Neural networks

We shall envision the mind (or brain) as composed of
many partially autonomous "agents” as a " Society” of
smaller minds. Each sub-society of mind must have its
own internal epistemology and phenomenology, with
most details private, not only from the central processes,
but from one another. (Minsky, K-Lines; 1980)

Lesson in neuronal politics:
Strong local/individual policies have many strengths:
sustainable, realistic, flexible, robust, and fault-tolerant

p.- 1

Neurons
Connections
Signals
Diversity
Levels

Scale

vs. Computers
Computation

Applications
Models
Activation func
Stochasticity
Signal flow
Graph structure

Unsupervised
Hebbian
Associative

Credit

Supervised
Competitive
Error Corr.
Multi-layer
Error
Backprop

Reinforcement

Overfitting



Neural networks: Objectives

At the end of this section you should be able to:

Detail the basic features of biological neurons

Draw and formulate the equations for a basic
neuron and its structure

Describe various network structures

Understand various learning rules and their
limitations
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Real neurons
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Pre- and Post- synaptic

PRE-SYNAPTIC POST-SYNAPTIC
NEURON NEURON

DENDRITIC
SPINES

DENDRITES

TERMINALS

OLIGODENDROCYTE
- SYNAPSE
-
=
NODE OF
RANVIER
MYELIN
SYNAPSE - SHEATH
Signals from Action potential Axon passes signal to
axons to dendrites generates out of soma dendrites of other neurons

Brains
Neurons
Connections
Signals
Diversity
Levels
Scale
vs. Computers
Computation

Neural networks
Applications
Models

Activation func
Stochasticity
Signal flow

Graph structure

Learning
Unsupervised
Hebbian
Associative
Credit
Supervised
Competitive
Error Corr.
Multi-layer
Error
Backprop
Reinforcement
Overfitting



p- 5

Action potentials
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A 4 second recording of the neural activity recording from 30 neurons of the visual cortex of a monkey. Overfitting

Each vertical bar indicates a spike. The human brain can recognize a face within 150ms, which
correlates to less than 3mm in this diagram; dramatic changes in firing frequency occur in this time
span, neurons have to rely on information carried by solitary spikes.



Neurons spike to “think” (mostly)
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Resting membrane potential
Depolarizing stimulus

Membrane depolarizes to threshold.
Voltage-gated Na™ channels open
and Na* enters cell. Voltage-gated
K* channels begin to open slowly.
Rapid Na* entry depolarizes cell.
Na* channels close and slower

K* channels open.

K* moves from cell to extracellular
fluid.

K* channels remain open and

additional K* leaves cell, hyperpolarizing it.

Voltage-gated K* channels close,
some K*enters cell through leak channels.

Cell returns to resting ion permeability
and resting membrane potential.
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Synapses: inter-neuron signaling / learning
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Diversity of neuron types

\\

s

r\mr ites /‘\

35 A b
= X

L !

,-‘ Fo ¥ e Ax.m/rl

-.\(,‘]-&U Dieaulrites \\
(&}‘w :\":\:" N

Cell
body

e B0y

Dlendries <

Cerebral carte Dorsal ot

sangticn

What magical trick
makes us intelligent?
The trick is that there
is no trick. The power
of intelligence stems
from our vast diversity
(and size), not from
any single, perfect
principle. (Marvin
Minsky, Society of
Mind; 1987)
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Diversity of neuron types cont...

Network structure varies on a macro scale.
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Level of abstraction
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Neurons are slow (compared to

computers) and fairly small...

typical time-scales

typical sizes

action potential: ~ lmsec cell body: ~ ol g
reset time: ~ dmsee aon diameter: ~ lpm

SV NAPSES: ~ lmsee SVnApSe siZe: ~ Ly
pulse transport : e G feee synaptic cleft:  ~ 0.03pm
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Brains vs. Computers

conventicnal computers

hiclogical neural networls

Processors
operation speed ~ 107 Hz
stgnal fnoise ~ oo
signal veloeity ~ 10%m f sec
nnections ~ 10

