neg x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{c ccc} x & -x + \frac{1}{2} & S \\ \hline 1/2 & 1 \\ -1/2 & 0 \end{array}$	$x \circ - \circ S$	$w_1 = -1$ $\theta = -\frac{1}{2}$	Associat Credit Supervise Compet Error Co Multi-lay Error Backpro

• Easy for linear single layer network with 2 neurons and a bias, with step activation.

WC

ed orr. Overfitting

XOR

• **Problem:** Requires a hidden layer (for non-linearity)

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Solution: N-layer network

• Solution: Can solve any non-linear function

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Separation into 3D via hidden layer allows solving XOR
- Problem: How to solve for errors in hidden layer??

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Neural network for traveling example

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Neural network for traveling example

Given input example, e, what is output prediction?

- val(e, H1) = f(w₃ + w₄val(e, Culture) + w₅val(e, Fly) + w₆val(e, Hot) + w₇val(e, Music) + w₈val(e, Nature)
- val(e, H2) = f(w₉ + w₁0val(e, Culture) + w11val(e, Fly) + w₁2val(e, Hot) + w₁3val(e, Music) + w₁4val(e, Nature))
- $pval(e, Likes) = f(w_0 + w_1val(e, H1) + w_2val(e, H2))$

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Error gradients

- **Top left:** original samples; **Top right:** network approximation;
- Bottom left: true function which generated samples; Bottom right: raw error

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Unsupervised Hebbian Associative Credit Supervised Competitive Error Corr. Multi-layer Error
- Backprop Reinforcement Overfitting

Error gradients: simple

• Error (vertical) as function of 2 weights $(x_1 \text{ and } x_2)$

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

- Unsupervised Hebbian Associative Credit Supervised Competitive Error Corr. Multi-layer Error Baskaron
- Backprop Reinforcement Overfitting

- How much should we change each weight?
- In proportion to its influence on the error.
- The bigger the influence of weight w_m , the greater the reduction of error that can induced by changing it
- This influence wouldn't be the same everywhere: changing any particular weight will generally make all the others more or less influential on the error, including the weight we have changed.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Competitive Error Corr. Multi-layer Error

Backprop Reinforcement Overfitting Step 1: Propagation: Each propagation involves the following:

- Forward propagation of a training pattern's input through the neural network in order to generate the propagation's output activations.
- Backward propagation of the propagation's output activations through the neural network using the training pattern target in order to generate the deltas (difference between the input and output values) of all output and hidden neurons.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Solution: Error backpropagation

Step 2: Weight update: For each weight-synapse do the following:

- Multiply its output delta and input activation to get the gradient of the weight.
- Subtract a ratio (percentage) of the gradient from the weight.

The ratio (percentage) influences the speed and quality of learning; it is called the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio, the more accurate the training is. The sign of the gradient of a weight indicates where the error is increasing, this is why the weight must be updated in the opposite direction.

Finally: Repeat step 1 and 2 until the performance of the network is satisfactory.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Learning rate

• Learning rate is too large

p. 56

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Learning rate

• Learning rate is too small

p. 57

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Solution: Error backpropagation

Overview and basic idea:

1 initialize network weights (often small random values) 2 **do** 3 for Each training example ex prediction = neural-net-output(network, ex) // forward pass 4 5 actual = teacher-output(ex)6 compute error (*prediction* – *actual*) at the output units, as \triangle 7 Starting with output layer, repeat until layer I (input): 7 propagate \triangle values back to previous layer 9 update network weights between the two layers 10 until all examples classified correctly or another stopping criterion satisfied

11 return the network

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Backprop(from ArtInt)

1: Pro	c edure BackPropagationLearner(<i>X,Y,E,n_h,η</i>)		
2:	Inputs	T 1 · 1	Brains
3:	X: set of input features, $X = \{X_1,, X_n\}$	This approach assumes	Neurons
4:	Y: set of target features, Y={Y ₁ ,,Y _k }		Connections
5:	E: set of examples from which to learn	n input features, k	Signals
6:	n _h : number of hidden units		Diversity
7:	η : learning rate	output features, and <i>nh</i>	Levels
8:	Output		Scale
9:	hidden unit weights <i>hw[0:n,1:n_h]</i>	hidden units. Both <i>hw</i>	vs. Computers
10:	output unit weights <i>ow[0:n_[, 1:k]</i>		Computation
11:	Local	and <i>ow</i> are	Neural networks
12:	hw[0:n,1:n _h] weights for hidden units		Audio tice works
13:	<i>ow[0:n_h,1:k]</i> weights for output units	two-dimensional arrays	Applications
14:	hid[0:n _h] values for hidden units		Activation func
15:	hErr[1:nh] errors for hidden units	of weights Note that	Stochasticity
16:	out[1:k] predicted values for output units	or molenter more mar	Signal flow
17:	oErr[1:k] errors for output units	$0 \cdot nk$ means the index	Graph structure
18:	initialize hw and ow randomly		
19:	hid[0]←1	ranges from 0 to nk	Learning
20:	repeat for each exemple a in C de	langes non o to nk	Unsupervised
21.	for each $h \in \{1, n_i\}$ do	(inclusive) and 1 · nk	Hebbian
22.		(inclusive) and I. Ik	Associative
23:	$nid[n] \leftarrow f(\sum_{j=0}^{j} nw[i,n] \times val(e,X_{j}))$	manua tha inday you was	Credit
24:	for each $o \in \{1, \dots, K\}$ do	means the index ranges	Supervised
25:	$out[o] \leftarrow f(\sum_{h=0}^{n} hw[i,h] \times hid[h])$	6 1 . /	Competitive
26:	$oErr[o] \leftarrow out[o] \times (1 - out[o]) \times (val(e, Y_o) - out[o])$	from 1 to nk	Error Corr.
27:	for each $h \in \{0,, n_h\}$ do	(; , ;) = = :	Iviuiti-layer
28:	$hErr[h] \leftarrow hid[h] \times (1-hid[h]) \times \sum_{\mathcal{O} = \mathcal{O}^k} ow[h, \mathcal{O}] \times oErr[\mathcal{O}]$	(inclusive). This	Backprop
29:	for each $i \in \{0,, n\}$ do		Reinforcement
30:	$hw[i,h] \leftarrow hw[i,h] + \eta \times hErr[h] \times val(e,X_i)$	algorithm assumes that	Overfitting
31:	for each $o \in \{1, \dots, k\}$ do		overneing
32:	ow[h,o]←ow[h,o] + η×oErr[o]×hid[h]	$val(e, X_0) = 1$ for all e	
33:	until termination		

