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Abstract. This study uses Genetic Programming (GP) in developing
a classifier to distinguish between five musical instruments. Using only
simple arithmetic and boolean operators with 95 features as terminals,
a program is developed that can classify 300 unseen samples with an
accuracy of 94%. The experiment is then run again using only 14 of
the most often chosen features. Limiting the features in this way raised
the best classification to 94.3% and the average accuracy from 68.2% to
75.67%. This demonstrates that not only can GP be used to create a
classifier but it can be used to determine the best features to choose for
accurate musical instrument classification, giving an insight into timbre.

Keywords: Musical Information Retrieval, timbre, Genetic Program-
ming

1 Introduction

By definition [1] timbre is that quality of auditory sensation by which a lis-
tener can distinguish between two sounds of equal loudness, duration and pitch.
Thus aurally distinguishing between musical instruments is largely based on the
timbre of the instrument. Accurately describing timbre is therefore paramount
to musical instrument identification. Unfortunately, unlike pitch and loudness,
timbre has proven to be somewhat difficult to measure. To identify musical in-
struments, many studies have used timbral features to train and test classifiers
developed using various Machine Learning techniques as discussed in Section 2.
As yet Evolutionary Learning techniques have not been used extensively and Ge-
netic Programming (GP) has not been tried at all. This study proposes to look
at the use of GP for the evolution of an accurate musical instrument classifier.

Section 2 looks at previous developments in instrument identification over
the past few decades and discusses the need for more specific feature selection.
Section 3 describes the set up of the experiment. Section 3.1 and 3.2 introduce
the instrument samples and timbral features used in the proposed study. Section
3.3 gives the details of the use of GP as an instrument classifier. Section 5 outlines
the results obtained by the experiments, the significance of which are discussed
in 6.
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2 Background

There have been a number of machine learning techniques used in creating mu-
sical instrument classifiers over the past two decades. Studies have used Mulit-
layered perceptrons [11], k-Nearest Neighbour [3] and Support Vector Machines
[5] among others. An exhaustive account of the methods used is given in [9].
Although each study reported strong results, objective comparison between the
studies is difficult as they differ in respects other than in the classification meth-
ods chosen. Each individual study classifies a different number of instrument
from a different number of samples using its own set of features. The number of
features included varies widely from very few up to hundreds [6]. Likewise the
number of instruments varies from 2 [2] to 30 [4]. Those that include a small num-
ber of samples across a wide range of instruments may not be general enough to
identify notes played with varying pitch or dynamic. The proposed study avoids
this problem by using a large number of samples varying in dynamic and model
from just five instruments.

The trend with many of the previous studies mentioned above is to adopt
the more is better theory; the inclusion of more and more detailed features from
a given sound with a given classifier will automatically improve the accuracy of
the classification. It was shown in [15] that this is not necessarily so and that the
inclusion of extra features in a musical instrument classifier can actually reduce
the accuracy of classification. Thus it is clear we need some intelligent way of
deciding which features are beneficial and which are superfluous for accurate
instrument identification. Genetic Algorithms (GA) have been used to some
extent for this purpose with encouraging results. Unfortunately, GAs can only
optimise a set of features — they do not classify them directly. GP on the other
hand can directly evolve a classifier and in doing so determine which are the
most and least important features to include, offering some insight into timbre.

3 Method

In any musical instrument classification experiment a number of issues have to be
decided from the outset: what instruments to classify, what range of note pitches
to examine, which features to incorporate and what classification method to use.
This section examines these aspects of the current study.

