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Abstract

Exi sting approaches to artificial intelligence problens such as
sequence induction, automatic progranmm ng, nmachine | earning,
pl anni ng, and pattern recognition typically require specification
in advance of the size and shape of the solution to the problem
(often in a unnatural and difficult way). This paper reports on a
new approach in which the size and shape of the solution to such
problems is dynamcally created using Darw nian principles of
reproduction and survival of the fittest. Mreover, the resulting
solution is inherently hierarchical. The paper describes conputer
experinments, using the author's 4341 line LISP program in five
areas of artifical intelligence, nanely (1) sequence induction
(e.g. inducing a conputational procedure for the recursive
Fi bonacci sequence and inducing a conputational procedure for a
cubic polynom al sequence), (2) automatic programmng (e.dg.
di scovering a conputational procedure for solving pairs of I|inear
equations, solving quadratic equations for conplex roots, and
di scovering trigononmetric identities), (3) machine I|earning of
functions (e.q. learning a Boolean nultiplexer function
previously studied in neural net and classifier system work and
| earning the exclusive-or and parity function), (4) planning
(e.g. developing a robotic action sequence that can stack an
arbitrary initial configuration of Dblocks into a specified
order), and (5) pattern recognition (e.g. translation-invariant
recognition of a sinple one dinensional shape in a |inear
retina).

1 Introduction

Sequence induction requires devel oping a conputational procedure
that can generate any arbitrary elenent in a sequence S =
So, S1, - - ,Sj,... given a finite nunber of specific exanples of

the values of the sequence. Exanples are finding a correct
recursive conputational procedure for the Fibonacci sequence or
finding a polynom al sequence expression of the appropriate order
given a finite sanpling of the initial values of the sequence.
Al though induction problens admttedly do not have closed
mat hemat i cal sol uti ons, the ability to correctly perform
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induction is wdely accepted as a conponent of human
intelligence.

Aut omatic progranm ng requires devel oping a conputer programthat
can produce a desired output for a given set of inputs. Exanples
include finding a conputational procedure for solving a given
pair of linear equations aj1x1 + ai2xp = bq and apixq + agoyxo =
bp for the real nunbers xq and xp, finding a conputationa

procedure for solving a given quadratic equation ax2 + bx + ¢ = 0
for conplex-valued roots xq1 and x2, and solving trigononetric

identities.

Machi ne | ear ni ng of a function requires devel opi ng a
conput ati onal procedure that can return the correct functional
value for any conbination of argunents given a finite nunber of
specific exanples of particular conbinations of argunents and the
associated functional value. An exanple is the problem of
learning the Bool ean mul ti pl exer function. The Bool ean
mul ti pl exer function has been repeatedly used as a test function
in studies of neural nets (Barto et. al. 1985) and classifier
systems (WIson 1987a). Another exanple is the parity function.

Planning in artificial intelligence and robotics requires finding
a plan that receives information from sensors about the state of
vari ous objects in robotic environnment and uses that information
to select a sequence of functions to execute in order to change
the state of the objects in the robotic environnent. An exanple
of a planning problem involves generating a general plan for
stacking |abeled blocks onto a target tower in a specified
desired order, given an arbitrary initial configuration of
bl ocks.

Pattern recognition requires finding a conputational procedure
that processes a digitized input imge to determ ne whether a
particular pattern is present in the input inmage.

Al of these problens, and many simlar problens in artifical
intelligence and synbolic processing, can be viewed as requiring
the creation of a LISP S-expression (i.e. a conmputer program a
conput ati onal procedure, a robotic plan) conprised of wvarious
functions and various atons appropriate to the given problem
domain that returns the desired values (and perfornms the desired
side effects) when presented with a particular conbination of
i nput val ues.

In each case, it would be difficult and unnatural to try to
specify the size and shape of the eventual solution in advance.
Mor eover , attenpting such specification in advance narrows the
wi ndow by which the system views the world and may wel| preclude
finding the solution.

The fitness of any LISP S-expression in a problem environnent can
be naturally neasured by the sum of the distances (taken for all
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the cases in the test suite) between the point in the solution
space (whet her Bool ean- val ued, I nt eger - val ued, real - val ued,
vect or-val ued, or conpl ex-valued) created by the S-expression for
a given set of argunents and the correct point in the solution
space. The closer this sum is to zero, the better the S
expr essi on.

