
 1 1/8/04 09:01 AM

This is based on a Microsoft Word 6 version of original MacWrite 2 text submitted to
typesetter to make final camera-ready version of IJCAI-89 paper.

 Hierarhical Genetic Algorithms Operating on
 Populations of Computer Programs

 John R. Koza
 Computer Science Department
 Stanford University
 Stanford, California 94305

 Abstract

Existing approaches to artificial intelligence problems such as
sequence induction, automatic programming, machine learning,
planning, and pattern recognition typically require specification
in advance of the size and shape of the solution to the problem
(often in a unnatural and difficult way). This paper reports on a
new approach in which the size and shape of the solution to such
problems is dynamically created using Darwinian principles of
reproduction and survival of the fittest. Moreover, the resulting
solution is inherently hierarchical. The paper describes computer
experiments, using the author's 4341 line LISP program, in five
areas of artifical intelligence, namely (1) sequence induction
(e.g. inducing a computational procedure for the recursive
Fibonacci sequence and inducing a computational procedure for a
cubic polynomial sequence), (2) automatic programming (e.g.
discovering a computational procedure for solving pairs of linear
equations, solving quadratic equations for complex roots, and
discovering trigonometric identities), (3) machine learning of
functions (e.g. learning a Boolean multiplexer function
previously studied in neural net and classifier system work and
learning the exclusive-or and parity function), (4) planning
(e.g. developing a robotic action sequence that can stack an
arbitrary initial configuration of blocks into a specified
order), and (5) pattern recognition (e.g. translation-invariant
recognition of a simple one dimensional shape in a linear
retina).

1 Introduction

Sequence induction requires developing a computational procedure
that can generate any arbitrary element in a sequence S =
S0,S1,...,Sj,... given a finite number of specific examples of
the values of the sequence. Examples are finding a correct
recursive computational procedure for the Fibonacci sequence or
finding a polynomial sequence expression of the appropriate order
given a finite sampling of the initial values of the sequence.
Although induction problems admittedly do not have closed
mathematical solutions, the ability to correctly perform

 2 1/8/04 09:01 AM

induction is widely accepted as a component of human
intelligence.

Automatic programming requires developing a computer program that
can produce a desired output for a given set of inputs. Examples
include finding a computational procedure for solving a given
pair of linear equations a11x1 + a12x2 = b1 and a21x1 + a22x2 =
b2 for the real numbers x1 and x2, finding a computational

procedure for solving a given quadratic equation ax2 + bx + c = 0
for complex-valued roots x1 and x2, and solving trigonometric
identities.

Machine learning of a function requires developing a
computational procedure that can return the correct functional
value for any combination of arguments given a finite number of
specific examples of particular combinations of arguments and the
associated functional value. An example is the problem of
learning the Boolean multiplexer function. The Boolean
multiplexer function has been repeatedly used as a test function
in studies of neural nets (Barto et. al. 1985) and classifier
systems (Wilson 1987a). Another example is the parity function.

Planning in artificial intelligence and robotics requires finding
a plan that receives information from sensors about the state of
various objects in robotic environment and uses that information
to select a sequence of functions to execute in order to change
the state of the objects in the robotic environment. An example
of a planning problem involves generating a general plan for
stacking labeled blocks onto a target tower in a specified
desired order, given an arbitrary initial configuration of
blocks.

Pattern recognition requires finding a computational procedure
that processes a digitized input image to determine whether a
particular pattern is present in the input image.

All of these problems, and many similar problems in artifical
intelligence and symbolic processing, can be viewed as requiring
the creation of a LISP S-expression (i.e. a computer program, a
computational procedure, a robotic plan) comprised of various
functions and various atoms appropriate to the given problem
domain that returns the desired values (and performs the desired
side effects) when presented with a particular combination of
input values.

In each case, it would be difficult and unnatural to try to
specify the size and shape of the eventual solution in advance.
Moreover, attempting such specification in advance narrows the
window by which the system views the world and may well preclude
finding the solution.

The fitness of any LISP S-expression in a problem environment can
be naturally measured by the sum of the distances (taken for all

 3 1/8/04 09:01 AM

the cases in the test suite) between the point in the solution
space (whether Boolean-valued, integer-valued, real-valued,
vector-valued, or complex-valued) created by the S-expression for
a given set of arguments and the correct point in the solution
space. The closer this sum is to zero, the better the S-
expression.

As will be seen, the LISP S-expression required to solve the
problem will, in each case, emerge from a simulated evolutionary
process which starts with an initial population of randomly
generated LISP S-expressions containing functions and atoms
appropriate to the problem domain. Predictably, these initial
random individual S-expressions will have exceedingly low fitness
(when measured by the previously mentioned objective function).
Nonetheless, some individuals in the population will be somewhat
more fit in the environment than others. Then, a process of
sexual reproduction among two parental S-expression selected in
proportion to fitness creates offspring S-expressions comprised
of sub-expressions ("building blocks") from their parents. The
offspring then replace their parents. At each stage, the only
input is the fitness of the individuals in the current
population. This process tends to produce populations which, over
a period of generations, exhibit increasing average fitness in
dealing with their environment and which also can robustly adapt
to changes in their environment.

2 Background

Observing that sexual reproduction in conjunction with Darwinian
natural selection based on reproduction and survival of the
fittest enables biological species to robustly adapt to their
environment, Professor John Holland of the University of Michigan
presented the pioneering mathematical formulation of simulated
evolution (genetic algorithms) for fixed-length character strings
in Adaptation in Natural and Artificial Systems (Holland 1975).

Although genetic algorithms superficially seem to only process
the particular individual binary strings present in the current
population, Holland's 1975 work focused attention on the fact
that they actually also automatically process large amounts of
useful information in parallel concerning unseen Boolean
hyperplanes (called similarity templates or schemata)
representing numerous similar individuals not actually present in
the current population. Genetic algorithms have a property of
"intrinsic parallelism" which enable them to create individual
strings for the new population in such a way that all the
hyperplanes representing similar other individuals are all
automatically expected to be represented (without any explicit
computation or memory beyond the population itself) in proportion
to the fitness of the hyperplane relative to the average
population fitness. As Schaffer (1987) points out, "Since there
are very many more than N hyperplanes represented in a population
of N strings, this constitutes the only known example of the

 4 1/8/04 09:01 AM

combinatorial explosion working to advantage instead of
disadvantage."