NEUNons
operation speed ~ 10F Hx
signal fnoise ~ 1
signal velocity ~ lmjsec
comnections ~ 101

sequential operation
program & data
external programming

parallel operation
connections, neuron thresholds
self-programming & adaptation

hardware failure: fatal
no unforseen data

robust asainst hardware failure
messy, unforseen data

process elements|element size|speed

computation [robust|learns |intelligent, conscious

Brain

1017 synapses

10e-6m

100Hz

parallel, distr

yes

yes

usually

Computer

10° transistors

10e-6m

10°Hz

serial, central

no

a little

Debateably yes
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Brains vs. Computers: Robustness

e performance degrades gracefully under partial Comnecsions
. Signals
damage. In contrast, most programs and engineered  oiesiy
. . . Levels

systems are brittle: if you remove some arbitrary -
VS. omputers

parts, very likely the whole will cease to function. S

@ brain reorganizes itself from experience. D
e it performs massively parallel computations Srochasticiy

- . Signal flow
extremely efficiently. For example, complex visual Graph structure

perception occurs within less than 30 ms, that is,
10 processing steps!
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Associative

Credit

@ Flexible, and can adjust to new environments e
ompetitive
e Can tolerate (well) information that is fuzzy, Mot oy
. . . . . . . Error
inconsistent, probabalistic, noisy, or inconsistent Backprop

Reinforcement
Overfitting

@ Small and very energy efficient



Brains vs. Computers: function

e Traditional computing excels in many areas, but not
in others.

@ A great definition: Al is the the development of
algorithms or paradigms that require machines to
perform cognitive tasks at which humans are
currently better.

@ Symbolic rules don't reflect processes actually used
by humans
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Types of computation

RS
(4

Hilbert (1926)
Turing (1936) Ackermann (1928)
Kleene, Church (1936)

Z1 to ENIAC |

John von
Neumann

von Neumann
architecture

computer

D)
W01 Teppan

McCulloch/Pitts (1943)
N. Wiener (1948)

Information theory
Shannon (1940-49)

neural networks

@ Neural networks can be universal general purpose
computers, and in some app-specific hardware
instances do better than Turing machines.
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Types of computation

@ The use of neural networks may seem to challenge Newrans
the physical syn_1bo| syst(?m hypothesis, which relies T
on symbols having meaning. Lok

. . . vs. Computers

@ Although meaning is attached to the input and Computation
output units, the designer does not associate a P
meaning with the hidden units. e

. i i Stochasticity

@ What the hidden units actually represent is o
something that is learned.

. Lo Unsupervised

@ After a neural network has been trained, it is often Hebion
possible to look inside the network to determine S
what a particular hidden unit actually represents. s

Multi-layer

@ Arguably, the computer has an internal meaning; it S

Reinforcement

can explain its internal meaning by showing how
examples map into the values of the hidden unit.

Overfitting



(Artificial) Neural networks

@ Massively parallel distributed processor made up of
simple units, which has a natural propensity for
storing and using experiential knowledge.

@ Knowledge is acquired by the network from its
environment through learning

@ Interconnection strengths (synaptic weights) store
acquired knowledge

p. 17
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Domains studying NNs

@ Machine learning:

>

Having a computer program itself from a set of

examples so you don’t have to program it yourself.

Optimization: given a set of constraints and a
cost function, how do you find an optimal
solution? E.g. traveling salesman problem.

Classification: grouping patterns into classes: i.e.

handwritten characters into letters.

Associative memory: recalling a memory based
on a partial match.

Regression: function mapping
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Domains studying NNs

e Cognitive science:
» Modelling higher level reasoning: language,
problem solving
» Modelling lower level reasoning: vision, audition
speech recognition, speech generation
@ Neurobiology: Modelling models of how the brain
works.
» neuron-level
> higher levels: vision, hearing, etc. Overlaps with
cognitive folks.
e Mathematics:
» Nonparametric statistical analysis and regression.
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Applications

Signal processing: suppress line noise, with adaptive echo canceling,
blind source separation

Control: e.g. backing up a truck: cab position, rear position, and
match with the dock get converted to steering instructions.
Manufacturing plants for controlling automated machines.

Siemens successfully uses neural networks for process automation in
basic industries, e.g., in rolling mill control more than 100 neural
networks do their job, 24 hours a day

Robotics - navigation, vision recognition

Pattern recognition, i.e. recognizing handwritten characters, e.g.
Apple’'s Newton used a neural net

Medicine, i.e. storing medical records based on case information
Speech production: reading text aloud (NETtalk)

Speech recognition

Vision: face recognition , edge detection, visual search engines

Business,e.g.. rules for mortgage decisions are extracted from past
decisions made by experienced evaluators, resulting in a network that
has a high level of agreement with human experts.