3.1 Instrument Samples

This study incorporates a maximum of 95 features taken from 3006 samples of
five instruments: the piano, violin, trumpet, flute and guitar. It was limited to
five instruments to include maximum variation within each instrument, ensuring
that the classifier is general enough to recognise any given sample from one of
these instruments. The samples in this study were taken from the RWC Music
Database (Musical Instrument Sound) [7] and the MUMS Database [17]. The
RWC samples offer a number of models, dynamics and playing styles for each
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instrument. Three models of violin and guitar and two models of piano, flute and
trumpet were each sampled at dynamic levels f, mf and p across their entire pitch
ranges. Where possible both vibrato and non-vibrato samples were included. The
MUMS samples offered a further set of samples for the piano, violin, flute and
trumpet. This results in 616 piano samples, 813 violin samples, 481 flute samples,
394 trumpet samples and 702 guitar samples. The total set of 3006 samples were
split into 10 cross validation sets, 9 containing 300 samples and one containing
306 samples. For this study, 9 sets containing 2706 note samples were used to
train the programs and the remaining 300 ‘unseen’ notes were used as validation
samples.

3.2 Timbral Features

Previous studies discussed in Section 2 used a wide variety of timbral features
calculated in a number of ways. The current study hopes to choose the best
features to use but in doing so must also start with a large number of features,
some of which may turn out to be redundant. The features included were chosen
from those used in the previous studies. The list of temporal and spectral features
used initially is given in Table 1. Details of the calculation of these features may
be found in [13].

Table 1. List of temporal and spectral features included initially in this experiment

Temporal Spectral

Temporal Envelope Spectral Envelope
Residual Envelope Number Spectral Peaks
Attack Time Irregularity
Attack Slope MFCCs (1-16)
Centroid Envelope Inharmonicity
Zero-Cross Rate Centroid
Number Onsets Spread
Onset Distance Skew

Kurtosis
Regularity
Rolloff
Brightness

A number of the features listed in Table 1 contain multiple data points per
feature. As much of this data is redundant, it was reduced using Principal Com-
ponent Analysis (PCA) [10]. PCA transforms the data orthonormally, maintain-
ing the variance of the data but concentrating it into the lower dimensions. This
results in a set of principal components, with variance ordered from highest to
lowest. PCA was implemented in Matlab [16] using the princomp function from
the Statistics Toolbox. The first four principal component values for the tempo-
ral, residual and spectral envelopes, evolution of the centroid and the temporal
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envelope of each of the 16 MFCCs were included. This resulted in 95 data points
across all features.

3.3 Genetic Programming

GP, like GA, is based on the concept of natural selection. GP starts with an initial
population of random individual solutions to a given problem and mutates and
combines them over a number of generations to improve the performance of the
population. This continues until either a given performance or fitness is reached
or a specific number of generations have passed. The difference between GP
and GA is that whereas GA evolves binary or floating point strings, GP evolves
solutions that consist of executable programs. These programs are represented
by structures such as the tree structures used in this study. Each program tree
is created from a user-defined set of terminals and functions. The internal nodes
of the trees consist of functions whereas each external leaf of the tree consists of
one of the allowed terminals. The GP in this study was implemented using the
GPLAB Toolbox for Matlab [18]. The terminals of each program tree comprised
of the 95 features listed in Table 1 and a number of assigned constants. GPLAB
offers a large number of possible arithmetic and logical function to the user,
many of which may be over-complicated for the purpose of this study. Thus the
functions allowed were limited to very simple mathematical and logical functions
as detailed in the Section 4.

Fitness Function The fitness is measured as how often each individual cor-
rectly recognises a musical instrument. Each individual returns a numerical value
to indicate which instrument it has identified. This fitness determines whether
or not it will survive to the next generation of solutions. Two different fitness
values single and range were used in this experiment as detailed in the following
section.