In addition, Holland established that the seemingly
unprepossessing genetic operation of crossover in conjunction
with the straight-forward operation of fitness proportionate
reproduction causes the unseen hyperplanes (schemata) to grow
(and decay) from generation to generation at rates that are
mathematically near optimal when the process is viewed as a set
of multi-armed slot machine problems requiring an optimal
allocation of trials.

Holland's l975 work also highlighted the relative unimportance of
mutation in the evolutionary process and contrasts sharply in
this regard with numerous other efforts based on the approach of
merely saving the best from among asexual random mutants, such
as the 1966 Artificial Intelligence through Simulated Evolution
(Fogel et. al. 1966) and other work (Lenat 1983, Hicklin 1986).

Representation is a key issue in genetic algorithm work because
the representation scheme can severely limit the window by which
the system observes its world. However, as Davis and Steenstrup
(1987) point out, "In all of Holland's work, and in the work of
many of his students, chromosomes are bit strings." String-based
representation schemes are difficult and unnatural for many
problems (De Jong 1987, Smith 1980, Fujuki 1986, Hicklin 1986,
Cramer 1985). String-based representation schemes do not provide
the hierarchical structure central to the organization of
computer programs (into programs and subroutines) and the
organization of behavior (into tasks and subtasks). String-based
representation schemes do not provide any convenient way of
representing arbitrary computational procedures or of
incorporating iteration or recursion when these capabilities are
inherently necessary to solve the problem (e.g. the Fibonacci
sequence). Moreover, string-based representation schemes do not
facilitate computer programs modifying themselves and then
executing themselves. Moreover, without dynamic variability, the
initial selection of string length limits in advance the number
of internal states of the system and the computational complexity
of what the system can learn.

3 Hierarhical Genetic Algorithms

The LISP programming language is especially well-suited for
handling hierarchies, recursions, logical functions, compositions
of functions, self-modifying computer programs, self-executing
computer programs, iterations, late typing of variables and
expressions, and complex structures whose size and shape is
dynamically determined (rather than predetermined in advance).
Because of these features, the LISP programming language allows
the creation of "hierarchical" genetic algorithms for simulated
evolution in which the population consists of individual
hierarchical LISP S-expressions, rather than strings of

 5 1/8/04 09:01 AM

characters or other objects (whether of fixed or variable
length).

In hierarchical genetic algorithms, the set of possible S-
expressions for a particular domain of interest depends on the
functions and atoms that are available in the domain. The
possible S-expressions are those that can be composed recursively
from a set of n functions F = {f1, f2, ... , fn} and a set of m
atoms A = {a1, a2, ... , am}. Each particular function f in F
takes a specified number z(f) of arguments b1, b2, ..., bz(f).

For example, the LISP S-expression (+ (σ (- J 1) 1) (σ (- J (+ 1
1) 0))) is an S-expression for the Fibonacci sequence. In this
representation, J is the index for the current sequence element
and σ(x,y) is the sequence referencing function returning the
value of the sequence at position x (provided x is between 0 and
J-1) or the default value y (if σ is being asked to provide a
position of the sequence that is not yet defined).

The operation of fitness proportionate reproduction for
hierarchical genetic algorithms is the basic engine of Darwinian
reproduction and survival of the fittest. It is an asexual
operation in that it operates on only one parental S-expression.
The result of this operation is one offspring S-expression. In
this operation, if si(t) is an individual in the population at
generation t with fitness value f(si(t)), it will be copied into
the mating pool for the next generation with probability
f(si(t))/Σ f(si(t)).

The crossover operation is a sexual operation that starts with
two parental S-expressions. Its result is, for convenience, two
offspring S-expressions. Every LISP S-expression can be depicted
graphically as a rooted point-labeled tree in a plane whose
internal points are labeled with functions, whose external points
(leaves) are labeled with atoms, and whose root is labeled with
the function (or atom) appearing just inside the outermost left
parenthesis. The crossover operation begins by randomly and
independently selecting one point in each parent using a uniform
probability distribution. This crossover operation is well-
defined for any two S-expressions and any two crossover points
and the resulting offspring are always valid LISP S-expressions.
Offspring contain some traits from each parent.

The "crossover fragment" for a particular parent is the rooted
sub-tree whose root is the crossover point for that parent and
where the sub-tree consists of the entire sub-tree lying below
the crossover point (i.e. more distant from the root of this
parent). Viewed in terms of lists in LISP, the crossover fragment
is the sub-list starting at the crossover point.

The first offspring is produced by deleting the crossover
fragment of the first parent from the first parent and then

 6 1/8/04 09:01 AM

impregnating the crossover fragment of the second parent at the
crossover point of the first parent. In producing this first
offspring the first parent acts as the base parent (the female
parent) and the second parent acts as the impregnating parent
(the male parent). The second offspring is produced in a
symmetric manner.

For example, consider the two parental LISP S-expressions below.

 * +
 σ * σ -
 - 1 J J - 0 J 1
J 1 J +
 1 1

Assume that the points of trees are numbered in a depth-first way
starting at the left. Suppose that point 2 (out of the 9 points
of the first parent) was selected as the crossover point for the
first parent (i.e. the σ) and that point 9 (out of the 11 points
of the second parent) was selected as the crossover point of the
second parent (i.e. the subtraction function - at the right). The
two crossover fragments are below.

 σ -
 - 1 J 1
J 1

In terms of LISP S-expressions, the two parents are (* (σ (- J 1)
1) (* J J))) and (+ (σ (- J (+ 1 1)) 0) (- J 1)) and the two
crossover fragments are the underlined sublists.

The two offspring resulting from crossover are shown below.

