
Evolutionary Programming

Artificial Intelligence Through
Simulated Evolution

Picture of textbook removed

Introduction
Life on earth has evolved for some 3.5 billion years. Initially only the
strongest creatures survived, but over time some creatures developed the
ability to recall past series of events and apply that knowledge towards
making intelligent decisions. The very existence of humans is testimony to
the fact that our ancestors were able to outwit, rather than out power, those
whom they were in competition with. This could be regarded as the
beginning of intelligent behavior.

Picture provided courtesy of www.dinodon.com

Introduction

Although some species were able to compete in the survival game by
having an increased number of offspring, others survived through making
themselves well hidden by making use of camouflage, we will focus our
attention on those “creatures” whose response to the threat of their
environment was intellectual adaptation.

Picture courtesy of www.dinodon.com

Introduction

Simulated evolution is the process of duplicating certain aspects of the
evolutionary system in the hopes that such an undertaking will produce
artificially intelligent automata that are capable of solving problems in new
and undiscovered ways, and in the execution of such an inquiry they hope
to discover a deeper understanding of the very organization of intellect.

The basis of this approach is the humble admittance that while humans
appear to be very intelligent creatures, there is no reason to purport that we
are the most intelligent creatures that could possibly exist.

Table of contents

1.1 Theory
1.2 Prediction Experiments

1.2.1 – Machine Complexity
1.2.2 – Mutation Adjustments
1.2.3 – Number of Mutations
1.2.4 – Recall Length
1.2.5 – Radical Change in Environment
1.2.6 – Predicting Primes

1.3 Pattern Recognition and Classification

Theory

“Intelligent behavior is a composite ability to predict one’s environment
coupled with a translation of each prediction into a suitable response in light of
some objective” (Fogel et al., 1966, p. 11)

Success in predicting an environment is a prerequisite for intelligent behavior.

Theory

Let us consider the environment to be a sequence of symbols taken from a
finite alphabet. The task before us is to create an algorithm that would operate
on the observed indexed set of symbols and produce an output symbol that
agrees with the next symbol to emerge from the environment.

Theory

The basic procedure is as follows:

A collection of algorithms makes up the initial population, and they are graded based
on how well they predict the next symbol to come out after being fed the given
environment. The ones that receive a grade above some threshold level are retained
as parents for the next iteration, the rest are discarded.

These offspring are then judged by the same criteria as their parents, and the process
continues until an algorithm of sufficient quality is achieved or the given time lapse
period expires.

Theory

The machines can be judged in a variety of ways. We could judge a machine
based on whether or not it predicted the next symbol correctly, one at a time,
or we could first expose the machine to a number of symbols taken from the
environment, then let it guess. Typically these judgments also tend incorporate
considerations for maintaining efficiency by penalizing complex machines.

The recall length is the term used to describe how many symbols we expose
the machine to before it has to make it’s prediction.

1.2 Prediction Experiments

Prediction Experiments

In Fogel’s Prediction Experiments, there is a given environment at the
start, which is a series of symbols from our input alphabet. The initial
machines, which are all identical, are run through the environment and
judged based on how well they predict the symbols that follow. At the
end the best three machines are kept and run through a series of
mutations to create 3 more offspring. All 6 machines are then run
through the same testing procedure, and the best 3 are chosen…
and so on… {(P + C) selection.}

Every five iterations, the best machine is taken and told to predict the
next symbol based on the last input symbol given, and the output given
is taken and attached to the environment string.

Prediction Experiments

The Fogel experiments were done using the 5-state machine in Table
1.1 as the initial machine (all of the seed machines were a copy of this
one).

Table 1.1

Prediction Experiments

The first four experiments were used to demonstrate the sensitivity of the
procedure’s capability to predict symbols in the sequence as a function of
the types of mutation that were imposed on the parent machines. The
environment used was the repeating pattern (101110011101)*. These initial
experiments have no penalty for complexity (why a penalty for complexity?
Well because huge machines would simply develop that are nothing but the
sequence of symbols we input! This is not the desired end!) and only a
single mutation was applied to each parent to derive it’s offspring. Mutation
was one of these 5 :

Add a state
 Delete a state
 Randomly change a next state link
 Randomly change the start state
 Change the start state to the 2nd state assumed under available
experience.