As will be seen, the LISP S-expression required to solve the
problemwill, in each case, energe from a sinulated evolutionary
process which starts with an initial population of randomy
generated LISP S-expressions containing functions and atons
appropriate to the problem domain. Predictably, these initial

random i ndi vi dual S-expressions will have exceedingly |ow fitness
(when neasured by the previously nentioned objective function).
Nonet hel ess, sonme individuals in the population will be sonewhat

nore fit in the environnent than others. Then, a process of
sexual reproduction anong two parental S-expression selected in
proportion to fitness creates offspring S-expressions conprised
of sub-expressions ("building blocks") from their parents. The
offspring then replace their parents. At each stage, the only
input is the fitness of the individuals in the current
popul ation. This process tends to produce popul ati ons which, over
a period of generations, exhibit increasing average fitness in
dealing with their environnment and which also can robustly adapt
to changes in their environnment.

2 Background

bserving that sexual reproduction in conjunction with Darw nian
natural selection based on reproduction and survival of the
fittest enables biological species to robustly adapt to their
envi ronnment, Professor John Holland of the University of M chigan
presented the pioneering mathematical fornulation of sinulated
evolution (genetic algorithnms) for fixed-length character strings
in Adaptation in Natural and Artificial Systenms (Holland 1975).

Al though genetic algorithns superficially seem to only process
the particular individual binary strings present in the current
popul ation, Holland's 1975 work focused attention on the fact
that they actually also automatically process |arge anounts of
usef ul information in parallel concerning unseen Bool ean
hyper pl anes (called simlarity tenpl at es or schemat a)
representing nunerous simlar individuals not actually present in
the current population. Genetic algorithnms have a property of
"intrinsic parallelism which enable them to create individual
strings for the new population in such a way that all the
hyperpl anes representing simlar other individuals are al

automatically expected to be represented (w thout any explicit
conputation or nmenory beyond the population itself) in proportion
to the fitness of the hyperplane relative to the average
popul ation fitness. As Schaffer (1987) points out, "Since there
are very many nore than N hyperpl anes represented in a popul ation
of N strings, this constitutes the only known exanple of the
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conbi nat ori al explosion working to advantage instead of
di sadvant age. "

In addi ti on, Hol | and est abl i shed t hat t he seem ngly
unprepossessing genetic operation of crossover in conjunction
with the straight-forward operation of fitness proportionate
reproduction causes the unseen hyperplanes (schemata) to grow
(and decay) from generation to generation at rates that are
mat hematically near optimal when the process is viewed as a set
of multi-arnmed slot nmachine problens requiring an optinal
al l ocation of trials.

Hol land's 1975 work al so highlighted the relative uninportance of
mutation in the evolutionary process and contrasts sharply in
this regard with nunerous other efforts based on the approach of
nerely saving the best from anong asexual random nutants, such
as the 1966 Artificial Intelligence through Sinulated Evolution
(Fogel et. al. 1966) and other work (Lenat 1983, Hicklin 1986).

Representation is a key issue in genetic algorithm work because
the representation schene can severely limt the w ndow by which
the system observes its world. However, as Davis and Steenstrup
(1987) point out, "In all of Holland's work, and in the work of
many of his students, chronosones are bit strings." String-based
representation schemes are difficult and wunnatural for many
problems (De Jong 1987, Smth 1980, Fujuki 1986, Hi cklin 1986,
Craner 1985). String-based representation schenes do not provide
the hierarchical structure central to the organization of
conputer prograns (into prograns and subroutines) and the
organi zati on of behavior (into tasks and subtasks). String-based
representation schenes do not provide any convenient way of
representing arbitrary comput at i onal pr ocedur es or of
incorporating iteration or recursion when these capabilities are
i nherently necessary to solve the problem (e.g. the Fibonacci
sequence). Mdreover, string-based representation schenes do not
facilitate conputer prograns nodifying thenselves and then
executing thensel ves. Mreover, w thout dynamc variability, the
initial selection of string length Iimts in advance the nunber
of internal states of the system and the conputational conplexity
of what the system can | earn.