 * +
 - * σ σ
J 1 J J - 0 - 1
 J + J 1
 1 1

Note that the second offspring above is a perfect solution for
the Fibonacci sequence, namely (+ (σ (- J (+ 1 1) 0)) (σ (- J 1)
1)).

Crossover can be efficiently implemented in LISP using the RPLACA
function in LISP (in conjunction with the COPY-TREE function) so
as to destructively change the pointer of the CONS cell at the
crossover point of one parent so that it points to the crossover
fragment (sublist) of the other parent.

In each of the runs reported herein, between 75% and 80% of the
crossover points are restricted to function (internal) points of
the tree in order to promote the recombining of larger structures

 7 1/8/04 09:01 AM

than is the case with an unrestricted selection (which may do an
inordinate amount of mere swapping of atoms from tree to tree in
a manner more akin to point mutation rather than true crossover).

4 Experimental Results

This section describes some experiments in machine learning using
hierarchical genetic algorithms. The author's computer program,
consisting of 4341 lines of Common Lisp code, was run on a Texas
Instruments Explorer II computer with a 25 megaHertz LISP
microprocessor chip with 32 megabytes of internal memory and a
half gigabyte of external hard disk memory. For each experiment
reported below, the author believes that sufficient information
is provided to allow the experiment to be independently
replicated to produce substantially similar results (within the
limits inherent in any process involving randomized selections).
Substantially similar results were obtained on several occasions
for each experiment reported below.

4.1.1 Sequence Induction - Fibonacci Sequence

For this experiment, the problem is to induce the computational
procedure (i.e. LISP S-expression) for the Fibonacci sequence.
The environment in which adaptation is to take place consists of
the first 20 elements of the actual Fibonacci sequence S = 1, 1,
2, 3, 5, 8, 13, 21, 34, 55,..., 4l8l, 6765. Recursion is known to
be necessary to compute the Fibonacci sequence.

The set of functions available for this problem is F = {+, -,
σ, ∗} and the set of atoms available is A = {0, 1, J}. For our
purposes here we can view each atom as a function that requires
no arguments in order to be evaluated. Thus, the combined set of
functions and atoms is C = {+, -, σ, ∗, 0, 1, J} having 2, 2, 2,
2, 0, 0, and 0 arguments, respectively. In order to make the
experiment more realistic, extraneous functions or atoms are
included in all the experiments reported herein. The
multiplication function here is extraneous to a parsimonious
solution of this problem. A population of 300 individuals was
used. The algorithm begins by randomly generating 300 LISP S-
expressions recursively using the items from set C. Examples of
such random S-expressions included (+ J J), (* 0 (- J 1)), and (*
(- (+ J 1) 0) (σ J)).

The raw fitness of an individual LISP S-expression in the
population at any generational time step t is Σ | Phj(t) - Sj |
where Sj is the actual Fibonacci sequence element and Phj(t) is
the value returned by S-expression h for sequence position j. In
this case, the smaller the raw fitness, the closer the match
between the performance of the LISP S-expression involved and the
actual Fibonacci sequence. Note that genetic algorithms do not
require knowing any ultimate target solution or computing any
differences between current trials and such an ultimate target

 8 1/8/04 09:01 AM

solution. Genetic algorithms do use the relative performance of
one individual compared to alternatives in the current
population.

The best S-expression for generation 0 (the initial random
population) was (σ (- J (σ (- J J) 0)) 0) with a raw fitness of
6765. The worst individual had a raw fitness of 28979. The
average value of raw fitness was 17621. An adjusted fitness
value ah = 1/(1+r) is then computed from the raw fitness r for

each individual h. A normalized fitness value uh = ah/Σ ah
(ranging between 0 and 1 for each individual) is then computed
for each individual. The average value of adjusted fitness for
generation 0 was .0001 and the average normalized fitness was
.0086. The number of exact matches for the best individual was 1
(out of 20). These predictably poor values for generation 0 serve
as a useful baseline for the entire process.

A new population is then created from the current population.
This process begins with the selection of a mating pool equal in
size to the entire population using fitness proportionate
reproduction (with replacement). In this run and each of the runs
reported herein, the number of individuals involved with
crossover equals 100% of the population for each generation. When
these operations are completed, the new population replaces the
old population.

The value of average fitness improved (i.e. dropped) from 17621
for generation 0 to 16969 and 15515 for generations 1 and 2,
respectively. It then continued to improve monotonically to 5928
for generation 10. Between generations 11 and 24, the average
fitness oscillated in the general neighborhood of 6000. Then, for
generation 25, the value of average fitness improved to 5390. In
addition, there was a monotonically improving trend for the
fitness of the best individual in the population from generation
to generation. The worst individual in the population exhibited
considerable variability (as is typical) but did improve overall.
The average normalized fitness for each generation was very
small until generation 16 (when an almost perfect individual
appeared) and thereafter showed a substantial upwards movement.

The number of exact matches for the best individual of each
generation started at 1 for generation 0, remained at 1 between
generations 1 and 6, dropped to 0 at generation 7, rose to 2
between generations 8 and 13, rose to 18 for generations 14 and
15, rose to 19 for generations 16 through 21. Starting at
generation 22, the best individual had a perfect score of 20
matches, namely
(- (+ (σ (+ (- 0 1) J) 1) (σ (+ (- (- 0 1) 1) J) 0)) 0). This S-
expression equals (+ (σ (- J 1) 1) (σ (- J 2) 0))).

 9 1/8/04 09:01 AM

The computer program takes approximately 150 seconds for 300
individuals for 26 generations. The process includes extensive
interactive output consisting of two full-color graphs (with
mouse-sensitive graph points for inspecting the various
features) and five other windows for monitoring and controlling
the process.

An asexual mutation operator which inserts a randomly generated
sub-tree at a randomly selected point was also programmed and
tested in numerous runs. No run using only mutation and fitness
proportionate reproduction produced a solution or exhibited any
meaningful increase in population fitness. Moreover, an
examination of the hereditary history (i.e. LISP audit trail
indicating parents, crossover points, mutations points, etc.) of
solutions achieved in various runs using crossover revealed that
the solution never came about as a result of the mutation
operation. When a point mutation operation was programmed and
tested, it yielded similar negative results.