Prediction Experiments

Figure 1.5 shows the results from four experiments in terms of the
percent correct as a function of the number of symbols experienced in
the environment. Several thousand generations were undertaken, and
each of the final machines grew to between 8 and 10 states.

Figure 1.5

Prediction Experiments

In experiment 4 a series of perfect predictor-machines were found after the 19th symbol
of experience. Poorest prediction occurred in experiment 3, but even this machine
showed a remarkable tendency to predict well after the first few iterations of the
environment string.

The 1st experiment is considered typical and will be used as the basis for comparison
from now on.

Figure 1.5

Prediction Experiments
Machine Complexity

The effect of imposing a penalty for machine complexity is shown in figure
1.6. The solid curve of experiment 5 represents experiment 1 duplicated
with a penalty of 0.01 (or 1%) per state.

Figure 1.6

Prediction Experiments
Machine Complexity

The benefit of such a penalty can be seen in figure 1.7, which shows
experiment 5 to have significantly less states, but as we can see in figure 1.6
the only time there is a significant difference in prediction capability is in the
beginning.

Figure 1.6
Figure 1.7

Prediction Experiments
Mutation Adjustments

It is reasonable to suspect that by increasing the probability of the ‘add-a-state’ mutation
we might improve the prediction capability.

This is demonstrated in figure 1.9, where experiment 6 is a repetition of experiment 1
with the probability of the ‘add-a-state’ increased to 0.3 compensated by bringing the
‘delete-a-state’ down to 0.1. We can see that experiment 6 outperforms experiment 1.

Figure 1.9

Prediction Experiments
Number of Mutations

The benefits of increasing the number of mutations per iteration is shown in figure
1.10, which shows experiments 1, 7, and 8 representing single, double, and triple
mutation respectfully. The size of each of these machines is shown in figure 1.11.

Figure 1.10
Figure 1.11

Prediction Experiments
Recall Length

In the case of a purely cyclic environment with no change to the input symbols,
increasing the recall length provides for a larger sample size and an increased prediction
rate.

In a noisy environment that has changes to the environment string it might be better to
forget some past symbols

Prediction Experiments
Recall Length

Figure 1.12 shows the difference in recall lengths. During the initial
sequence, the behavior appears quite random, but one can see that the
longer recall length did exhibit faster learning of the cyclic environment.

Figure 1.12

Prediction Experiments
Radical Change in Environment

Figure 1.13 and 1.14 demonstrate some interesting behavior. The solid line of Figure
1.13 demonstrates a normal evolutionary transition, but at symbol number 120 the
environment undergoes a radical change. This change was the complete reversal of all
the symbols in our environment.

Figure 1.13

Prediction Experiments
Radical Change in Environment

One can see in figure 1.14 that it was at this point that the number of states
shot through the roof as a great deal of “unlearning” had to take place.

Figure 1.14

Prediction Experiments
Radical Change in Environment

The dotted line in figure 1.13 shows the comparison of machines that were
not exposed to the radical change and instead started after it had already
occurred. This score compares favorably with the first solid line when one
considers that a machine is judged over the entire length of it’s experience.

Figure 1.13

Prediction Experiments
Predicting Primes

The most interesting of all these experiments is when they started to make
the environment represent the appearance of prime numbers in an
incremental count within the string. For example, 01101010001, digits 2, 3,
5, 7, and 11 are all 1’s.. which are all the prime numbers.

Prediction Experiments
Predicting Primes

We can see in figure 1.16 that experiment 15 ended up predicting the prime numbers quite
well towards the end, and we can see in figure 1.17 that it ended up with very few states.
This is easily understood when one notices that the higher we get into the environment
string the less frequent prime numbers become.