34: return wa..., wn

p. 59

Backprop (from AIMA)

1 function BACK-PROP-LEARNING(examples, network, α) returns a neural network
2 inputs: examples, each of which has input vector x and output vector y
3 network with L layers, weights w _{i,i} , activation function g
4. α: learning rate
5 local variables: \triangle , a vector of errors, indexed by network node
6 repeat
7 for each weight w _{i,i} in network do
8 $w_{i,j} \leftarrow \text{a small random number}$
9 for each example (x,y) in examples do
10 //Propagate the inputs forward to compute the outputs//
11 for each node <i>i</i> in the input layer do
12 $a_i \leftarrow x_i$
13 for $l = 2$ to L do
14 for each node j in layer / do
15 $in_j \leftarrow \sum_i w_{i,j}a_i$
16 $a_i \leftarrow g(in_j)$
17 //Propagate deltas backward from output layer to input layer//
18 for each node j in the output layer do
19 $ riangle [j] \leftarrow g'(in_i) \times (y_i - a_i)$
20 for $l = L - 1$ to 1 do
21 for each node <i>i</i> in layer / do
22 $\triangle[i] \leftarrow g'(in_i) \sum_i w_{i,j} \triangle[j]$
23 //Update every weight in the network using deltas//
24 for each weight in w _{i,i} in network do
25 $w_{i,i} \leftarrow w_{i,i} + \alpha \times a_i \times \Delta[i]$
26 until some stopping criterion is satisfied
27 return network

p. 60

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Neural network for traveling example

One hidden layer containing two units, trained on the travel data, can perfectly fit. One run of back-propagation with the learning rate =0.05, and taking 10,000 steps, gave weights that accurately predicted the training data:

• H1 = f(-2.0Culture - 4.43Fly + 2.5Hot + 2.4Music - 6.1Nature + 1.63)

• H2 = f(-0.7 Culture + 3.0 Fly + 5.8 Hot + 2.0 Music - 1.7 Nature - 5.0)

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural network

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Comparison: digit recognition

	3 NN	300 Hidden NN	LeNet	Boosted LeNet	SVM	Virtual SVM	Shape match
Error rate	2.4	1.6	0.9	0.7	1.1	0.56	0.63
Run time	1000	10	30	50	2000	200	
Memory req	12	.49	0.012	0.21	11		
Training time	0	7	14	30	10		
% rejected to reach 0.5%	8.1	3.2	1.8	0.5	1.8		

- 3-nearest neighbor (memory)
- 300 hidden, fully connected, 123,00 weights
- LeNet (below) a convolution net
- 3 copies of LeNet
- SVM, Virtual SVM, Shape match

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Prediction!

• Neural networks can predict complex time-series, e.g., prices, economies, etc

p. 63

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Prediction!

Input can be given by experts via intervention indicators

p. 64

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Prediction!

• Training via a shifting window

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Competitive Error Corr. Multi-layer Error Backprop Reinforcement Overfitting

p. 65

• Like other methods, training, validation, and testing sets help

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Reinforcement learning

- Temporal credit assignment problem
- More to come with spiking networks Thursday

p. 67

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Overfitting

• Over-fitting impedes generalization

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Straight line might be an underfit to these data points

p. 69

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Regularization

- Left, 10th order might be an overfit.
- Right, the true function from which the data were sampled

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Regularization

 λ defined as a constant to penalize higher order during the error calculation (for neurons)

p. 71

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Regularization: too little or too much

• dotted = train, solid = test

 y=error, x= λ, such that either too low or high order is worse, with a happy medium in the middle.

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning
Regularization: Bayesian

- $\bullet\,$ Pre-specify your hypothesis about λ
- \bullet Left, λ 1000
- Right, λ 1

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Competitive Error Corr. Multi-layer Error Backprop Reinforcement **Overfitting**

Regularization: Bayesian

•
$$p(w|\lambda, H) \propto exp[-\frac{\lambda}{2}w^2]$$

• $p(w|D, \lambda, H) = \frac{p(D|w, \gamma, H)p(w|\lambda, H)}{p(D|\lambda, H)}$ such that D are data

•
$$p(\mathbf{w}|D, \lambda, H) = p(D|\mathbf{w}) \propto$$

 $\prod_{u} exp[-\frac{1}{2}(y^{u} - f(x^{u} - \mathbf{w}))^{2}]$

Brains

Neurons Connections Signals Diversity Levels Scale vs. Computers Computation

Neural networks

Applications Models Activation func Stochasticity Signal flow Graph structure

Learning

Unsupervised Hebbian Associative Credit Supervised Error Corr. Multi-layer Error Backprop Reinforcement Overfitting