4.1.2 Sequence Induction - Cubic Polynomial Sequence

For this experiment, the problem was to induce the computational
procedure for cubic polynomials such as 1+2J+J2+J3. Note that
neither the order of the polynomial required nor the size and
shape of the computational procedures needed to solve this (and
other problems herein) is provided to the problem solver in
advance. The same functions and atoms as the Fibonacci sequence
were used. Population size was 500. Starting with generation 5, a
computational procedure emerged that returned values that exactly
matched the actual cubic polynomial for all sequence positions.
Similar results were obtained for a variety of different
polynomials. Interestingly, in one run, the program unexpectedly
factored the polynomial into a product of factors (J - rk),
where the rk were the roots of the polynomial.

4.2.1 Automatic Programming - Pairs of Linear Equations

The problem of automatic programming requires developing a
computer program that can produce a desired output for a given
set of inputs. For this experiment, the problem is to find the
computational procedure for solving a pair of consistent non-
indeterminate linear equations, namely a11x1 + a12x2 = b1 and
a21x1 + a22x2 = b2 for two real-valued variables. The
environment consisted of a suite of 10 pairs of equations (to
avoid being misled). Without loss of generality, the
coefficients of the equations were prenormalized so the
determinant is 1. The set of available functions is F = {+, -,
∗} and the set of available atoms is A = {A11, A12, A21, A22, B1,
B2}. The raw fitness of a particular S-expression is the sum of
the Euclidian distances between the known solution point in the

 10 1/8/04 09:01 AM

plane and the point produced by the S-expression for all 10 pairs
of equations in the test suite.

Population size was 300. The average raw fitness of the
population immediately begins improving from the baseline value
for generation 0 of 2622 to 632, 341, 342, 309, etc. In addition,
the worst individual in the population also begins improving
from 119051 for generation 0 to 68129, 2094, etc. The best
individual from generation 0 is (+ (- A12 (* A12 B2)) (+ (* A12
B1) B2)) and has a raw fitness value of 125.8. The best
individual begins improving and has a value of 106 for
generations 1 and 2, 103 for generation 3 through 5, 102 for
generations 6 through 16, and 102 for generations 17-20. The
computational procedure (+ (- A12 (* A12 B2)) (* A22 B1))
appearing in generations 21 and 22 had a fitness value of 62 and
differed from the known correct solution only by one additive
term -A12. The best individual for generations 23 through 26 is
a similarly close S-expression (+ (- A22 (* A12 B2)) (* A22 B1))
with a raw fitness value of 58. Starting with generation 27, a
perfect solution for x1 emerges, namely (- (* A22 B1) (* A12
B2)). Between generations 27 and 30, the average normalized
fitness rises to .39 (as the perfect solution starts dominating).

4.2.2 Automatic Programming - Quadratic Equations

For this experiment, the problem is to solve the quadratic
equation x2 + bx + c = 0 for a complex-valued root. The available
functions were multiplication, subtraction, a square root
function S [which returns a LISP complex number, e.g. (S -4) is
#C(0, 2)], and a modified division operation % (which returns a
value of zero for division by zero). A population of size 300 was
used for 3l generations. The environment consisted of a suite of
10 quadratic equations (with some purely real roots, some purely
imaginary roots, and some complex-valued roots). A correct
solution to the problem emerged at generation 22, namely, the S-
expression (- (S (- (* (% B 2) (% B 2)) C)) (% B 2)).

4.2.3 Automatic Programming - Trigonometric Identities

For this group of experiments, the problem was to derive various
trigonometric identities. This particular group of experiments
yielded a number of unexpected results. The environment consisted
of a Monte Carlo suite of 20 pairs of randomly generated X
values between 0 and 2Π radians and the value of cox 2X (which is
equivalent to 1 - 2 sin2 X). The available functions were SIN,
multiplication, and subtraction (with the addition and cosine
function were intentionally deleted from the repertoire of
available functions). The correct S-expression (- (- 1 (* SIN X)
(SIN X))) (* (SIN X) (SIN X))) was obtained after 13 generations
in one run and the somewhat more parsimonious correct S-
expression (- 1 (* (* (SIN X) (SIN X)) 2)) was obtained after 16
generations. In one run with cos 2X, the S-expression (SIN (- (-

 11 1/8/04 09:01 AM

2 (* X 2)) (SIN (SIN (SIN (SIN (SIN (SIN (* (SIN (SIN 1)) (SIN
(SIN 1))))))))))), where 1 is in radians, was obtained as the
best individual. This expression approximately equals sin (Π/2 -
2X).

4.3.1 Machine Learning - Boolean Multiplexer Function

For this experiment, the problem is to find the Boolean
expression which gives the correct Boolean output value for a
given Boolean multiplexer function. The input to the Boolean
multiplexer function consists of k "address" bits ai and 2k

"data" bits di and is a string of length k+2k of the form ak-

1...a1a0 d2k-1...d1 d0. The value of the multiplexer function is
the value (0 or 1) of the particular data bit that is singled out
by the k address bits of the multiplexer. For example, for the
6-multiplexer (where k = 2), if the two address bits a1a0 are 11,
then the output is the third data bit d3. The Boolean multiplexer
function can be represented in disjunctive normal form as (OR
(AND A1 A0 D3) (AND A1 (NOT A0) D2) (AND (NOT A1) A0 D1) (AND
(NOT A1) (NOT A0) D0). This function has been studied in
connection with neural nets (Barto et. al. 1985) and classifier
systems (Wilson 1987a)

The combined set of functions and atoms for this problem is C =
{NOT, OR, OR, OR, AND, AND, IF, IF, A0, A1, D0, D1, D2, D3 } with
1,2,3,4,2,3,2,3,0,0,0,0,0, and 0 arguments, respectively. Note
that the OR, AND, and IF functions appear with varying number of
arguments (e.g. 2, 3, or 4). For example, the IF function with 3
arguments is an if-then-else function. Population size was 300.
The environment consisted of the 2w (where w = k+2k) possible
inputs.