3 Hierarhical Genetic Algorithms

The LISP progranmng |anguage is especially well-suited for
handl i ng hi erarchies, recursions, l|ogical functions, conpositions
of functions, self-nodifying conputer prograns, self-executing
conputer progranms, iterations, late typing of variables and
expressions, and conplex structures whose size and shape is
dynami cally determned (rather than predetermined in advance).
Because of these features, the LISP programm ng |anguage all ows
the creation of "hierarchical" genetic algorithnms for sinulated
evolution in which the ©population consists of individua
hi er ar chi cal LI SP S expressions, r at her than strings of
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characters or other objects (whether of fixed or variable
| ength).

In hierarchical genetic algorithnms, the set of possible S-
expressions for a particular domain of interest depends on the
functions and atons that are available in the domain. The
possi bl e S-expressions are those that can be conposed recursively

froma set of n functions F = {f1, fo, ... , fp} and a set of m
atoms A = {aq, ap, ... , apt. Each particular function f in F
takes a specified nunber z(f) of arguments by, by, ..., bzcf).

For exanple, the LISP S-expression (+ (o (- J 1) 1) (o (- J (+ 1
1) 0))) is an S-expression for the Fibonacci sequence. In this
representation, J is the index for the current sequence el enent

and o(x,y) is the sequence referencing function returning the
val ue of the sequence at position x (provided x is between 0 and

J-1) or the default value y (if o is being asked to provide a
position of the sequence that is not yet defined).

The operation of fitness proportionate reproduction for
hi erarchical genetic algorithnms is the basic engine of Darw nian
reproduction and survival of the fittest. It is an asexua

operation in that it operates on only one parental S expression

The result of this operation is one offspring S-expression. In
this operation, if sj(t) is an individual in the population at
generation t with fitness value f(sj(t)), it will be copied into
the mating pool for the next generation wth probability

F(si(t))/z f(sj(t)).

The crossover operation is a sexual operation that starts wth
two parental S-expressions. Its result is, for convenience, two
of fspring S-expressions. Every LISP S-expression can be depicted
graphically as a rooted point-labeled tree in a plane whose
internal points are labeled with functions, whose external points
(l eaves) are labeled wth atons, and whose root is |labeled with
the function (or aton) appearing just inside the outernost |eft
parenthesis. The crossover operation begins by randomy and
i ndependently selecting one point in each parent using a uniform
probability distribution. This crossover operation is well-
defined for any two S-expressions and any two crossover points
and the resulting offspring are always valid LISP S-expressions.
O fspring contain sone traits fromeach parent.

The "crossover fragnment"” for a particular parent is the rooted
sub-tree whose root is the crossover point for that parent and
where the sub-tree consists of the entire sub-tree |lying bel ow
the crossover point (i.e. nore distant from the root of this
parent). Viewed in ternms of lists in LISP, the crossover fragnent
is the sub-list starting at the crossover point.

The first offspring is produced by deleting the crossover
fragnent of the first parent from the first parent and then
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i npregnating the crossover fragnent of the second parent at the
crossover point of the first parent. In producing this first
offspring the first parent acts as the base parent (the female
parent) and the second parent acts as the inpregnating parent
(the male parent). The second offspring is produced in a
symetric manner.

For exanpl e, consider the two parental LISP S-expressions bel ow

11

Assune that the points of trees are nunbered in a depth-first way
starting at the left. Suppose that point 2 (out of the 9 points
of the first parent) was selected as the crossover point for the
first parent (i.e. the o) and that point 9 (out of the 11 points
of the second parent) was selected as the crossover point of the
second parent (i.e. the subtraction function - at the right). The
two crossover fragments are bel ow.

In terns of LISP S-expressions, the two parents are (* (o (- J 1)

1) (* J J)) and (+ (o (- J (+ 1 1)) 0) (- J 1)) and the two

crossover fragnents are the underlined sublists.

The two offspring resulting fromcrossover are shown bel ow.

Note that the second offspring above is a perfect solution for
t he Fi bonacci sequence, nanely (+ (o (- J (+ 1 1) 0)) (o (- J 1)
1) ).

Crossover can be efficiently inplenmented in LISP using the RPLACA
function in LISP (in conjunction with the COPY-TREE function) so
as to destructively change the pointer of the CONS cell at the
crossover point of one parent so that it points to the crossover
fragnment (sublist) of the other parent.

In each of the runs reported herein, between 75% and 80% of the
crossover points are restricted to function (internal) points of
the tree in order to pronote the reconbining of |arger structures
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than is the case with an unrestricted selection (which may do an
i nordi nate anmount of mere swapping of atons fromtree to tree in
a manner nore akin to point nutation rather than true crossover).