Financial Applications: time series analysis, stock market prediction
Data Compression: speech signal, image, e.g. faces
Game Playing: backgammon, chess, go, ...
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Benefits of neural networks

Nonlinearity: distributed throughout the network
Input-output mapping: supervised learning
Adaptivity: learn via synaptic weights

Evidential response: give probability /confidence in
decision

Contextual information: distributed store of info,
association

Fault tolerance: individual neurons can be damaged
VLS| implementability: hardware networks

Standardized design, analysis, and theoretical
literature

Neurobiological analogy: much reciprocity between
fields
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Basic neuron model
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Basic neuron model
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Basic neuron

Inputs <

model
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Activation functions: many types
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Alternative: Probability-based firing

x—{H
-1

P(v) =

with probahility P(u)
with probabilitv 1 — P(v)

1
1+ exp[-ﬂfﬁ

T is pseudo
temperature used to
control noise level
(uncertainty)
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Signal flow diagram
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Architectural graphs and recurrence

Output
Yk

Neurons
Connections
Signals
Diversity
Levels

Scale

vs. Computers
Computation

Applications
Models
Activation func
Stochasticity
Signal flow
Graph structure

Unsupervised
Hebbian
Associative

Credit

Supervised
Competitive
Error Corr.
Multi-layer
Error
Backprop

Reinforcement

Overfitting



Single layer network

Input layer Oustput layer
of source of neurons
nodes
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Multi-layer feed forward fully connected
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Recurrent network with no self feedback
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Recurrent network with hidden neurons
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Knowledge representation?
newsgroup example

@ Input Units
w7 Wg W10 Yo
Wy

Wyo ! ‘ il
;7\

Hidden Units

Reads

wg Output Unit
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Knowledge? distributed / learned

Knowledge refers to stored information used to interpret,
predict, or respond to the outside world. In a neural
network:

@ Similar inputs should elicit similar
activations/representations in the network

@ The inverse: dissimilar items should be represented
very differently

@ Important features should end up dominating the
network

@ Prior information can be built into the network,
though it is not required, e.g., receptive fields
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Receptive fields: What is different here?

¥i

= Ya




Learning in NN

Neurons
Connections

@ Learning is a process by which the free parameters Signals

(synaptic weights) of the network are adapted ;I'ly
through a process of stimulation/activation by the o Compers

environment in which the network is embedded.

Applications

@ The type of learning is determined by the ways the Models

Activation func

parameters are changed: e.g., Supervised (with R
sub-types), Unsupervised (with sub-types), and LG"
. . earning
Reinforcement learning. Unsuperis
@ A set of well-defined rules for updating weights is oo
. - - Supervised
defined as a learning algorithm Competitive
Error Corr
@ The mapping from environment to network to task Pt faver

is often coined the learning paradigm Renforcament

Overfitting



Unsupervised learning

Vector describing
state of the
anvironment

i k ]

Legrming |
SYSIEm

Environment

e E.g., clustering, auto-associative, etc
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Hebbian learning:

Neurons
Connections
@ Hebbian theory is a theory in neuroscience that o
proposes an explanation for the adaptation of Sy
. . . . vs. Computers
neurons in the brain during the learning process. Calitstl
o “Fire together, wire together” Applications
Models
o Aw; = nxy Stochasicty
or the change in the ith synaptic weight w; is equal e
to a learning rate 7 times the ith input x; times the
) ) Unsupervised
postsynaptic response y. Weights updated after Hebbion
ssociative
every training example S
Competitive
. . . Error Corr.
@ Variants of this are very successful at clustering Mult-ayer
Error

problems, and can provably perform ICA, PCA, etc. Backprop

Reinforcement
Overfitting



Associative learning (can be supervised)

winS1(t)+ ...+ winSy(t)>0: Si(t+1)=1
wi S1(t) + ...+ winySy(t)<0: Si(t+1)= -1 Neurons