Initial random individuals include contradictions such as (AND A0
(NOT A0)), inefficiencies such as (OR D3 D3), irrelevancies such
as (IF A0 A0 (NOT A1)), and nonsense such as (IF (IF (IF D2 D2)
D2) D2). The best individual from generation 0 was (IF A0 D1 D2)
with a raw fitness value of 16 (i.e. 16 mismatches out of a
possible 64). This individual uses just one of the address bits
(A0) to decide whether the output is data line D1 or D2 and can
never give an output of D0 or D3. Nonetheless, in the valley of
the blind, the one-eyed man is king.

The average raw fitness of the population immediately begins
improving from the baseline value for generation 0 of 29.05 to
26.89, 25.74, 23.78, 22.09, 21.38, 20.13, 19.91, etc. In
generation 9 a best individual arises that has only 12
mismatches, namely (IF (IF A0 (OR A1 D0)) D3 (IF A0 D1 D2)). Note
that (IF A0 D1 D2) from generation 0 is now embedded as a sub-
expression within this new individual. In generation 11, a new
best individual arises that has only 8 mismatches, namely (IF A0

 12 1/8/04 09:01 AM

D1 (IF Al D2 D0)). The sub-expression (IF Al D2 D0) contributes
substantially to this improved performance because it perfectly
deals with the case when A0 is NIL (False) by taking either data
line D2 or D0 as its output (depending on A1). Note also that (IF
A0 D1 ...) is partially correct when A0 is T (True). In
generations 12, 13, and 14, a new individual arises with only 4
mismatches, namely, (IF (IF (A0 (OR A1 D0) D3 (IF A0 D1 (IF Al D2
D0)))).

In generation 15, a perfect solution i.e. an individual with 0
mismatches) emerges, namely, (IF (IF A0 A1) D3 (IF A0 D1 (IF Al
D2 D0)) as a result of a crossover where the unfit sub-expression
(IF (A0 (OR Al D0))) is replaced by the more fit sub-expression
(IF A0 A1).

The interpretation of this solution expression is as follows: The
output of the multiplexer is D3 if (IF A0 A1) is true (i.e. the
two address bits are 11). Note that IF function in LISP (unlike
the predicate calculus) is equivalent to the AND function. If
that is not true, the output is D1 if A0 is true (because the two
address bits are necessarily now 01). Note that setting the
output to D1 if merely A0 were true in a vacuum is not a correct
solution to the problem. However, after (IF A0 Al) has been
considered (and found to be false), then (IF A0 D1 ...) is
correct. Finally, (IF Al D2 D0) now handles the case when
address bit A0 must necessarily be NIL. In this context, the
partially correct sub-expression that was around since generation
0, namely (IF A1 D2 D0), sets the output of the multiplexer to D2
if A1 is T (because the two address bits are 10) and, otherwise,
it sets the output to D0 (because the two address bits are 00).

Note that a default hierarchy emerged here which incorporated
partially correct sub-rules into a perfect overall procedure by
dealing with ever more specific cases. Although default
hierarchies are considered desirable in classifier systems
(Goldberg 1989, Holland 1986), none emerged in Wilson's (1987)
otherwise noteworthy experiments involving classifier systems and
the multiplexer.

The perfect solution above arose after processing 4500
individuals. Others have required processing as few as 3900
individuals. Note that the hierarchical algorithm does not start
with any advance information identifiying inputs versus outputs
or any advance information about the size and shape of the
ultimate solution.

4.3.2 Machine Learning - The Parity Function

For this experiment, the problem is to find the Boolean
expression for the Boolean parity function. The k-parity function
takes k Boolean arguments and returns T if an odd number of its
arguments are T and returns NIL otherwise. The exclusive-or
function and the k-parity function were not realizable by early

 13 1/8/04 09:01 AM

simple perceptrons (Minsky and Papert 1969) and are, as a result,
commonly used as test functions for multi-layered non-linear
neural networks (Rumelhart et. al. 1986). Moreover, these
functions yield uninformative schema (similarity templates) with
conventional linear genetic algorithms using fixed length binary
strings so that these functions are not realizable with such
linear genetic algorithms.

The combined set of functions and atoms used for the 3-parity
function was C = {AND, OR, NOT, IF, D2, D1, D0} with 2, 2, 1, 3,
0, 0, and 0 arguments, respectively. Population size was 300. The
S-expression (AND (IF D2 D0 (NOT D0)) D1) appeared in generation
0 and was correct 6 out of the 8 cases constituting the
environment. In generation 4, a rather complex S-expression
appeared which contained part of this individual from generation
0 and was correct 7 out of 8 times. Finally, in generation 5, a
new individual emerged which was correct in all 8 cases, namely
(IF (IF D2 D0 (NOT D0)) D1 (NOT D1)). Note that this final
individual consisted of a substantial portion of the earlier best
individual. Note also that the sub-expression (IF (D2 D0 (NOT
D0))) is a partially correct solution to the problem (i.e. if
only the two items of data D0 and D2 need to be considered) and
that this sub-expression is embedded in a default hierarchy using
it in conjunction with the value of D1 to produce the overall
correct solution to the problem.

The exclusive-or function (i.e. parity function of order 2) was
similarly discovered and then successfully used in learning
parity functions of up to order 10.

4.4 Planning

Nilsson (1988a) has presented a robotic action network that
solves a problem described to Nilsson (1988b) by Ginsberg
involving rearranging uniquely labeled blocks in various towers
from an arbitrary initial arrangement into an arbitrary specified
new order on a single target tower. In the experiment here, the
goal is to automatically generate a general plan that solves this
problem using hierarchical genetic algorithms.