4 Experimental Results

This section describes sone experinents in nmachine |earning using
hi erarchical genetic algorithnms. The author's conputer program
consisting of 4341 |ines of Commobn Lisp code, was run on a Texas
Instrunents Explorer 11 conputer with a 25 negaHertz LISP
m croprocessor chip with 32 negabytes of internal nenory and a
hal f gigabyte of external hard disk nmenory. For each experinent
reported below, the author believes that sufficient information
is provided to allow the experiment to be independently
replicated to produce substantially simlar results (within the
[imts inherent in any process involving random zed sel ections).
Substantially simlar results were obtained on several occasions
for each experinent reported bel ow.

4.1.1 Sequence Induction - Fibonacci Sequence

For this experinent, the problemis to induce the conputational
procedure (i.e. LISP S-expression) for the Fibonacci sequence.
The environnment in which adaptation is to take place consists of
the first 20 elements of the actual Fibonacci sequence S =1, 1,
2, 3, 5,8, 13, 21, 34, 55,..., 418, 6765. Recursion is known to
be necessary to conpute the Fibonacci sequence.

The set of functions available for this problemis F = {+, -,

o, *} and the set of atons available is A = {0, 1, J}. For our
purposes here we can view each atom as a function that requires
no argunents in order to be evaluated. Thus, the conbined set of

functions and atons is C = {+, -, o, * 0, 1, J} having 2, 2, 2,
2, 0, 0, and 0 arguments, respectively. In order to make the
experiment nore realistic, extraneous functions or atons are
i ncl uded in al | t he experiments reported her ei n. The

mul tiplication function here is extraneous to a parsinonious
solution of this problem A population of 300 individuals was
used. The algorithm begins by randomy generating 300 LISP S-
expressions recursively using the itens from set C. Exanples of
such random S-expressions included (+ J J), (* 0 (- J 1)), and (*

(- (+J31)0) (cJ)).

The raw fitness of an individual LISP S-expression in the

popul ation at any generational tinme step t is X| Hﬂ(t) - 5 |
wher e Sj is the actual Fibonacci sequence el enent and Phj(t) i's
the value returned by S-expression h for sequence position j. In

this case, the smaller the raw fitness, the closer the mtch
bet ween the performance of the LISP S-expression involved and the
actual Fibonacci sequence. Note that genetic algorithms do not
require knowing any ultimate target solution or conputing any
di fferences between current trials and such an ultinmte target



8 1/8/04 09:01 AM

solution. Genetic algorithnms do use the relative performance of
one i ndividual conpared to alternatives in the current
popul ati on.

The best S-expression for generation 0 (the initial random
popul ation) was (o (- J (o(- J J) 0)) 0 with a raw fitness of
6765. The worst individual had a raw fitness of 28979. The
average value of raw fitness was 17621. An adjusted fitness
value ap = 1/(1+r) is then conputed fromthe raw fitness r for

each individual h. A normalized fitness value Uh = ap/Z ap

(ranging between 0 and 1 for each individual) is then conputed
for each individual. The average value of adjusted fitness for
generation 0 was .0001 and the average nornalized fitness was
. 0086. The nunber of exact matches for the best individual was 1
(out of 20). These predictably poor values for generation 0 serve
as a useful baseline for the entire process.

A new population is then created from the current popul ation.
This process begins with the selection of a mating pool equal in
size to the entire population wusing fitness proportionate
reproduction (with replacenent). In this run and each of the runs
reported herein, the nunber of individuals involved wth
crossover equals 100% of the popul ation for each generation. \Wen
t hese operations are conpleted, the new popul ation replaces the
ol d popul ati on.

The value of average fitness inproved (i.e. dropped) from 17621
for generation 0 to 16969 and 15515 for generations 1 and 2,
respectively. It then continued to inprove nonotonically to 5928
for generation 10. Bet ween generations 11 and 24, the average
fitness oscillated in the general neighborhood of 6000. Then, for
generation 25, the value of average fitness inproved to 5390. In
addition, there was a nonotonically improving trend for the
fitness of the best individual in the population from generation
to generation. The worst individual in the popul ati on exhibited
considerable variability (as is typical) but did inprove overall
The average nornalized fitness for each generation was very
small until generation 16 (when an alnost perfect individual
appeared) and thereafter showed a substantial upwards novenent.