Connections
i Signals
to be depicted as Sty
Levels
Scale

®: Si. — 1 (nouron '2‘: ﬁrlng) vs. Computers

Computation

Si=-1 (neuron i at rest)
. Applicatit
input; >0: S; =1 e
4 . - . Activation fun
input; <0: Si = -1 Sth(Im;t)icitly :
i Signal flow
nput; = wiy Sy + .. 4wy Sy e S

Unsupervised
Hebbian
Wij — Wwij + Si.SJ Associative
Credit
Supervised
Competitive
Error Corr

Multi-layer
Error
Backprop

Reinforcement
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After learning, activate original from noisy version.
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Clustering
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Credit assignment problem

@ Structural: Which weights need changing due to
good/bad outcome?

e Temporal: Which preceding internal decisions
resulted in the delayed reward?
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Learning with a teacher

Tea::hﬂ}—j
Diesired

r TESpONSE

Wector deseribing
state of the
_ environment

Environment

Error signat

@ Supervised learning: attempts to minimize the error
between the actual outputs, i.e., the activation at
the output layer and the desired or target
activation, by changing the values of the weights.
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Competitive learning
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@ Winner-takes all based weight updates (inhibition of
lateral neighbors). Similar to functions in retina



Basic error correction learning

Brains
Neurons
pommmmmmmmmmmmm e m e m e | Connections
] Signals
i . Diversity
Input vector | OT:;;::";'" x(n) Qutput di(n) Error chlcls
ESads ex(n) = diln) = yi(n) o
neurons

Computation

M . . . Neural networks
Multilayer feedforward Inimize: Applications

network Models
Activation func
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2 Graph structure

Learning
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U pdate Via Associative

Credit
Awy(n) = me(n)x(n) ot
W + 1) = wy(n) + Moy(n)  Meime
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(b) Signal-flow graph of output neuron Reinforcement
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AND, OR, NOT
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@ Easy for linear single layer network with 2 neurons
and a bias, with step activation.
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XOR

Ty 1 T,
(=L1) (L1}
a . . . o
Tg Tq
?
a ) o L [+ .
=1.-1 (-1

AND OR

e Problem: Requires a hidden layer (for
non-linearity)

XOR

Iy
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Solution: N-layer network
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@ Solution: Can solve any non-linear function Overfitting



XOR

(11,1

gy b

L™ =2 ™

| ; -
- 1

Lh

[

(-1-1.-1)

@ Separation into 3D via hidden layer allows solving
XOR

@ Problem: How to solve for errors in hidden layer??

p. 48

Brains
Neurons
Connections
Signals
Diversity
Levels
Scale
vs. Computers
Computation

Neural networks
Applications
Models

Activation func
Stochasticity
Signal flow

Graph structure

Learning
Unsupervised
Hebbian
Associative
Credit
Supervised
Competitive
Error Corr.
Multi-layer
Error
Backprop
Reinforcement
Overfitting



Neural network for traveling example

Hidden Units

W2 W1

Likes

Output Unit
WYo
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Neural network for traveling example

Neurons
Connections
Input Units Signals
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Unsupervised

Hebbian
Associative
Given input example, e, what is output prediction? S
@ val(e, H1) = f(ws + waval(e, Culture) + wsval(e, Fly) + E:’:;'fzg:fe
weval(e, Hot) + wyval(e, Music) + wgval(e, Nature) Multi-layer
@ val(e, H2) = f(wgy + wiOval(e, Culture) + wllval(e, Fly) + E::»:pmp
wi2val(e, Hot) + wi3val(e, Music) + wi4val(e, Nature)) 2"2";_’[’:_9':‘6“‘

@ pval(e, Likes) = f(wo + wival(e, H1) + w2val(e, H2))



Error gradients

o Top left: original samples; Top right: network
approximation;

o Bottom left: true function which generated
samples; Bottom right: raw error
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Error gradients: simple
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@ Error (vertical) as function of 2 weights (x; and x»)
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Error

@ How much should we change each weight?
@ In proportion to its influence on the error.

