At the end of the class you should be able to:

- justify the use and semantics of utility
- estimate the utility of an outcome
- build a single-stage decision network for a domain
- compute the optimal decision of a single-stage decision network

Preference

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- Actions result in outcomes
- Agents have preferences over outcomes
- Rational agent will do the action that has the best outcome for them
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Real agents have to act. (Doing nothing is (usually) an action).

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

If o_1 and o_2 are outcomes

• Weakly preferred:

 $o_1 \succeq o_2$ means o_1 is at least as desirable as o_2 .

Indifferent:

 $o_1 \sim o_2$ means $o_1 \succeq o_2$ and $o_2 \succeq o_1$.

• Strictly preferred:

 $o_1 \succ o_2$ means $o_1 \succeq o_2$ and $o_2 \not\succeq o_1$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- Agent may not know the outcomes of actions, but only have a probability distribution of outcomes.
- Lottery is a probability distribution over outcomes:

$$[p_1: o_1, p_2: o_2, \ldots, p_k: o_k]$$

where the o_i are outcomes and $p_i \ge 0$ such that

$$\sum_{i} p_i = 1$$

The lottery specifies that outcome o_i occurs with probability p_i .

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

• **Completeness:** Agents have to act, and thus they must have preferences:

$$orall o_1 orall o_2 \ o_1 \succeq o_2 \ ext{or} \ o_2 \succeq o_1$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Transitivity: Preferences must be transitive:

if $o_1 \succeq o_2$ and $o_2 \succ o_3$ then $o_1 \succ o_3$

(Similarly for other mixtures of \succ and \succeq .) **Rationale:** otherwise $o_1 \succeq o_2$ and $o_2 \succ o_3$ and $o_3 \succeq o_1$. If they are prepared to pay to get o_2 instead of o_3 , and are happy to have o_1 instead of o_2 , and are happy to have o_3 instead of o_1

 \longrightarrow money pump.

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Monotonicity: An agent prefers a larger chance of getting a better outcome than a smaller chance:

• If $o_1 \succ o_2$ and p > q then

$$[p:o_1, 1-p:o_2] \succ [q:o_1, 1-q:o_2]$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Decomposability: (no fun in gambling). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$egin{aligned} & [p:o_1,1-p:[q:o_2,1-q:o_3]] \ & \sim & [p:o_1,(1-p)q:o_2,(1-p)(1-q):o_3] \end{aligned}$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- Suppose o₁ ≻ o₂ and o₂ ≻ o₃. Consider whether the agent would prefer
 - ► 0₂
 - the lottery $[p:o_1, 1-p:o_3]$ for different values of $p \in [0, 1]$.
- Plot which one is preferred as a function of *p*:

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Continuity: Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$, then there exists some $p \in [0, 1]$ such that

$$o_2 \sim [p:o_1,1-p:o_3]$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability

Rationality Utility

Substitutability: if $o_1 \sim o_2$ then the agent is indifferent between lotteries that only differ by o_1 and o_2 :

$$[p:o_1, 1-p:o_3] \sim [p:o_2, 1-p:o_3]$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity **Substitutability** Rationality

Utility

Alternative Axiom for Substitutability

Substitutability: if $o_1 \succeq o_2$ then the agent weakly prefers lotteries that contain o_1 instead of o_2 , everything else being equal. That is, for any number p and outcome o_3 :

$$[p:o_1,(1-p):o_3] \succeq [p:o_2,(1-p):o_3]$$

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- An agent is defined to be rational if it obeys the completeness, transitivity, monotonicity, decomposability, continuity, and substitutability axioms.
- Rationality also depends on subjective utility (as we will define now)

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- We would like a measure of preference that can be combined with probabilities. So that value([p: o₁, 1 - p: o₂])
 = p × value(o₁) + (1 - p) × value(o₂)
 What would you prefer 2
- What would you prefer ?

\$1,000,000 or [0.5 : \$0,0.5 : \$2,000,000]?

 We want non-linearity or arbitrary functions: Perceived value of money and actual benefit of money is not linear.

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

If preferences follow the preceding properties, then preferences can be measured by a function

utility : outcomes
$$ightarrow$$
 [0, 1]

such that

- $o_1 \succeq o_2$ if and only if $utility(o_1) \ge utility(o_2)$.
- Utility is calculated as:

$$utility([p_1:o_1,p_2:o_2,\ldots,p_k:o_k]) = \sum_{i=1}^k p_i \times utility(o_i)$$

p. 15

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Many possible utility functions exist

Why? Perceived value, actual value, or both? Can be generated empirically via querying people $[p: u_1, 1-p: u_2]$ with various p

p. 16

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Possible utility as a function of money

Rationality axioms Completeness y-axis is utility Transitivity Monotonicity x-axis is money Continuity Substitutability Rationality IExample: money -150.000 800,000 (b) (a)

(a) Experimental data (b) Full curve.

