
p. 1

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Intro to reinforcement learning: day 1

p. 2

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Intro to reinforcement learning: day 1

Today, we will introduce the details of RL and some
basic algorithms.

Next Tuesday we will extend it more deeply, go over
python code which does RL, and discuss the relation to
neuroscience, psychology, developmental psychology, and
animal behavior.

We will also go over details about the final project next
Tuesday.

p. 3

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Objectives - Reinforcement Learning

At the end of the class you should be able to:

Explain the relationship between decision-theoretic
planning (MDPs) and reinforcement learning

Implement basic state-based reinforcement learning
algorithms: Q-learning and SARSA

Explain the explore-exploit dilemma and solutions

Explain the difference between on-policy and
off-policy reinforcement learning

Use features for feature-based reinforcement
learning

p. 4

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Learning Summary to date

Given a task, use
I data/experience
I bias/background knowledge
I measure of improvement or error

to improve performance on the task.

Representations for:
I Data (e.g., discrete values, indicator functions)
I Models (e.g., decision trees, linear functions, linear

separators)

A way to handle overfitting (e.g., trade-off model
complexity and fit-to-data, cross validation).

Search algorithm (usually local, myopic search) to
find the best model that fits the data given the bias.

p. 5

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Reinforcement Learning

What should an agent do given:

Prior knowledge: possible states of the world
possible actions

Observations: current state of world
immediate reward / punishment

Goal: act to maximize accumulated (discounted)
expected reward

Like decision-theoretic planning, except model of
dynamics and model of reward not given.

p. 6

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Reinforcement Learning Examples

Often rewards are distant and sparse, only for final
outcomes:

Game - reward winning, punish losing

Dog - reward obedience, punish destructive
behavior

Robot - reward task completion, punish dangerous
behavior

This is closer to general AI... and is the real substance
behind the hype of deep learning

p. 7

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

RL toy problems

-100

s4 s5

s2 s3

s0 s1

+10

upC: (for ”up carefully”) Agent goes up, except in states s4 and s5,
where the agent stays still, and has a reward of -1.

right: Agent moves to the right in states s0, s2, s4 with a reward of 0
and stays still in other states, with a reward of -1.

left: Agent moves one state to the left in states s1, s3, s5. In state s0,
it stays in state s0 and has a reward of -1. In state s2, it has a reward
of -100 and stays in state s2. In state s4, it gets a reward of 10 and
moves to state s0.

up: With probability 0.8 it acts like upC, except reward is 0. With
probability 0.1 it acts as a left, and with probability 0.1 it acts as right.

p. 8

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Experiences

We assume there is a sequence of experiences:

state, action, reward , state, action, reward ,

At any time an agent must decide whether to
I explore to gain more knowledge
I exploit knowledge it has already discovered

p. 9

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Why is reinforcement learning hard?

What actions are responsible for a reward may have
occurred a long time before the reward was received.

The long-term effect of an action depend on what
the agent will do in the future (earlier dependencies
or perquisites of future actions).

The explore-exploit dilemma: at each time should
the agent be greedy or inquisitive?

p. 10

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Reinforcement learning: main approaches

search through a space of policies (a.k.a.
controllers)

learn a model consisting of state transition function
P(s ′|a, s) and reward function R(s, a, s ′); solve this
an an MDP.

learn Q∗(s, a), use this to guide action.

p. 11

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Evolutionary Algorithms

Idea:
I maintain a population of controllers (policies)
I evaluate each controller by running it in the

environment
I at each generation, the best controllers are

combined to form a new population of controllers

If there are n states and m actions, there are mn

policies.

Experiences are used wastefully: only used to judge
the whole controller. They don’t learn after every
step.

Performance is very sensitive to representation of
controller.

Can occasionally benefit by doing interleaved steps
of EA between bouts of classic RL algorithms

p. 12

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Recall: Asynch VI for MDP, storing Q[s, a]

(If we knew the model:)

Initialize Q[S ,A] arbitrarily
Repeat forever:

Select state s, action a

Q[s, a]←∑
s′

P(s ′|s, a)
(
R(s, a, s ′) + γ max

a′
Q[s ′, a′]

)

p. 13

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Recall: Asynch Value Iteration

To store V [s] instead, update with:
V [s]← maxa

∑
s′ P(s ′|s, a) (R(s, a, s ′) + γV [s ′])

and store: π[s]← argmaxa
∑
s′

P(s ′|s, a) (R(s, a, s ′) + γV [s ′])

p. 14

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Reinforcement Learning (Deterministic)

flat or modular or hierarchical

explicit states or features or individuals and
relations

static or finite stage or indefinite stage or infinite
stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

p. 15

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Deterministic RL

Experiential Asynchronous Value Iteration

initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← r + γ maxa′ Q[s ′, a′]
s ← s ′

end-repeat
if ||Vk − Vk−1|| < θ

for each state s
π[s] = argmaxaQ[s, a]

return π,Q

Note: this is mostly just to illustrate a concept, which
will be recycled for model-based methods

p. 16

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Reinforcement Learning (stochastic)

flat or modular or hierarchical

explicit states or features or individuals and
relations

static or finite stage or indefinite stage or infinite
stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

p. 17

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Temporal Differences

Goal: generate a running mean efficiently
Note: general method

Suppose we have a sequence of values:

v1, v2, v3, . . .

and want a running estimate of the average of the
first k values:

Ak =
v1 + · · ·+ vk

k

p. 18

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Temporal Differences (cont)