@ The bigger the influence of weight w,, , the greater
the reduction of error that can induced by changing
it

@ This influence wouldn't be the same everywhere:
changing any particular weight will generally make
all the others more or less influential on the error,
including the weight we have changed.
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Solution: Error backpropagation

Neurons
Connections
Signals

Step 1: Propagation: Each propagation involves the Diversity

Levels
I . Scale
following:
Computation

@ Forward propagation of a training pattern’s input
through the neural network in order to generate the W™

. ] . . Activation func
propagation's output activations. T

e Backward propagation of the propagation’s output
activations through the neural network using the Unsupervised

Hebbian

training pattern target in order to generate the Associative

Credit
deltas (difference between the input and output i
values) of all output and hidden neurons. e
Error
Backprop
Reinforcement
Overfitting



Solution: Error backpropagation

Step 2: Weight update: For each weight-synapse do the
following:

@ Multiply its output delta and input activation to get
the gradient of the weight.

@ Subtract a ratio (percentage) of the gradient from
the weight.

The ratio (percentage) influences the speed and quality
of learning; it is called the learning rate. The greater the
ratio, the faster the neuron trains; the lower the ratio,
the more accurate the training is. The sign of the
gradient of a weight indicates where the error is
increasing, this is why the weight must be updated in
the opposite direction.

Finally: Repeat step 1 and 2 until the performance of
the network is satisfactory.
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Learning rate

Large Learning Rate
Divergencel

@ Learning rate is too large

¥
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Learning rate

Small Learning Rate
Slow Corvergence

@ Learning rate is too small

¥
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Solution: Error backpropagation

Overview and basic idea:

1 initialize network weights (often small random values)
2 do
3 for Each training example ex
prediction = neural-net-output(network, ex) // forward pass
actual = teacher-output(ex)
compute error (prediction — actual) at the output units, as A
Starting with output layer, repeat until layer | (input):
propagate A\ values back to previous layer
update network weights between the two layers
10 until all examples classified correctly or another stopping criterion satisfied
11 return the network

©o~N~NOo G A
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Backprop(from Artint)

1: Procedure BackPropagationLearner(X, Y.E,nnn)
2: Inputs .
3 X: set of input features, X={Xp,...Xn} This approach assumes .
4: Y: set of target features, Y={Y3,..., Y } Connections
5: E: set of examples from which to learn n input features, k Signals
6: np: number of hidden units Diversity
7: n: learning rate output features, and nh  Levels
8: Output Scale
9: hidden unit weights hw[0:n,1:np] hidden units. Both Aw vs. Computers
10: output unit weights ow[0:np, 1:k] Computation
11: Local
12: hw[0:n,1:np] weights for hidden units and ow are Aotieatt
13: ow[0:np, 1:k] weights for output units A . pplications
14: hid[0:np] values for hidden units two-dimensional arrays ;AS?\:‘:ZOH —
15: hErri1:np] errors for hidden units of weights. Note that Stoch‘dsticity
16: out[1:k] predicted values for output units Signal flow
17: . _oErr[l.'k] errors for output units 0 : nk means the index Gr:ph —
18: initialize hw and ow randomly .
19: hid[0]«1
20: repeat ranges from 0 to nk " :

. nsupervised
21: for each examplee in E do i . Hebbian
22: for each h €{1...np} do (inclusive) and 1 : nk Associative
23: hid[h] « (=" hw(i,h] xval(e, X)) Cru;ﬁt
24: for eacho €{1,....k} do means the index ranges supervised
25: outfo] « F(Sh=g" hwlih] xhid[h]) Competitive
26: oErr[o] +outfo]x(1-outfo]) x(val(e, Yo)-out{o]) from 1 to nk Error Corr
27: for each h €{0.....nx} do Multi-layer
28: hErTh] —hid[h] x(1-hid[h]) xSo—o* owlh,o] xoErrfo} (inclusive). This Error
29: for eachi €{0,...n} do B?Ckpmp
30: hwli,hl=hwlih] + nxhErrfh] xval(e,X) algorithm assumes that 2‘;‘("""?[;,"":'""'
31: for eacho €{1,...k} do -
32: ow[h,o]«ow[h,o] + nxoFrr{o] xhid[h] val(eyXo) =1 for all e
33: until termination

34: return wg...,wn



Backprop (from AIMA)

1 function BACK-PROP-LEARNING(examples, network, ) returns a neural network
2 inputs: examples, each of which has input vector x and output vector y

3 network with L layers, weights w; ;, activation function g

4. a: learning rate

5 local variables: A, a vector of errors, indexed by network node

6 repeat

7 for each weight w; ; in network do

8 w; j < asmall random number

9 for each example (x,y) in examples do

10 //Propagate the inputs forward to compute the outputs//
11 for each node i in the input layer do