Three lists are involved in the formulation of the problem. The
GOAL-LIST is the list specifying the desired final order in which
the blocks are to be stacked in the target tower (i.e.
"FRUITCAKE" or "UNIVERSAL"). The STACK is the list of blocks that
are currently in the target tower (where the order is important).
The TABLE is the list of blocks that are currently not in the
target tower. The initial configuration consists of certain
blocks in the STACK and the remaining blocks on the TABLE. The
desired final configuration consists of all the blocks being in
the STACK in the order specified by GOAL-LIST and no blocks being
on the TABLE.

 14 1/8/04 09:01 AM

The environment can be viewed as consisting of up to (N+1)!
different initial configurations of N blocks in the STACK list
and on the TABLE list. The raw fitness of a particular
individual plan in the population is the number of initial
configurations for which the particular plan produces the desired
final configuration of blocks after the plan is executed. The
computation of fitness can be significantly shortened by
consolidating functionally equivalent initial configurations.

In the problem as stated, three sensors dynamically track the
environment in the formulation of the problem. TB is a sensor
that dynamically specifies the CAR (i.e. first element) of the
list which is the longest CDR (i.e. list of remaining elements)
of the list STACK that matches a CDR of GOAL-LIST. NN is a sensor
that dynamically specifies the next needed block for the STACK
(i.e. the immediate predecessor of TB in GOAL-LIST). CS
dynamically specifies the CAR of the STACK (i.e. the top block).
Thus, the set of atoms available for solving the problem here is
A = {TB, NN, CS}. Each of these atoms may assume the value of one
of the block labels or the value NIL.

The set of functions available for solving the problem here
contains 6 functions F = {MS, MT, DU, QUOTE, NOT, EQ}. The
function MS has one argument and moves block X to the top of the
STACK if X is on the table. The function MT has one argument and
moves the top item to the TABLE if the STACK contains X anywhere
in the STACK. The iterative function DU ("do until") has two
arguments, namely a predicate PRED and some WORK. Both the MS and
MT functions have return values, although their true
functionality consists of their side effects on STACK and TABLE.
The function DU tests the predicate PRED and does the WORK (via
the LISP evaluation function EVAL) repeatedly until the predicate
PRED becomes T (True). Note that the fact that each function
returns some value (in addition to whatever side effects it has
on the STACK and TABLE) and the flexibility of the LISP language
guarantees that the DU function can be executed and evaluated for
any combination of functions and arguments (however unusual,
pointless, or counter-productive). Since individuals in the
population will often contain complicated nestings of DU
functions and unsatisfiable termination predicates, limits are
placed on both the number of iterations allowed (without
preventing any plan from being executed and evaluated). The LISP
function QUOTE has one argument and suppresses the usual
immediate evaluation of arguments that occurs in LISP and thereby
provides a way to prevent premature evaluation of the WORK
argument of a DU function until it is inside the function DU.
Note that the QUOTE function also has the interesting and highly
epistatic effect of smothering the functionality of its arguments
when it appears elsewhere.

A population of 300 individual plans was used. The initial random
population of plans had predictably low fitness. Typical random
plans are plans such as (EQ (MT CS) NN) and (MS TB). This first
plan unconditionally moves the top of the STACK to the TABLE and

 15 1/8/04 09:01 AM

the performs the useless Boolean comparison on the return value
of the MT function with the sensor value NN. The second plan
futilely attempts to move the block TB (which already is in the
STACK) from the TABLE to the STACK. The single best individual in
this initial population of plans typically can successfully
handle perhaps one or two of the very simplest one or two initial
configurations.

After about 5 generations, we typically see the emergence of
perhaps one plan in the population that correctly deals with the
simplest group of cases in the environment (i.e. the cases in
which the blocks, if any, in the initial STACK are already all in
the correct order and in which there are no out-of-order blocks
on top of those blocks). In several runs, the rather
parsimonious (DU (QUOTE (MS NN)) (NOT NN)) emerged as a partially
correct plan. This plan works by improving a partially correct
initial STACK by moving needed blocks (NN) in the correct
sequence from the TABLE onto the STACK until there are no more
blocks needed to finish the STACK (i.e. the sensor NN is no
longer a block).

After about 10 generations, the best single individual in the
population is typically a plan that achieves a perfect score
(that is, the plan produces the final desired configuration of
blocks in the STACK for all initial configuration of blocks in
the environment). One such plan is (NOT (EQ (DU (QUOTE (MT CS))
(NOT NN)) (EQ (MS (DU (QUOTE (MS NN)) (NOT NN))) (DU NN (QUOTE
TB))))). Note that this plan contains a default hierarchy. In
particular, the sub-plan (DU (QUOTE (MS NN)) (NOT NN)) comes from
an ancestor from an earlier generation (which performed correctly
for a simple set of cases of initial configurations). This sub-
plan is now incorporated as a sub-plan (i.e. a small "building
block"). Note also that another sub-plan (DU (QUOTE (MT CS)) (NOT
NN)) from another individual from an earlier generation correctly
deals with the remaining cases by first moving out-of-order
blocks from the STACK to the TABLE until the STACK contains no
incorrect blocks. By combining these two somewhat fit sub-plans
from earlier generations, a solution to the entire problem is
achieved. Note also that the third sub-plan, namely (DU NN (QUOTE
TB)), and the functions NOT and EQ perform no useful function
(but also do no harm).

4.5 Pattern Recognition

Hinton (1988) has discussed the problem of translation-invariant
recognition of a one-dimensional shape in a linear binary retina
(with wrap-around) in connection with the claim that
connectionist neural networks cannot possibly solve this type of
problem. In the simplified experiment here, the retina has 6
pixels (with wrap-around) and the shape consists of three
consecutive binary 1's.

 16 1/8/04 09:01 AM

The functions available are a zero-sensing function H0, a one-
sensing function H1, ordinary multiplication, and a disjunctive
function U. The atoms available are the integers 0, l, and 2, and
a universally quantified atom k.

LISP's comparative tolerance as to typing is well suited to
pattern recognition problems where it is desirable to freely
combine numerical concepts such as positional location (either
absolute, or universally quantified), relative displacement
(e.g. the symbol 2 pixels to the right) with various combinations
of Boolean tests. The functions U and * so defined resolve
potential type problems that would otherwise arise when integers
identify positions in the retina.