Suppose we know Ak−1 and a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k

=
k − 1

k
Ak−1 +

1

k
vk

Let αk = 1
k

, then

Ak = (1− αk)Ak−1 + αkvk

= Ak−1 + αk(vk − Ak−1)

“TD formula”

Instead, often we use this update with α fixed, and
can guarantee convergence to average if

∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞.

p. 19

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

An experience 〈s, a, r , s ′〉 provides a new estimate
for the value of Q∗(s, a):

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a]+α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)

p. 20

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Q-learning

initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
s ← s ′

end-repeat
if ||Vk − Vk−1|| < θ

for each state s
π[s] = argmaxaQ[s, a]

return π,Q

p. 21

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Q-learning

p. 22

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Properties of Q-learning

Q-learning converges to an optimal policy, no
matter what the agent does, as long as it tries each
action in each state enough (off-policy)

But what should the agent do?
I exploit: when in state s, select an action that

maximizes Q[s, a]
I explore: select another action

p. 23

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Areas to improve on Q-learning?

It does one ”backup” between each experience,
e.g., increasing the expected value of states farther
from the reward, by chaining or percolating Q value
backwards. Q value is treated like a reward in this
way.

I Is this appropriate for a robot interacting with the
real world?

I An agent can make better use of the data by
— doing multi-step backups
— building a model, and using MDP methods to
determine optimal policy.

It learns separately for each state.

p. 24

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Exploration and Exploitation Strategies

ε-greedy strategy: choose a random action with
probability ε and a best action with probability 1− ε.
Softmax action selection: in state s, choose action
a with probability increasing for higher Q

eQ[s,a]/τ∑
a e

Q[s,a]/τ

where τ > 0 is temperature defining how much a
difference in Q-values maps to probability. Good
actions chosen more often than bad actions.
With either of above, can incorporate a k (time
step) value such that exploration decreases over
time (often a good idea)
“Optimism in the face of uncertainty” is an
alternative solution of initializing Q to high values
to encourage exploration (not ideal).

p. 25

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Evaluating RL Algorithms

0 50 100 150 200
Number of steps (thousands)

-10000

0

10000

20000

30000

40000

50000
Ac

cu
m

ul
at

ed
 re

wa
rd

Is this part of the function (t=0-200) important, or is
ultimate online performance the goal? Human babies are
dumb and slow-learning compared to goat kid or calf...
Conclusion: which algorithm depends on your problem!

p. 26

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

On-policy Learning

Q-learning does off-policy learning: it learns the
value of an optimal policy, no matter what it does
(given enough exploration).
This could be bad if the exploration policy is
dangerous.
On-policy learning learns the value of the policy
being followed:
e.g., act greedily 80% of the time and act randomly
20% of the time, or don’t ever transition from s1 to
s4, or arbitrarily complete specifications of the
policy.
Why? If the agent is actually going to explore, it
may be better to optimize the actual policy it is
going to do.
SARSA uses the experience 〈s, a, r , s ′, a′〉 to update
Q[s, a].

p. 27

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

SARSA (state-action-reward-state-action)

initialize Q[S ,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s ← s ′

a← a′

end-repeat
if ||Vk − Vk−1|| < θ

for each state s
π[s] = argmaxaQ[s, a]

return π,Q

Varieties: Can follow an arbitrarily constrained policy

p. 28

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Multi-step backups

Considering updating Q[st , ar] based on “future”
experiences:

st , at , rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, st+3, at+3, . . .

How can an agent use more than one-step
lookahead?

How can we update Q[st , at] by looking
“backwards” from time t + 1, then at t + 2, then at
t + 3, etc.?

backup during training could be called look-ahead
during execution.

p. 29

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Multi-step lookaheads (really backups)
lookahead Weight Return
1 step 1− λ rt+1 + γV (st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V (st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V (st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V (st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV (st+n)
· · · · · · · · ·
total 1

Can use eligibility trace to weight to change values for
actions farther in the past less than those closer to the
reward/punishment. We’ve seen these before:

p. 30

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Model-based Reinforcement Learning

Above methods were model-free

Model-based reinforcement learning uses the
experiences in a more efficient manner by learning
transitional and reward models

It is used when collecting experiences is expensive
(e.g., in a robot or an online game); an agent can
do lots of computation between each experience.

Idea: learn the MDP and interleave acting and
planning.

After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.

Similar to the benefit of policy iteration over value
iteration

p. 31

Intro

Problem definition

Difficulties

Approaches

EA

Deterministic RL

Stochastic RL

TD

Q-learning

Algorithm

Properties

Problems

Explore v. Exploit

RL performance

Off/On-Policy

SARSA

Eligibility

Model-based

Model-based learner

Data Structures: Q[S ,A], T [S ,A,S], C [S ,A], R[S ,A]
Assign Q, R arbitrarily, C = 0, T = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
C [s, a]← C [s, a] + 1
R[s, a]← R[s, a] + (r − R[s, a])/C [s, a]
s ← s ′

repeat for a while:
select state s1, action a1

Q[s1, a1]← R[s1, a1] +
∑
s2

T [s1, a1, s2]

C [s1, a1]

(
γmax

a2
Q[s2, a2]

)
Varieties: Can use a T [S ,A,S], R[S ,A,S ′] or T [S ,A], R[S ,A]; C

value can be skipped entirely or used for efficiency of computation;

only T or R could be stored for a partial model, etc.

	Intro
	Problem definition
	Difficulties
	Approaches

	EA
	Deterministic RL
	Stochastic RL
	TD
	Q-learning
	Explore v. Exploit
	RL performance
	Off/On-Policy
	Eligibility
	Model-based

