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Probability

“The mind is a neural computer, fitted by
natural selection with combinatorial algorithms
for causal and probabilistic reasoning about
plants, animals, objects, and people. It is
driven by goal states that served biological
fitness in ancestral environments, such as food,
sex, safety, parenthood, friendship, status and
knowledge.”

Steven Pinker, How the Mind Works, 1997
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Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of probability

know how to compute marginals and apply Bayes’
theorem

build a belief network for a domain

next time: predict the inferences for a belief network

next time: explain the predictions of a causal model
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Using Uncertain Knowledge

Agents don’t have complete knowledge about the
world.

Agents need to make decisions based on their
uncertainty.

It isn’t enough to assume what the world is like.

An agent needs to reason about its uncertainty.

When an agent makes an action under uncertainty,
it is gambling =⇒ probability.
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Why Probability?

There is lots of uncertainty about the world, but
agents still need to act.

Predictions are needed to decide what to do:
I definitive predictions: you will be run over

tomorrow
I point probabilities: probability you will be run over

tomorrow is 0.002
I probability ranges: you will be run over with

probability in range [0.001,0.34]

Acting is gambling: agents who don’t use
probabilities will lose to those who do

Probabilities can be learned from data.

Bayes’ rule specifies how to combine data and prior
knowledge.
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Probability

Bayesian probability is used to express an agent’s
measure of belief in some proposition
— subjective probability.

An agent’s belief depends on its prior assumptions
AND what the agent observes.

Assume uncertainty is epistemological, pertaining
to an agent’s knowledge of the world, rather than
ontological, or how the world is
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Numerical Measures of Belief

Belief in proposition, f , can be measured in terms
of a number between 0 and 1 — this is the
probability of f .

I The probability f is 0 means that f is believed to
be definitely false.

I The probability f is 1 means that f is believed to
be definitely true.

I f has a probability between 0 and 1, means the
agent is ignorant of its truth value.

Using 0 and 1 is purely a convention.

Probability is a measure of an agent’s ignorance.

Probability is not a measure of degree of truth.
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Random Variables

A random variable is a term that can take one of
a number of different values (not really random)

The range of a variable X , written range(X ), is the
set of values X can take.

A tuple of random variables 〈X1, . . . ,Xn〉 has
range(X1)× · · · × range(Xn).
Often the tuple is written as X1, . . . ,Xn.

Assignment X = x means variable X has value x .

A proposition is a Boolean formula made from
assignments of values to variables.
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Possible World Semantics

A possible world specifies an assignment of one
value to each random variable.

A random variable can be a function from possible
worlds into the range of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.
Note: This is not the same |= as in KB.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability: general case

A probability measure over the worlds is a function µ
from sets of worlds into the non-negative real numbers.
We define µ(ω) for some sets ω ⊆ Ω satisfying:

µ(ω) ≥ 0

µ(Ω) = 1

µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) if ω1 ∩ ω2 = {}.
Or sometimes σ-additivity:

µ(
⋃
i

ωi) =
∑
i

µ(ωi) if ωi ∩ ωj = {} for i 6= j
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Semantics of Probability

For a finite number of possible worlds:

The probability of proposition α, written P(α), is
the measure of the set of possible worlds in which α
is true: P(α) = µ({ω : ω |= α})

P(α) =
∑
ω|=α

µ(ω)
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Probability Distributions

Probability distribution, P(X ), over a random
variable X is a function with range(X )→ [0, 1]
from the domain of X into the real numbers such
that, given a value x ∈ dom(X )

x 7→ P(X = x).

This is written as: P(X ) is the probability of the
proposition X = x

This also includes the case where we have tuples of
variables. E.g., P(X ,Y ,Z ) means P(〈X ,Y ,Z 〉).
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Probability density functions

When range(X ) is continuous sometimes we need a
probability density function...

A probability density function, p, is a function from
reals into non-negative reals that integrates to 1.

Probability that a real-valued random variable X
has value between a and b is given by

P(a ≤ X ≤ b) =

∫ b

a

p(X )dX
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Axioms of Probability: finite case

Three axioms define what follows from a set of
probabilities:

Axiom 1 0 ≤ P(α) for any proposition α.

Axiom 2 P(true) = 1 or P(τ) = 1 where τ is any
tautology (obviously true)

Axiom 3 If a and b cannot both be true,
P(α ∨ β) = P(a) + P(b)

If there are a finite number of discrete random
variables, Axioms 1, 2, and 3 are sound and
complete with respect to the semantics.
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Axioms of probability cont..