4 Experiment

As discussed above, the full 95 by 3006 data set was split into 10 cross validation
sets. For these experiments 9 of these sets (containing 2706 samples) were used
to train the GP and the remaining 300 ‘unseen’ samples were used to validate. A
random population of 100 individual program trees was created. These trees were
created using the ramped half-and-half method to ensure a diverse population.
The fitness of each individual indicated how many note samples it mis-classified.
A minimising fitness function was used, thus the optimal fitness was 0 where no
samples were misclassified and the worst was 2706 whereby all training samples
were misclassified. Initially, using the single fitness method, the target was set
so that 1 corresponded to piano, 2 to violin, 3 to flute, 4 to trumpet and 5 to
guitar. To ensure these numbers can be calculated by the individual programs,
the terminals allowed by each program consisted of the feature values and the
constants 1, 2, 3, 4, 5 and any floating point value between 0 and 1. These targets
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are quite specific to match however and judgement must always be shown in
developing any fitness function [12]. It is possible that it may be easier for the
GP to evaluate values to a range of targets rather than an individual value and
so the range fitness was employed which transformed the targets to a wider range
of values. Thus the fitness targets became:

– (1 - 10) = Piano
– (11 - 20) = Violin
– (21 - 30) = Flute
– (31 - 40) = Trumpet
– (41 - 50) = Guitar

Most of the calculated feature values are between 0 and 1 making it unlikely
that the classifiers will often reach targets up to the value of 50. Thus to ensure
that the individual programs can generate values that high, further constants
— 5, 10, 20, 30 and 40 were included as allowed terminals in these experimental
runs. The fitness of each individual was calculated as the sum of the difference
between the target vector and the output of the individual rounded to an integer.

As mentioned above, GPLAB offers a wide variety of functions in creating the
individual solutions. We wished to keep the evolved programs simple, focussing
on a pure combination of the extracted features. Thus the allowed functions were
initially limited to the arithmetic function plus, minus and times. However the
relationship between certain features may also be of interest. A strong output
should Residual(2) be greater then Centroid(1) (an ‘unexpected’ relationship),
for example, could be useful for determining an unusual relationship between
features — thus possibly identifying a particularly difficult timbre. Hence, an-
other experiment was run including the boolean operators less than and greater
than along with the arithmetic operators.

The combination of different fitness measures and functions were combined
so that four experiments were run and compared:

– Single Math — single value fitness method using just arithmetic operators
– Single All — single value fitness method using arithmetic and boolean oper-

ators greater than and less than
– Range Math — range fitness method using just arithmetic operators
– Range All — range fitness method using arithmetic and boolean operators

greater than and less than

Bloat is a problem that can occur with GP whereby the program tree con-
tinues to grow in size without any significant improvement in performance. It
is an issue as it can lead to unnecessarily large programs but can be prevented
by limiting the allowed size or depth of the programs trees. To prevent bloat
the dynamic level was set to 6 and the realmaxlevel set to 15 using GPLAB.
These values are set so that if a tree is created that is greater in size than the
dynamic level but lower than realmaxlevel it is checked against the current best
individual. If it is better than the current best individual the dynamic level is
increased and the individual is passed to the next generation. Also to favour
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smaller individuals the sampling method used was lexictour. This is similar to
the tournament method of sampling in that parents are chosen by randomly
drawing a number of individuals from the population and selecting from the
best group. The difference with lexictour is that if two individuals are equally
fit, the shorter individual will be favoured. The number of individuals in each
population was 100 and each experiment was run for 500 generations. These 4
experiments were repeated 30 times and the best individual from the population
at the end of each run was noted.

5 Results

Each of the program trees was evolved using the features from 2706 note samples.
To verify the classification accuracy of the evolved programs, each was used
to classify the remaining 300 unseen note samples. The 30 best program trees
evolved by each of the four methods were used to evaluate each of the 300 notes.
The classification results were given as the percentage of times each program
correctly identified an instrument from the given note samples. A boxplot of
the results obtained by the four methods is shown in Figure 1. This shows the
dispersion of accuracy of the best 30 evolved programs for each of the 4 methods.
It can be seen from this plot that the highest mean accuracy (across the 30 runs)
is from the Single All method at 64%. This method also produced the solution
with highest overall classification results of 88.3%. To attempt to improve this
result further, the most successful method Single All was run again for a longer
amount of time.