The nunber of exact matches for the best individual of each
generation started at 1 for generation 0O, renmined at 1 between
generations 1 and 6, dropped to O at generation 7, rose to 2
bet ween generations 8 and 13, rose to 18 for generations 14 and
15, rose to 19 for generations 16 through 21. Starting at
generation 22, the best individual had a perfect score of 20
mat ches, nanely

(- (+ (o (+(-01) D1 (c(+(-(-01) 1) I3 0)) 0). This S
expression equals (+ (o (- J 1) 1) (o (- J 2) 0))).
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The conputer program takes approximately 150 seconds for 300
individuals for 26 generations. The process includes extensive
interactive output consisting of two full-color graphs (wth
nouse-sensitive graph points for inspecting the vari ous
features) and five other windows for nonitoring and controlling
t he process.

An asexual nutation operator which inserts a randomy generated
sub-tree at a randomy selected point was also programed and
tested in nunerous runs. No run using only nutation and fitness
proportionate reproduction produced a solution or exhibited any
meani ngf ul increase in population fitness. Mor eover, an
exam nation of the hereditary history (i.e. LISP audit trail
i ndicating parents, crossover points, nutations points, etc.) of
solutions achieved in various runs using crossover reveal ed that
the solution never cane about as a result of the nutation
operation. Wen a point mnutation operation was programed and
tested, it yielded simlar negative results.

4.1.2 Sequence Induction - Cubic Polynomial Sequence

For this experinment, the problem was to induce the conputational

procedure for cubic polynomals such as 1+2J+J2+J3. Note that
neither the order of the polynomal required nor the size and
shape of the conputational procedures needed to solve this (and
other problems herein) is provided to the problem solver in
advance. The same functions and atons as the Fibonacci sequence
were used. Popul ation size was 500. Starting with generation 5, a
conmput ati onal procedure energed that returned val ues that exactly
mat ched the actual cubic polynomal for all sequence positions.
Simlar results were obtained for a variety of different
polynom als. Interestingly, in one run, the program unexpectedly
factored the polynomial into a product of factors (J - rg),

where the rg were the roots of the pol ynom al .

4.2.1 Automatic Programming - Pairs of Linear Equations

The problem of automatic programring requires developing a
conmput er program that can produce a desired output for a given
set of inputs. For this experinment, the problemis to find the
conput ati onal procedure for solving a pair of consistent non-

indeterm nate |inear equations, nanmely ajq1xq1 + aq2x2 = bq and
a»1x1 + azoxp2 = bo for two real-valued variables. The
envi ronnment consisted of a suite of 10 pairs of equations (to
avoid being misled). W t hout | oss  of generality, t he

coefficients of the equations were prenornalized so the
determinant is 1. The set of available functions is F = {+ -,

*} and the set of available atoms is A = {All, Al2, A21, A22, B1,

B2}. The raw fitness of a particular S-expression is the sum of
the Euclidian distances between the known solution point in the
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pl ane and the point produced by the S-expression for all 10 pairs
of equations in the test suite.

Popul ation size was 300. The average raw fitness of the
popul ation inmediately begins inproving from the baseline value
for generation O of 2622 to 632, 341, 342, 309, etc. In addition,
the worst individual in the population also begins inproving
from 119051 for generation O to 68129, 2094, etc. The best
i ndi vidual from generation 0 is (+ (- Al2 (* Al2 B2)) (+ (* Al2
Bl) B2)) and has a raw fitness value of 125.8. The best
i ndi vidual begins inproving and has a value of 106 for
generations 1 and 2, 103 for generation 3 through 5, 102 for
generations 6 through 16, and 102 for generations 17-20. The
conput ati onal procedure (+ (- Al2 (* Al2 B2)) (* A22 Bl))
appearing in generations 21 and 22 had a fitness value of 62 and
differed from the known correct solution only by one additive
term -Al2. The best individual for generations 23 through 26 is
a simlarly close S-expression (+ (- A22 (* Al2 B2)) (* A22 Bl))
with a raw fitness value of 58. Starting with generation 27, a
perfect solution for x4q enmerges, nanely (- (* A22 Bl) (* Al2

B2)). Between generations 27 and 30, the average nornalized
fitness rises to .39 (as the perfect solution starts dom nating).