The following hold for all propositions α and β:

Negation of a proposition:
P(¬α) = 1− P(α)

Logically equivalent propositions have the same
probability:
If α↔ β, then P(α) = P(β)

Reasoning by cases:
P(α) = P(α ∧ β) + P(α ∧ ¬β)

If V is a random variable with domain D, then, for
all propositions α:
P(α) =

∑
d∈D

P(α ∧ V = d)

Disjunction for non-exclusive propositions:
P(α ∨ β) = P(α) + P(β)− P(α ∧ β)
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Conditioning

Probabilistic conditioning specifies how to revise
beliefs based on new information.

An agent builds a probabilistic model taking all
background information into account. This gives
the prior probability.

All other information must be conditioned on.

evidence e is all information newly obtained

h is a hypothesis or proposition

conditional probability of h given e is stated as
P(h|e), defined as posterior probability of h.
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Conditioning

Possible Worlds:
What is the probability of star?:

Observe Color = orange:
What is the probability of star given orange?
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Conditional probabilities: joint distribution
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Conditional probabilities: joint distribution

α AKA c on next slide (c is better, since α is already
used in stats)
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible
with e.
Evidence e induces a new measure, µe , over
possible worlds

µe(S) =

{
c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for all ω ∈ S

We can show c = 1
P(e)

.
The conditional probability of formula h given
evidence e is

P(h|e) = µe({ω : ω |= h})

=
1

P(e)
×
∑
ω|=h∧e

µ(ω)

=
P(h ∧ e)

P(e)
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Chain rule intro

If independent: P(A ∧ B) = P(A)P(B)
This is true whether or not A and B are independent:
P(A ∧ B) = P(A|B)P(B) = P(B |A)P(A)
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Generalize to the chain rule

P(f1 ∧ f2 ∧ . . . ∧ fn)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(f1 ∧ · · · ∧ fn−1)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)×
P(f1 ∧ · · · ∧ fn−2)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)

× · · · × P(f3|f1 ∧ f2)× P(f2|f1)× P(f1)

=
n∏

i=1

P(fi |f1 ∧ · · · ∧ fi−1)
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Baye’s theorem

The chain rule and commutativity of conjunction (h ∧ e
is equivalent to e ∧ h) gives us:

P(h ∧ e) = P(h|e)× P(e)

= P(e|h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h|e) =
P(e|h)× P(h)

P(e)
.

This is Bayes’ theorem.

Background knowledge, k , is often implicit:
P(h|e ∧ k) = P(e|h∧k)×P(h|k)

P(e|k)
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)

and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).
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Bayes theorem illustrated

Values w, x, y and z give relative weights of each corresponding

condition and case. Figures denote the of the table involved in

each metric, with probability being the fraction of each figure that

is shaded. Shows that P(A|B)P(B) = P(B|A)P(A)
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Bayes theorem illustrated

For each sub-diamond, product of opposing color-pairs are equal,

and specify the process needed to derive the missing value.
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Expected values

A variable’s expected value is the variable’s weighted
average value, where its value in each possible world
is weighted by the measure of the possible world.

Suppose V is a random variable whose domain is
numerical, and ω is a possible world. Define V (ω)
to be the value v in the domain of V such that
ω |= V = v . That is, we are treating a random
variable as a function on worlds.

The expected value of numerical variable V is:
E (V ) =

∑
ω∈Ω

V (ω)µ(ω)
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Simple independence

In probability theory, two events are independent if the
occurrence of one does not affect the probability of the
other. Similarly, two random variables are independent if
the realization of one does not affect the probability
distribution of the other:

P(A ∧ B) = P(A)P(B)
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Conditional independence

Random variable X is conditionally independent of
random variable Y given random variable Z :

P(X |YZ ) = P(X |Z )

i.e. for all xi ∈ dom(X ), yj ∈ dom(Y ), yk ∈ dom(Y )
and zm ∈ dom(Z ),

P(X = xi |Y = yj ∧ Z = zm)

= P(X = xi |Y = yk ∧ Z = zm)

= P(X = xi |Z = zm).

That is, knowledge of Y ’s value doesn’t affect the belief
in the value of X , given a value of Z .
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Example domain (diagnostic assistant)

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3
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Examples of conditional independence?

Whether there is someone in a room is independent
of whether a light l2 is lit given what?
The position of switch s3.

Whether light l1 is lit is independent of the position
of light switch s2 given what?
Whether there is power in wire w0.

Every other variable may be independent of whether
light l1 is lit given whether there is power in wire
w0 and the status of light l1 (if it’s ok , or if not,
how it’s broken).
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Idea of belief networks

l1 is lit (L1 lit)
depends only on the
status of the light
(L1 st) and whether
there is power in wire
w0.