Fig. 1. Classification results for the 300 element test set by each of the four fitness
methods
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5.1 Extended Run

The experiment with single value fitnesses and both arithmetic and boolean
operators (the Single All method) was run 30 times with a population of 100 for
2000 generations. Larger trees were encouraged to evolve in this run with the
dynamic level set to 15 and the realmaxlevel set to 25. The evolved programs
were again tested by using them to classify the unseen set of 300 samples. A
boxplot of the results obtained is shown in Figure 2. Again this shows a wide
variation in the classification accuracy of the best evolved programs but the
highest classifications have improved. More details of the five most successful
programs is given in Table 2. This shows the size and training and test accuracy
of the best individuals. It can be seen that three individual programs achieved
classification accuray of over 90% on unseen samples with the highest achieving
94%.

Fig. 2. Classification results for the 300 element test set by the Single All extended
run

Table 2. The depth, number of nodes, training fitness and classification accuracy for
each of the 5 best evolved strings

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)

9 23 241 174 93.6 94
2 19 245 149 94.5 93
15 20 173 155 94.3 92
30 23 225 193 92.8 89.67
11 14 67 316 88.3 86.33
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As the results were so vastly improved by increasing the number of genera-
tions, it was thought that further improvements may be found by extending the
size of the population. Thus the experiment was run again with a population of
500 over 100 generations to see if having a larger population would improve the
average individual being passed on to the next generation. This was not found
to improve the results however. The best individual was found to have a test
classification accuracy of 87.3% dropping to 76% for the second best.

5.2 Limiting GP to ‘Popular’ Features

One of the best aspects of GP is that it allows the user to analyse the evolved
programs to determine some of the more important aspects of sound. The indi-
viduals created using GP do not use all 95 features due to limitations on their
size. Thus along with deciding how to combine the features used, GP must also
decide which features to include. The simplest way to analyse the programs is
to total the amount of times each feature was used by the more successful pro-
grams. The top 14 most popular features chosen by the GP runs is shown in
Table 3. In an attempt to reduce the variation within the individuals, GP was
run again with just these more popular features.

Table 3. The top 14 features as found from the GP Experiments

Feature No. #Instances Feature

2 22 Rolloff
9 23 MIRCent
10 20 MIRSpread
16 57 Env1
17 27 Env2
18 35 Env3
20 80 Cent1
21 40 Cent2
28 41 Spec1
33 29 MFCC1-2
37 23 MFCC2-2
40 20 MFCC3-1
42 22 MFCC3-3
44 51 MFCC4-1

The results of the best 5 individuals evolved using only the top 14 features
is shown in Table 4. The best program evolved was from individual 9 which had
a training fitness of 94.4% and a test classification accuracy of 94.3% — a slight
improvement on the best classification accuracy using all features. Overall the
average test classification rose from 68.2% to 75.67% across all 30 individuals
using a limited number of features with 6 individuals achieving a test classifi-
cation accuracy above 89%. This again demonstrates that accurate instrument
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identification is dependent on a careful selection of features, rather than merely
incorporating as many features as one can in a given classifier.

From the depths of the programs in Table 2 and Table 4 it is clear that
limiting the amount of features did not lead to smaller programs as may have
been expected. By reducing the number of available features it was thought
that the program might not grow as much. In contrast to this, the reduction
in features coincided with an increase in average depth from 18 to 22 and an
average number of node from 103 to 188. This may indicate that by only allowing
‘good’ features, extra branches to the trees (or extra code to the programs) give
better classification and hence are kept.

Table 4. The depth, number of nodes, training fitness and classification accuracy for
each of the 5 best evolved individuals using only the top 14 features

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)

9 21 263 151 94.4 94.3
23 22 293 174 93.6 93.7
2 17 151 170 93.7 93.3
13 17 115 266 90.2 90.3
7 20 161 246 90.9 89.3

5.3 Comparison with Other Methods

This work was carried out as part of a larger study detailed in [13] which exam-
ined a number of methods for musical instrument classification. An MLP was
used as a classifier along with a reduced feature MLP with features selected using
a floating point GA [14]. Each of these methods were tested and compared with
three sets of verification samples. The General set comprised of the 300 unseen
samples as used in the above study, the One-octave set comprised of one octave
of notes C4-C5 common to each instrument and the Listening set comprised of a
selected group of notes that due to pitch or volume were considered particularly
difficult to aurally recognise. A comparison of the results is shown in Table 5.

