-- # Software Tools for Discrete Mathematics module Stdm11Functions where import Stdm06LogicOperators import Stdm08SetTheory import Stdm10Relations -- # Chapter 11. Functions isFun :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b -> Set (a, FunVals b) -> Bool isFun f_domain f_codomain fun = let actual_domain = domain fun in normalForm actual_domain /\ setEq actual_domain f_domain data FunVals a = Undefined | Value a deriving (Eq, Show) isPartialFunction :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b -> Set (a, FunVals b) -> Bool isPartialFunction f_domain f_codomain fun = isFun f_domain f_codomain fun /\ elem Undefined (codomain fun) imageValues :: (Eq a, Show a) => Set (FunVals a) -> Set a imageValues f_codomain = [v | (Value v) <- f_codomain] isSurjective :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b -> Set (a, FunVals b) -> Bool isSurjective f_domain f_codomain fun = isFun f_domain f_codomain fun /\ setEq f_codomain (normalizeSet (imageValues (codomain fun))) isInjective :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b -> Set (a, FunVals b) -> Bool isInjective f_domain f_codomain fun = let fun_image = imageValues (codomain fun) in isFun f_domain f_codomain fun /\ normalForm fun_image functionalComposition :: (Eq a, Eq b, Eq c, Show a, Show b, Show c) => Set (a, FunVals b) -> Set (b, FunVals c) -> Set (a, FunVals c) functionalComposition f1 f2 = normalizeSet [(a, c) | (a, Value b) <- f1, (b', c) <- f2, b == b'] isBijective :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b -> Set (a, FunVals b) -> Bool isBijective f_domain f_codomain fun = isSurjective f_domain f_codomain fun /\ isInjective f_domain f_codomain fun isPermutation :: (Eq a, Show a) => Set a -> Set a -> Set (a, FunVals a) -> Bool isPermutation f_domain f_codomain fun = isBijective f_domain f_codomain fun /\ setEq f_domain f_codomain diagonal :: Int -> [(Int, Int)] -> [(Int, Int)] diagonal stop rest = let interval = [1 .. stop] in zip interval (reverse interval) ++ rest rationals :: [(Int, Int)] rationals = foldr diagonal [] [1 ..]