In a belief network, W 0
and L1 st are parents
of L1 lit.

w1 w2

s2_pos

s2_st

w0

l1_lit

l1_st

... ... ......

W 0 depends only on whether there is power in w1,
whether there is power in w2, the position of switch
s2 (S2 pos), and the status of switch s2 (S2 st).
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Belief networks

Order the variables of interest: X1, . . . ,Xn via
congruence with chain rule:
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi |X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those
predecessors of Xi that render Xi independent of
the other predecessors. That is:

I parents(Xi ) ⊆ {X1, . . . ,Xi−1} and
I P(Xi |parents(Xi )) = P(Xi |X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each
node into that node.
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Example: fire alarm belief network

Variables:

Fire: there is a fire in the building

Tampering: someone has been tampering with the
fire alarm

Smoke: what appears to be smoke is coming from
an upstairs window

Alarm: the fire alarm goes off

Leaving: people are leaving the building en masse.

Report: a colleague says that people are leaving the
building en masse. (A noisy sensor for leaving.)
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Components of a belief network

A belief network consists of:

a directed acyclic graph with nodes labeled with
random variables

a domain for each random variable

a set of conditional probability tables for each
variable given its parents (including prior
probabilities for nodes with no parents).
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Example belief network

Outside_power

W3

Cb1_st Cb2_st

W6

W2

W0

W1

W4

S1_st

S2_st

P1
P2

S1_pos

S2_pos

S3_pos

S3_st

L2_st

L2_lit

L1_st

L1_lit
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Example belief network (continued)

The belief network also specifies:

The domain of the variables:

I W0, . . . ,W6 have domain {live, dead}
I S1 pos, S2 pos, and S3 pos have domain
{up, down}

I S1 st has
{ok, upside down, short, intermittent, broken}.

Conditional probabilities, including:

I P(W1 = live|s1 pos = up∧S1 st = ok∧W3 = live)
I P(W1 = live|s1 pos = up ∧ S1 st = ok ∧W3 =

dead)
I P(S1 pos = up)
I P(S1 st = upside down)
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Belief network summary

A belief network is a directed acyclic graph (DAG)
where nodes are random variables.

The parents of a node n are those variables on
which n directly depends.

A belief network is automatically acyclic by
construction.

A belief network is a graphical representation of
dependence and independence:

I A variable is independent of its non-descendants
given its parents.

Belief networks model causal systems, hypotheses,
and interventions; if someone were to artificially
force a variable to have a particular value, the
variable’s descendants, but no other nodes, would
be affected.
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Constructing belief networks

To represent a domain in a belief network, you need to
consider:

What are the relevant variables?
I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?
I Hidden or latent variables

What values should these variables take?

What is the relationship between them? This should
be expressed in terms of a directed graph,
representing how each variable is generated from its
predecessors.

How does the value of each variable depend on its
parents? This is expressed in terms of the
conditional probabilities.
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Using belief networks

The power network can be used in a number of ways:

Conditioning on the status of the switches and
circuit breakers, whether there is outside power and
the position of the switches, you can simulate the
lighting.

Given values for the switches, the outside power,
and whether the lights are lit, you can determine
the posterior probability that each switch or circuit
breaker is ok or not.

Given some switch positions and some outputs and
some intermediate values, you can determine the
probability of any other variable in the network.
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Understanding independence: example

B CA D E F
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M
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Understanding independence: questions

On which given probabilities does P(N) depend?

If you were to observe a value for B, which
variables’ probabilities will change?

If you were to observe a value for N, which
variables’ probabilities will change?

Suppose you had observed a value for M ; if you
were to then observe a value for N, which variables’
probabilities will change?

Suppose you had observed B and Q; which
variables’ probabilities will change when you observe
N?
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What variables are affected by observing?

If you observe variable Y , the variables whose
posterior probability is different from their prior are:

I The ancestors of Y and
I their descendants.

Intuitively (if you have a causal belief network):
I You do abduction to possible causes and
I prediction from the causes.
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Common descendants

tampering

alarm

fire

tampering and fire
are independent

tampering and fire
are dependent given
alarm

Intuitively,
tampering can
explain away fire
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Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are
independent given
fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other
by changing your
belief in fire.
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Chain

report

alarm

leaving

alarm and report are
dependent

alarm and report are
independent given
leaving

Intuitively, the only
way that the alarm
affects report is by
affecting leaving .
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For next time...

The most common probabilistic inference task is to
compute the posterior distribution of a query variable
given some evidence. Unfortunately, even the problem of
estimating the posterior probability in a belief network
within an absolute error (of less than 0.5), or within a
constant multiplicative factor, is NP-hard, so general
efficient implementations will not be available.
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