Table 5. Comparison of the GP classifiers with MLP and GA-MLP classifiers tested
with one-octave samples, general samples and the listening samples.

Set MLP GA-MLP GP GP Reduced

1 Octave 70.31% 50.02% 53.85% 70.77%
General 99.63% 99.3% 94% 94.3%
Listening 45.21% 44.34% 46.6% 56.2%
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As can be seen from this table, the reduced GP outperforms the MLP and
the GA-MLP for both the One-Octave and Listening test samples. Although it
does not perform as well on the General set of samples it must be noted that
the evolved programs are considerably less complicated and less computationally
expensive to run than the MLP used in the other two methods. Using GP to
create a musical classifier also has the advantage that the resulting programs are
accessible and easily analysed by the user. The Listening set of samples proved
particularly difficult for each classifier. As a benchmark for the classifiers, this
set of samples was given as a listening test to thirty human volunteers. Although
the results of these tests varied from 57% to 97%, the average result was 83%
— considerably higher than any of the developed classifiers. This indicates that
even a statistically successful classifier does not outperform the human ear. It
also demonstrates the importance of the selection of samples when verifying a
classifier. Many of the studies described in Section 2 do not give specific details
of the samples chosen for verification yet the results above indicate that this
is crucial to the accuracy of the representation of your results. Ideally a set of
high quality audio samples would be publicly available and standardised for this
purpose. Further details of each of these experiments may be found in [13].

6 Conclusion

This study explored the use of GP in developing musical instrument classifiers.
Programs were evolved that achieved over 94% classification accuracy on un-
seen samples. These results compared favourably with similar experiments using
MLPs and GAs as detailed in [13]. As noted in Section 3 these samples cov-
ered the full natural pitch range of each instrument played at various levels of
loudness. Although the programs took a long time to evolve — over 10 days for
some of the longer runs — the resultant programs are very simple. These evolved
programs based on a simple combination of a number of extracted timbral fea-
tures are much simpler than some of those classification methods discussed in
Section 2. In addition to this, the evolved programs are accessible to the user.
This means that we can analyse the best programs to determine which features
are the most important to use. In doing this we reduced the number of features
from 95 to 14 while increasing the best classification accuracy from 94% to 94.3%
and the average classification accuracy among the best 30 programs from 68.2%
to 75.67%. The selection of features originally included in this study were cho-
sen from those included in similar classification experiments. The fact that we
achieved higher classification with fewer features indicates that features should
be more carefully selected for such experiments. It is possible that the inclusion
of a large number of features may offer too much or conflicting information to
a given classifier, causing a reduction in classification accuracy. This is a clear
indication that in the case of choosing features for musical instrument identifica-
tion less is not more; the accuracy of any classifier is dependent on the selection
of features it classifies with.
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To continue this work, we hope to further analyse the features most often
selected by the GP to determine if there is some reason as to why these make
better timbral descriptors than other features. Timbre description studies such as
those in Multi-dimensional Scaling [8] try to reduce the number of descriptors for
timbre and yet timbre classification studies such as those described in Section
2 seem to incorporate more and more features into their classifiers. We hope
that in using Evolutionary Methods — in particular GP — we may be able to
bridge this gap by determining which are the most important timbre features
for accurately describing the timbre of musical instruments. Further to this we
would like to consider evolving programs on the raw musical data to see if it
can evolve its own features. If any successful programs are evolved we could
then analyse the structure of these programs to possibly determine a new set of
features for timbre description.
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