4.2.2 Automatic Programming - Quadratic Equations

For this experinent, the problem is to solve the quadratic

equation x2 + bx + ¢ = 0 for a conpl ex-val ued root. The avail able
functions were nmultiplication, subtracti on, a square root
function S [which returns a LISP conplex nunber, e.g. (S -4) is
#C(0, 2)], and a nodified division operation % (which returns a
val ue of zero for division by zero). A population of size 300 was
used for 3l generations. The environnent consisted of a suite of
10 quadratic equations (with some purely real roots, sone purely
i magi nary roots, and sone conplex-valued roots). A correct
solution to the problem enmerged at generation 22, nanely, the S-
expression (- (S (- (* (B 2) (%B2) O) (B 2)).

4.2.3 Automatic Programming - Trigonometric ldentities

For this group of experiments, the problem was to derive various
trigononetric identities. This particular group of experinents
yi el ded a nunber of unexpected results. The environnment consisted
of a Mnte Carlo suite of 20 pairs of randomy generated X

val ues between 0 and 2I[1radi ans and the value of cox 2X (which is

equivalent to 1 - 2 sin2 X). The avail able functions were SIN
mul ti plication, and subtraction (wth the addition and cosine
function were intentionally deleted from the repertoire of
avai l abl e functions). The correct S-expression (- (- 1 (* SIN X)
(SIN X)) (* (SIN X) (SIN X))) was obtained after 13 generations
in one run and the sonewhat nore parsinonious correct S-
expression (- 1 (* (* (SINX) (SIN X)) 2)) was obtained after 16
generations. In one run with cos 2X, the S-expression (SIN (- (-
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2 (* X 2)) (SIN (SIN (SIN (SIN (SIN (SIN (* (SIN (SIN 1)) (SIN
(SIN 1))))))))))), where 1 is in radians, was obtained as the

best individual. This expression approximtely equals sin (Il/2 -

2X) .

4.3.1 Machine Learning - Boolean Multiplexer Function

For this experinent, the problem is to find the Boolean
expression which gives the correct Boolean output value for a
given Boolean multiplexer function. The input to the Bool ean

mul ti pl exer function consists of k "address" bits a; and 2k
"data" bits di and is a string of length k+2K of the form @.

1--- 889 dyk_4...dy dy The value of the nmultiplexer function is

the value (0 or 1) of the particular data bit that is singled out
by the k address bits of the nultiplexer. For exanple, for the
6-mul tipl exer (where k = 2), if the two address bits ajag are 11,

then the output is the third data bit d3. The Bool ean nultipl exer

function can be represented in disjunctive normal form as (OR
(AND Al A0 D3) (AND Al (NOT A0) D2) (AND (NOT Al) A0 D1) (AND
(NOr A1) (NOT A0) DO). This function has been studied in
connection with neural nets (Barto et. al. 1985) and classifier
systens (WIson 1987a)

The conbined set of functions and atonms for this problemis C =
{NOT, OR, OR, OR, AND, AND, IF, IF, A0, A1, DO, D1, D2, D3 } wth
1,2,3,4,2,3,2,3,0,0,0,0,0, and O argunents, respectively. Note
that the OR, AND, and IF functions appear with varying nunber of
argunents (e.g. 2, 3, or 4). For exanple, the IF function with 3
argunents is an if-then-else function. Population size was 300.

The environnment consisted of the 2W (where w = k+2k) possi bl e
i nput s.

Initial random individuals include contradictions such as (AND AO
(NOT AO)), inefficiencies such as (OR D3 D3), irrelevancies such
as (IF AO AO (NOTr Al)), and nonsense such as (IF (IF (IF D2 D2)
D2) D2). The best individual from generation 0 was (IF A0 D1 D2)
wth a raw fitness value of 16 (i.e. 16 msmatches out of a
possible 64). This individual uses just one of the address bits
(AO) to decide whether the output is data line DL or D2 and can
never give an output of DO or D3. Nonetheless, in the valley of
the blind, the one-eyed man is king.