The results were obtained with a penalty for complexity of 0.01 per state, 5 machines per
evolutionary iteration, and 10 rounds of mutation/selection before each prediction of a new
symbol.

Figure 1.16 Figure 1.17

Prediction Experiments
Predicting Primes

To make things more interesting they increased the length of recall and gave a bonus
for predicting a rare event. So the score given for predicting a 1 was the number of
0’s that preceded it and the score given for predicting a 0 was the number of 1’s that
preceded it. One can see that predicting a 1 is much more valuable than predicting a
0.

Analysis of the results showed that the machines quickly “learned” to recognize
numbers divisible by 2 and 3 as not prime, and some hints towards an increased
tendency to predict multiples of 5’s as not prime.

Thoughts

In some studies in which human subjects were given a recall frame of
10 symbols and asked to predict the next symbol, the evolutionary
process consistently outperformed the humans. One may argue that
this is unfair because on one side we have machines adapting through
several iterations while on the other we have humans who are
unchanging, but it is important to note that at this point we are
regarding the system itself as the intelligent process, not just the single
iteration of a machine. The key to the success of the evolutionary
machines is in their continual adaptation to the environment. The goal
is not to end up with a final machine that can predict well, the goal is
to come up with a process that through continued mutation/selection
the best machine will always be generated.

Thoughts

 Evolutionary programming is not so much about programming, its
more about the evolution of automaton.

The interesting thing, compared to some of the genetic algorithms, is
that now you don’t just have a bit string that encodes parameters, but
you have to encode the initial state, the transition table, and the
alphabet, and then you have to come up with problem specific
mutations, or genetic mutators…This is nothing like the recombination
mutation we saw in the last presentation.

1.3 Pattern Recognition and
Classification

Pattern Recognition and
Classification

The key to understanding a sequence of foreign symbols is to try
and find a recognizable pattern within them. If the symbols have no
pattern, it is assumed to be random, in contrast if we can turn out a
good prediction score it may reveal the presence of an unchanging
signal. Variability in prediction score means the data may contain a
message. If we CAN demonstrate a good prediction score, the
question arises : what is the nature of the signal? Well, the state
machine that achieved the acceptable score is a pretty good
description in itself.

Pattern Recognition and
Classification

So how well do these state machines describe the signal? And how well can
they emulate human thought? Can they recognize and classify patterns in
the same manner as a human operator?

Pattern Recognition and
Classification

The following experiment was conducted. A series of broadband signals
were generated and then dumbed down so as to be expressed in an 8-
symbol alphabet, allowing them to be input into a computer program that
would evolve to predict their behavior. They were generated with the goal
of creating 4 sets of 4 signals that held basic similarities, such as the
number of peaks and valleys and their locations being roughly the same.

Figure 1.20

Figure 1.21

Pattern Recognition and
Classification

An eight-symbol evolutionary program was used to predict each
next symbol in an unending repetition of each of these patterns.
There was no penalty for complexity, and 10 generations prior to
each prediction. There was also a “magnitude of the difference”
error cost matrix specification of the goal.

Pattern Recognition and
Classification

Table 1.2 indicates the average prediction error rate of these evolutionary
programs applied to their own signal after the first 50, 100, 200, and 400
predictions. It can be seen that the greatest amount of “learning” occurred in
the early stages of development.

Pattern Recognition and
Classification

Each evolved machine was a characterization of the signal in which
it developed, this is obvious. One might think it is also obvious that
we recognize similarities in the signals through similarities in the
machines, but this is not such an easy task since these machines can
often grow to be very complex, and what method would you use to
make such a comparison? It is much more natural to accomplish the
comparison by allowing the evolved machines to attempt a
prediction of the OTHER, similar signals. The similarity between
patterns should be demonstrated by the similarity in prediction
scores.

Pattern Recognition and
Classification

Well, table 1.3 shows the results of such a comparison, and things did not turn out
the way we had hoped. As was expected, each machine predicted it’s own signal very
well, but the remaining scores showed that none could classify the signals in the
desired manner.