Decomposability

Factor representation Theory and humans

Utility can be arbitrary

Someone who really wants a toy worth \$30, but who would also like one worth \$20:

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X₁,..., X_n.
- An **additive utility** is one that can be decomposed into set of factors:

$$u(X_1,\ldots,X_n)=f_1(X_1)+\cdots+f_n(X_n).$$

This assumes additive independence.

- Strong assumption: contribution of each feature doesn't depend on other features.
- Many ways to represent the same utility:
 a number can be added to one factor as long as it is subtracted from others.

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Additive Utility

• An additive utility has a canonical representation:

$$u(X_1,\ldots,X_n)=w_1\times u_1(X_1)+\cdots+w_n\times u_n(X_n).$$

- If *best_i* is the best value of X_i, u_i(X_i=best_i) = 1.
 If *worst_i* is the worst value of X_i, u_i(X_i=worst_i) = 0.
- *w_i* are weights, ∑_i *w_i* = 1. The weights reflect the relative importance of features.
- We can determine weights by comparing outcomes.

$$w_1 = u(best_1, x_2, ..., x_n) - u(worst_1, x_2, ..., x_n).$$

for any values x_2, \ldots, x_n of X_2, \ldots, X_n .

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x₁ of feature X₁ and x₂ of feature X₂ are **complements** if having both is better than the sum of the two.
- Example: on a holiday
 - having a plane booking for a particular day and a hotel booking for the same day are complements: one without the other does not give a good outcome.
- Values x_1 of feature X_1 and x_2 of feature X_2 are **substitutes** if having both is worse than the sum of the two.
- Example: on a holiday
 - Two trips in one day

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- If there are interactions (e.g., complement or substitute)
- Generalized additive utility can be written as a sum of factors:

$$u(X_1,\ldots,X_n)=f_1(\overline{X_1})+\cdots+f_k(\overline{X_k})$$

where $\overline{X_i} \subseteq \{X_1, \ldots, X_n\}$.

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Humans are not internally consistent rational agents... or are they?

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Allais Paradox (1953)

What would you prefer:

A: %80 chance of \$4,000

B: %100 chance of \$3,000

What would you prefer:

C: %20 chance of \$4,000

D: %25 chance of \$3,000

Most people like B over A, and C over D, which isn't internally consistent.

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Framing Effects [Tversky and Kahneman]

• A disease is expected to kill 600 people. Two alternative programs have been proposed: Program A: 200 people will be saved Program B: probability 1/3: 600 people will be saved probability 2/3: no one will be saved Which program would you favor? A disease is expected to kill 600 people. Two alternative programs have been proposed: Program C: 400 people will die Program D: probability 1/3: no one will die probability 2/3: 600 will die Which program would you favor?

Tversky and Kahneman: 72% chose A over B. 22% chose C over D.

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Framing Effects [Tversky and Kahneman]

• A disease is expected to kill 600 people. Two alternative programs have been proposed: Program A: 200 people will be saved Program B: probability 1/3: 600 people will be saved probability 2/3: no one will be saved Which program would you favor? A disease is expected to kill 600 people. Two alternative programs have been proposed: Program C: 400 people will die Program D: probability 1/3: no one will die probability 2/3: 600 will die Which program would you favor?

Tversky and Kahneman: 72% chose A over B. 22% chose C over D.

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

- Suppose you had bought tickets for the theatre for \$50. When you got to the theatre, you had lost the tickets. You have your credit card and can buy equivalent tickets for \$50. Do you buy the replacement tickets on your credit card?
- Suppose you had \$50 in your pocket to buy tickets. When you got to the theatre, you had lost the \$50. You have your credit card and can buy equivalent tickets for \$50. Do you buy the tickets on your credit card?

p. 27

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Prospect Theory

In mixed gambles, loss aversion causes extreme risk-averse choices

p. 28

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Consider Anthony and Betty:

- Anthony's current wealth is \$1 million.
- Betty's current wealth is \$4 million.

They are both offered the choice between a gamble and a sure thing:

- Gamble: equal chance to end up owning \$1 million or \$4 million.
- Sure Thing: own \$2 million

What does expected utility theory predict? What does prospect theory predict? Is this actually rational?

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Box contains 1/3 red balls, 2/3 either black or yellow (unknown proportion)

- A: \$100 for red
- B: \$100 for black

What would you prefer:

- C: \$100 for red or yellow
- D: \$100 for black or yellow

If red is greater than black, most people like A over B, and D over C, which isn't internally consistent, perhaps due to ambiguity aversion.

Preferences

Rationality axiom Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility

Two boxes:

- Box 1: contains \$10,000
- Box 2: contains either \$0 or \$1m
- You can either choose both boxes or just box 2.
- The "predictor" has put \$1m in box 2 if he thinks you will take box 2 and \$0 in box 2 if he thinks you will take both.
- The predictor has been correct in previous predictions.
- Do you take both boxes or just box 2?

Preferences

Rationality axioms Completeness Transitivity Monotonicity Decomposability Continuity Substitutability Rationality

Utility