The average raw fitness of the population imrediately begins
inmproving from the baseline value for generation 0 of 29.05 to
26.89, 25.74, 23.78, 22.09, 21.38, 20.13, 19.91, etc. In
generation 9 a best individual arises that has only 12
m smat ches, namely (IF (IF AO (OR A1 D0O)) D3 (IF AO D1 D2)). Note
that (IF AO DL D2) from generation O is now enbedded as a sub-
expression within this new individual. In generation 11, a new
best individual arises that has only 8 m smatches, nanely (IF AO
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DI (IF Al D2 DO)). The sub-expression (IF Al D2 DO) contributes
substantially to this inproved performance because it perfectly
deals with the case when A0 is NIL (False) by taking either data
line D2 or DO as its output (depending on Al). Note also that (IF
AO D1 ... ) is partially correct when A0 is T (True). In
generations 12, 13, and 14, a new individual arises with only 4
m smat ches, nanmely, (IF (IF (A0 (OR A1 DO) D3 (IF AO D1 (IF Al D2

D0)))) -

In generation 15, a perfect solution i.e. an individual with O
m smat ches) energes, nanely, (IF (IF AO A1) D3 (IF A0 D1 (IF A
D2 DO)) as a result of a crossover where the unfit sub-expression
(ITF (A0 (OR Al DO))) is replaced by the nore fit sub-expression
(1F A0 Al).

The interpretation of this solution expression is as follows: The
output of the multiplexer is D3 if (IF AO Al) is true (i.e. the
two address bits are 11). Note that IF function in LISP (unlike
the predicate calculus) is equivalent to the AND function. |If
that is not true, the output is D1 if AO is true (because the two
address bits are necessarily now 01). Note that setting the
output to D1 if nerely AO were true in a vacuumis not a correct
solution to the problem However, after (IF A0 Al') has been
considered (and found to be false), then (IF AO DI ... ) is
correct. Finally, (IF A D2 DO) now handl es the case when
address bit AO nust necessarily be NL. In this context, the
partially correct sub-expression that was around since generation
0, nanely (IF Al D2 DO), sets the output of the nultiplexer to D2
if AL is T (because the two address bits are 10) and, otherw se,
it sets the output to DO (because the two address bits are 00).

Note that a default hierarchy enmerged here which incorporated
partially correct sub-rules into a perfect overall procedure by
dealing with ever nore specific cases. Al t hough default
hierarchies are considered desirable in <classifier systens
(CGol dberg 1989, Holland 1986), none energed in WIlson's (1987)
ot herwi se noteworthy experinments involving classifier systens and
the mul tipl exer.

The perfect solution above arose after processing 4500
individuals. OQhers have required processing as few as 3900
i ndi viduals. Note that the hierarchical algorithm does not start
with any advance information identifiying inputs versus outputs
or any advance information about the size and shape of the
ultimte sol ution

4.3.2 Machine Learning - The Parity Function

For this experiment, the problem is to find the Boolean
expression for the Boolean parity function. The k-parity function
takes k Bool ean argunents and returns T if an odd nunber of its
argunents are T and returns NL otherwi se. The exclusive-or
function and the k-parity function were not realizable by early
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sinmpl e perceptrons (M nsky and Papert 1969) and are, as a result,
commonly used as test functions for multi-layered non-Ilinear

neur al networks (Runelhart et. al. 1986) . Mor eover, these
functions yield uninformative schema (simlarity tenplates) wth
conventional linear genetic algorithns using fixed |ength binary

strings so that these functions are not realizable with such
| i near genetic algorithns.

The conbined set of functions and atonms used for the 3-parity
function was C = {AND, OR, NOT, IF, D2, D1, DO} with 2, 2, 1, 3,
0, 0, and 0 argunents, respectively. Population size was 300. The
S-expression (AND (IF D2 DO (NOT DO)) Dl) appeared in generation
O and was correct 6 out of the 8 <cases constituting the
environnment. In generation 4, a rather conplex S-expression
appeared which contained part of this individual from generation
0O and was correct 7 out of 8 tinmes. Finally, in generation 5, a
new i ndividual enmerged which was correct in all 8 cases, nanely
(IF (IF D2 DO (NOT DO)) D1 (NOT D1)). Note that this final
i ndi vi dual consisted of a substantial portion of the earlier best
individual. Note also that the sub-expression (IF (D2 DO (NOT
DO))) is a partially correct solution to the problem (i.e. if
only the two itens of data DO and D2 need to be considered) and
that this sub-expression is enbedded in a default hierarchy using
it in conjunction with the value of D1 to produce the overal
correct solution to the problem

The exclusive-or function (i.e. parity function of order 2) was
simlarly discovered and then successfully wused in |earning
parity functions of up to order 10.