Table 1.3

Pattern Recognition and
Classification

It is evident that the predictor machines recognize similarity in a much
different way than do humans. A human operator would simply look at the
signals and note the number of peaks and valleys and their relative position
and magnitude, making the comparison a trivial task. But there is no
demand that the evolutionary program emulate human behavior in
performing the same task. According to Fogel, it is this very constraint that
has limited the advancement of AI in the past 30 years.

Control System Design

So far we’ve looked at such problems as detection (Is there a signal?)
discrimination (if so, what is the signal?), recognition (has the signal been seen
before?), classification (if not, which of a set of signals is it most like).

But almost all of these are of interest only in that they might precede steps
towards a solution of the problem of control.

Control System Design

So what is this problem of control?

Let us define a system as a plant. This could be any system, be it a computer
program, another state machine, or a living organism. We have no idea what
the nature of this system is, all we know is that given some input string it will
punch out some output string.

The problem of control is the attempt to understand such a system. We want to
be able to tell the plant what to do and have it achieve some desired result or
goal.

Control System Design

But if we don’t understand anything about the nature of the system, and only
have an output that was spewed out by the plant on some given input, how can
we possibly hope to be able to control such a system, and be able to tell it what
to do?

We use evolutionary programming.

Control System Design

How do we use evolutionary programming to solve the problem of control?
The process is as follows :

1. Create a state machine that you believe best describes the plant, but this
initial machine is actually not very relevant. In theory, it could be anything,
but we should attempt to emulate the plant as close as we can.

2. We then give our newly created machine the sequence of input symbols that
was given to our original plant, and judge it based on how well it could predict
the actual output that was given by the plant.

Control System Design

3. We continually evolve the machine to become a perfect predictor of the
plant, this meaning that the machine will spit out the same output as the plant
when they are both given some input sequence.

4. Now, if we want to control the plant, we need to determine the input string
that will achieve our desired end. To do this we simply look at our state
machine and determine the input symbols that would be required to produce
our desired output.

Control System Design

This is where the actual functionality of evolutionary programming comes in.

It allows us to develop a machine that will further allow us to understand some
unknown system.

Unrecognized Observations

There have been several ideas that have been considered as potentially
important but were not given sufficient attention because of time and
technological restraints.

1. A suitable choice in mutation noise may increase the prediction rates of
machine.

2. While the best parents will usually produce the best children, lower ranked
parents should be retained as protection against gross non-stationarity of the
environment (Radical Change).

3. The concept of recombination has been quite successful in nature, so
perhaps it would be beneficial in evolutionary programming experiments as
well.

Summary

So let’s look at the whole thing in perspective.

Intelligence was defined as the ability to predict a given environment, coupled
with the ability to select a suitable response in light of of the prediction and the
given goal. The problem of predicting the next symbol was reduced to the
problem of developing a state machine that could do the same given some
environment. These machines were driven by the available history and were
evaluated in terms of the given goal.

Summary

But we need not constrain ourselves to a symbol predicting machine, in fact
the same process could be applied to any well defined goal within the
constraints of the system. Thus the evaluation will take place in terms of
response behavior, in which prediction of one’s environment is an implicit
intervening variable.

We have seen a variety of such experiments.

Summary

But even further implications are possible. The scientific method could be
regarded as an evolutionary process in which a succession of models are
generated and evaluated. Therefore, simulation of the evolutionary process is
tantamount to a mechanization of the scientific method.

Induction, a process that previously was regarded as requiring creativity and
imagination has now been reduced to a routine procedure.

Summary

So if we make our desired goal one of self-preservation, such machines may
begin to display self-awareness in that they can describe essential features of
their survival if so requested.

What are goals made of? They are made up of the various factors that lead
towards self-preservation, and only those creatures that can successfully model
themselves can alter their sub-goals to support their own survival. To succeed
their self-image must be in close correspondence to reality.

With this knowledge we can hope to achieve a greater understanding of our
own intellect, or of even greater significance, to create inanimate machines
that accomplish these same tasks.

The End.