In one particular run, the number of mismatches for the best
individual of generation 0 was 48 and rapidly improved to 40 for
generations 1 and 3. It then improved to 0 mismatches in
generation 3 for the individual (* 1 (* (H1 K 1) (H1 K 0) (H1 K
2)) 1). Ignoring the extraneous outermost conjunction of two l's,
this individual returns a value of the integer 1 if and only if a
binary 1 is found in the retina in positions 0, 1, and 2 (each
displaced by the same constant k).

5 Robustness

The existence and nurturing of a population of disjunctive
alternative solutions to a problem allows hierarchical genetic
algorithms to effectively perform even when the environment
changes. To demonstrate this ability, the environment for
generations 0 through 9 is the quadratic polynomial x2 +x +2;
however, at generation 10, the environment abruptly changes to
the cubic polynomial x3 + x2 +2x +1; and, at generation 20, it
changes again to a new quadratic polynomial x2 +2x + 1 .
Population size was 300. A perfect-scoring quadratic polynomial
for the first environment was created by generation 3. Normalized
average population fitness stabilized in the neighborhood 0.5 for
generations 3 through 9 (with genetic diversity maintained).
Predictably, the fitness level abruptly dropped to virtually 0
for generation 10 and 11 when the environment changed.
Nonetheless, fitness increased for generation 12 and stabilized
in the neighborhood of 0.7 for generations 13 to 19 (after
creation of a perfect-scoring cubic polynomial). The fitness
level again abruptly dropped to virtually 0 for generation 20
when the environment again changed. However, by generation 22, a
fitness level again stabilized in the neighborhood of 0.7 after
creation of a new perfect-scoring quadratic polynomial.

6 Theoretical Discussion

Holland showed that for genetic algorithms using fitness
proportionate reproduction and crossover, the expected number of

 17 1/8/04 09:01 AM

occurrences of every schema H, in the next generation is
approximately
 m(H,t+1) >= f(H) m(H,t) (1 - ε)
 f*
where f* is the average fitness of the population and ε is small.
In particular, viewed over several generations where either
f(H)/f* is stationary or remains above 1 by at least a constant
amount, this means that schemata with above-average (below-
average) fitness appear in succeeding generations at an
approximately exponentially increasing (decreasing) rates.
Holland also showed that the form of the optimal allocation of
trials among random variables in a multi-armed slot machine
problem (involving minimizing losses while exploring new or
seemingly non-optimal schemata while also exploiting seemingly
optimal schemata) is similarly approximately exponential so that
the processing of schemata by genetic algorithms using fitness
proportionate reproduction and crossover is mathematical near
optimal. This allocation of trials is most nearly optimal when ε
is small. ε is the defining length δ(Η) of the schemata involved
(i.e. the distance between the outermost specific, non-* symbols)
divided by L-1 (i.e. the number of points where crossover may
occur). Therefore, ε is short when δ(Η) is short (i.e. the
schemata is a small, short, compact "building block"). Thus,
genetic algorithms process short-defining length schemata most
favorably and problems structured so that their solutions can be
"built up" from such small "building blocks" are most optimally
handled by genetic algorithms.

In hierarchical genetic algorithms, the individuals in the
population are LISP S-expressions (i.e. rooted point-labeled
trees in a plane), instead of linear character strings. The set
of similar individuals sharing common features (i.e. the
schemata) is a hyperspace of LISP S-expressions (i.e. rooted
point-labeled trees in a plane) sharing common features.

Consider first the case where the common features are a single
sub-tree consisting of h specified points with no unspecified
(don't care) points in that sub-tree. The set of individuals
sharing the common feature is the hyperspace consisting of all
rooted point-labeled trees in a plane containing the designated
sub-tree as a sub-tree. This set of trees is infinite, but it can
be partitioned into finite subsets by using the number of points
in the tree as the partitioning parameter. If the subset of trees
having a particular number of points and sharing a fully
specified sub-tree is considered, fitness proportionate
reproduction causes growth (or decay) in the size of that subset
in the new population in accordance with the relative fitness of
the subset to the average population fitness in the same near
optimal way as it does for string-based linear genetic
algorithms. Holland's results on optimal allocation or trials and
Holland's result on growth (or decay) of number of occurrences of
schemata as a result of fitness proportionate reproduction alone

 18 1/8/04 09:01 AM

(1975) do not depend, in any way, on the character of the
individual objects in the population. The deviation from this
optimal rate of growth (or decay) of schema is caused by the
crossover operation. This deviation is relatively small when the
number of points defining the common feature (i.e. the number of
points in the sub-tree) is relatively small. In particular, if
ε is the ratio of the number of points in the sub-tree to the
number of points in the tree, then ε is relatively small when
the sub-tree is relatively small. Thus, for the case where the
specific positions of the schemata are coextensive with a sub-
tree, the overall effect of fitness proportionate reproduction
and crossover is that subprograms (i.e. sub-trees, sub-lists)
from relatively high fitness programs are used as "building
blocks" for constructing new individuals in an approximately near
optimal way. Over a period of time, this concentrates the search
of the solution space into sub-hyperspaces of LISP S-expressions
of ever decreasing dimensionality and ever increasing fitness.

This argument appears to extend to similarities defined by a sub-
tree containing one or more non-specific points internal to the
sub-tree and to similarities defined by a disjoint set of two or
more sub-trees of either type. The deviation from optimality is
relatively small to the extent that both the number of points
defining the common feature is relatively small and the number of
disjoint sub-trees is relatively small. Thus, the overall effect
is that subprograms (i.e. sub-trees) from relatively high fitness
individuals are used as "building blocks" for constructing new
individuals.