12 aj +— X

13 for /| =2to L do

14 for each node j in layer / do

15 inj <= >7; w; jaj

16 a; < g(inj)

17 //Propagate deltas backward from output layer to input layer//
18 for each node j in the output layer do

19 Al «+ g’ (inj) x (yj — 3)

20 for/=L—1to1ldo

21 for each node i in layer / do

22 Ali] + g'(iny) 325 wi j Al

23 //Update every weight in the network using deltas//

24 for each weight in w; ; in network do

25 wij < wij+a X a x Alj]

26 until some stopping criterion is satisfied
27 return network
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Neural network for traveling example

@ Input Units
W14
e
w- /

Hidden Units

Likes
Yo

Output Unit

One hidden layer containing two units, trained on the
travel data, can perfectly fit. One run of
back-propagation with the learning rate =0.05, and
taking 10,000 steps, gave weights that accurately
predicted the training data:
@ H1 = f(—2.0Culture —4.43Fly +2.5Hot + 2.4 Music — 6.1 Nature + 1.63)
@ H2 = f(—0.7Culture + 3.0Fly + 5.8Hot + 2.0Music — 1.7Nature — 5.0)
@ Likes = f(—8.5H1 — 8.8H2 + 4.36)
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Comparison: digit recognition

3 NN[300 Hidden NN|LeNet|Boosted LeNet|SVM|Virtual SVM|Shape match
Error rate 2.4 1.6 0.9 0.7 1.1 0.56 0.63
Run time 1000 10 30 50 2000 200
Memory req 12 .49 0.012 0.21 11
Training time 0 7 14 30 10
% rejected to reach 0.5%| 8.1 3.2 1.8 0.5 1.8

3-nearest neighbor (memory)

300 hidden, fully connected, 123,00 weights

3 copies of LeNet

("]
(*]
@ LeNet (below) a convolution net
("]
(*]

SVM, Virtual SVM, Shape match

C1: feature maps
g‘:g; G@28x28

Gonvelutions

C3 1, maps 16@E 1010
54: 1. maps 16E5x5

52: 1. maj
B@14x14

Subsampling

Gonvolutians

| Full connectian

Full

Gaugsian connections
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Prediction!

ik tim|e winduv!r

I

\

inputs neural network

@ Neural networks can predict complex time-series,

time series

output
predicted value

e.g., prices, economies, etc
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Prediction!

~ |
time window

v

time series

ae

as

output
predicted value

{5y

o

intervention indicators

I e N Yy s

@ Input can be given by experts via intervention
indicators
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Prediction!

WV

first item in training set

‘ second item in training set

window

@ Training via a shifting window

testing part
of time series
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Prediction!

all data (availabhle time series)

validating set

—p

learning se

testing set

@ Like other methods, training, validation, and testing
sets help
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Reinforcement learning
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@ Temporal credit assignment problem
@ More to come with spiking networks Thursday



Overfitting

o
-

@ Over-fitting impedes generalization
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Regularization

Raw Naisy Data Sraicht ine it
15 15
o
1
o o
o
05
Q
0 -
05
s ©
1 @
Q
15
1 0.5 0 05 1
x x

@ Straight line might be an underfit to these data
points
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Regularization

10th erder patynamial it

ih _/E\/\ﬁ

1 05 0

05

True undedying generaing lunciion

15
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o Left, 10th order might be an overfit.

@ Right, the true function from which the data were

sampled
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Regularization :

T T Neurons
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@ )\ defined as a constant to penalize higher order Overfitting
during the error calculation (for neurons)



Regularization:
too little or too much

- N S

Lo
N
fap
LE
o
K
o
=
e
o

@ dotted = train, solid = test
@ y=error, x= \, such that either too low or high

order is worse, with a happy medium in the middle.
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Regularization: Bayesian

1=10000, a=0.7

@ Pre-specify your hypothesis about A

e Left, A 1000
e Right, A 1
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Regularization: Bayesian

o p(w|A, H) o exp[~3w?]

e p(w|D,\,H) = p(D‘W,;?b’RPISV)VM’H) such that D are
data ’

° p(W|D,>\, H) = p(D|W) X
[T, exp[—3(v* — F(x* — w))’]
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