Hierarchical genetic algorithms are a natural extension of
string-based linear genetic algorithms in another way. Genetic
algorithms, in general, are mathematical algorithms which are
based on Darwinian principles of reproduction and survival of the
fittest and which transform a population of individuals (and
their fitness in the environment) into a new population of
individuals using operations analogous to genetic operations
actually observed in nature. In this view, a character found at a
particular position in a mathematical character string in a
conventional string-based genetic algorithm is considered
analogous to one of the four nucleiotide bases (adenine,
cytosine, guanine, or thymine) found in molecules of
deoxyribonucleic acid (DNA). The observed fitness in the
environment of the entire actual biological individual created
using the passive information in a particular linear string of
DNA is then used in the computation of average schemata fitness
for each schemata represented by that individual. In contrast,
the proactive computational procedure carried out by a LISP S-
expression in a hierarchical genetic algorithm can be viewed as
analogous to the work performed by a protein in a living cell.
The observed fitness in the environment of the entire actual
biological individual created as a result of the action of the
proactive LISP S-expressions contribute, in the same way as with
string-based genetic algorithms, directly to the computation of

 19 1/8/04 09:01 AM

average schemata fitness for each schemata represented by that
individual. That is, hierarchical genetic algorithms employ the
same automatic allocation of credit inherent in the basic string-
based genetic algorithm described by Holland (1975) and inherent
in Darwinian reproduction and survival of the fittest amongst
biological populations in nature. This automatic allocation of
credit contrasts with the connectionistic "bucket brigade" credit
allocation and reinforcement algorithm used in classifier systems
(Holland 1986, Holland and Reitman 1978) which is not founded on
any observed natural mechanism involving adaptation amongst
biological populations (Westerdale 1985).

7 Conclusions

The examples from the five areas of artificial intelligence,
including sequence induction, automatic programming, function
learning, robotic planning, and pattern recognition support the
view that computational procedures (i.e. computer programs, LISP
S-expressions) can be built up from appropriate small "building
blocks" using hierarhical genetic algorithms.

Acknowledgments

Dr. Thomas Westerdale of Birkbeck College at the University of
London, Dr. Martin A. Keane of Third Millennium Venture Capital
Limited in Chicago, and John Perry of Texas Instruments Inc. in
San Francisco made valuable comments on drafts of this paper.
Eric Mielke of the Texas Instruments Education Center in Austin
significantly improved execution time of the author's crossover
operation.

References

[Barto et. al. 1985] Barto, A. G., Anandan, P., and Anderson, C.
W. Cooperativity in networks of pattern recognizing stochastic
learning automata.In Narendra,K.S. Adaptive and Learning Systems.
New York: Plenum 1985.

[Cramer 1985] Cramer, Nichael Lynn. A representation for the
adaptive generation of simple sequential programs. Proceedings
of an International Conference on Genetic Algorithms and Their
Applications. Hillsdale, NJ: Lawrence Erlbaum Associates l985.

[Davis and Steenstrup 1987] Davis, Lawrence and Steenstrup, M.
Genetic algorithms and simulated annealing: An overview. In
Davis, Lawrence (editor) Genetic Algorithms and Simulated
Annealing London: Pittman l987.

[De Jong 1987] De Jong, Kenneth A. On using genetic algorithms to
search program spaces. Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic
Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates l987.

 20 1/8/04 09:01 AM

[Fogel et. al. 1966] Fogel, L. J., Owens, A. J. and Walsh, M. J.
Artificial Intelligence through Simulated Evolution. New York:
John Wiley 1966.

{Fujuki 1986] Fujuki, Cory. An Evaluation of Holland's Genetic
Algorithm Applied to a Program Generator. Master of Science
Thesis, Department of Computer Science, Moscow, ID: University of
Idaho, l986.

[Goldberg 1989] Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA: Addison-Wesley
l989.

[Hicklin 1986] Hicklin, Joseph F., Application of the Genetic
Algorithm to Automatic Program Generation. Master of Science
Thesis, Department of Computer Science. Moscow, ID: University of
Idaho l986.

[Hinton 1988] Hinton, Geoffrey, Neural Networks for Artificial
Intelligence. Santa Monica, CA: Technology Transfer Institute.
Documentation dated December 12, 1988.

[Holland 1975] Holland, John H. Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: University of Michigan Press
1975.

[Holland 1986] Holland, John H. Escaping brittleness: The
possibilities of general-purpose learning algorithms applied to
parallel rule-based systems. In Michalski, Ryszard S.,
Carbonell, Jaime G. and Mitchell, Tom M. Machine Learning: An
Artificial Intelligence Approach, Volume II. P. 593-623. Los
Altos, CA: Morgan Kaufman l986.

[Lenat 1983] Lenat, Douglas B. The role of heuristics in learning
by discovery: Three case studies. In Michalski, Ryszard S.,
Carbonell, Jaime G. and Mitchell, Tom M. Machine Learning: An
Artificial Intelligence Approach, Volume I. P. 243-306. Los
Altos, CA: Morgan Kaufman l983.

[Minsky and Papert 1969] Minsky, Marvin L. and Papert, Seymour A.
Perceptrons. Cambridge, MA: The MIT Press. 1969.

[Nilsson 1988a] Nilsson, Nils J. Action networks. Draft Stanford
Computer Science Department Working Paper, October 24, 1988.
Stanford, CA: Stanford University. 1988.

[Nilsson 1988b] Nilsson, Nils J. Private Communication. 1988.

[Rumelhart et. al. 1986] Rumelhart, D. E., Hinton, G. E., and
Williams, R. J. Learning internal representations by error
propagation. In Rumelhart, D. E., McClelland, J. L., et. al.
Parallel Distributed Processing. Volume 1, Chapter 8. Cambridge,
MA: The MIT Press. 1986.

 21 1/8/04 09:01 AM

[Schaffer 1987] Schaffer, J. D. Some effects of selection
procedures on hyperplane sampling by genetic algorithms. In
Davis, L. (editor) Genetic Algorithms and Simulated Annealing
London: Pittman l987.

[Smith 1980] Smith, Steven F. A Learning System Based on Genetic
Adaptive Algorithms. PhD dissertation. University of Pittsburgh
1980.

[Wilson 1987] Wilson, S. W. Classifier Systems and the animat
problem. Machine Learning, 3(2), 199-228, 1987.