4.4 Planning

Ni | sson (1988a) has presented a robotic action network that
solves a problem described to N lsson (1988b) by G nsberg
i nvol ving rearranging uniquely |abeled blocks in various towers
froman arbitrary initial arrangenment into an arbitrary specified
new order on a single target tower. In the experinment here, the
goal is to automatically generate a general plan that solves this
probl em usi ng hi erarchical genetic algorithns.

Three lists are involved in the fornmulation of the problem The
GOAL-LIST is the list specifying the desired final order in which
the blocks are to be stacked in the target tower (i.e.
"FRU TCAKE" or "UNI VERSAL"). The STACK is the |ist of blocks that
are currently in the target tower (where the order is inportant).
The TABLE is the list of blocks that are currently not in the
target tower. The initial configuration consists of certain
bl ocks in the STACK and the renamining blocks on the TABLE. The
desired final configuration consists of all the blocks being in
the STACK in the order specified by GOAL-LIST and no bl ocks being
on the TABLE
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The environment can be viewed as consisting of up to (N+1)!
different initial configurations of N blocks in the STACK |i st
and on the TABLE |Iist. The raw fitness of a particular
individual plan in the population is the nunber of initia
configurations for which the particular plan produces the desired
final configuration of blocks after the plan is executed. The
conputation of fitness <can be significantly shortened by
consolidating functionally equivalent initial configurations.

In the problem as stated, three sensors dynamcally track the
environment in the formulation of the problem TB is a sensor
that dynam cally specifies the CAR (i.e. first elenent) of the
list which is the longest CDR (i.e. list of remaining elenents)
of the list STACK that matches a CDR of GOAL-LIST. NN is a sensor
that dynamically specifies the next needed block for the STACK
(i.e. the immedi ate predecessor of TB in GOAL-LIST). CS
dynam cally specifies the CAR of the STACK (i.e. the top bl ock).
Thus, the set of atons available for solving the problem here is
A = {TB, NN, CS}. Each of these atons may assune the val ue of one
of the block | abels or the value NL

The set of functions available for solving the problem here
contains 6 functions F = {M5, M, DU QUOTE, NOI, EQ. The
function M5 has one argunent and noves block X to the top of the
STACK if X is on the table. The function MI has one argunent and
noves the top itemto the TABLE if the STACK contains X anywhere
in the STACK. The iterative function DU ("do until") has two
argunents, nanely a predicate PRED and some WORK. Both the M5 and
MI functions have return val ues, al though their true
functionality consists of their side effects on STACK and TABLE
The function DU tests the predicate PRED and does the WORK (via
the LISP evaluation function EVAL) repeatedly until the predicate
PRED beconmes T (True). Note that the fact that each function
returns sone value (in addition to whatever side effects it has
on the STACK and TABLE) and the flexibility of the LISP |anguage
guarantees that the DU function can be executed and eval uated for
any conbination of functions and argunents (however unusual,
pointless, or counter-productive). Since individuals in the

population wll often <contain conplicated nestings of DU
functions and unsatisfiable termnation predicates, limts are
placed on both the nunber of iterations allowed (w t hout

preventing any plan from being executed and evaluated). The LISP
function QUOTE has one argunent and suppresses the usua

i mredi at e eval uati on of argunents that occurs in LISP and thereby
provides a way to prevent premature evaluation of the WRK
argunent of a DU function until it is inside the function DU

Note that the QUOTE function also has the interesting and highly
epi static effect of snothering the functionality of its argunents
when it appears el sewhere.

A popul ation of 300 individual plans was used. The initial random
popul ati on of plans had predictably Iow fitness. Typical random
plans are plans such as (EQ (MI CS) NN) and (M5 TB). This first
pl an unconditionally noves the top of the STACK to the TABLE and
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the perfornms the useless Bool ean conparison on the return val ue
of the MI function with the sensor value NN. The second plan
futilely attenpts to nove the block TB (which already is in the

STACK) fromthe TABLE to the STACK. The single best individual in
this initial population of plans typically can successfully
handl e perhaps one or two of the very sinplest one or two initial

configurations.

After about 5 generations, we typically see the energence of
perhaps one plan in the population that correctly deals with the
sinplest group of cases in the environnent (i.e. the cases in
which the blocks, if any, in the initial STACK are already all in
the correct order and in which there are no out-of-order bl ocks
on top of those blocks). In several runs, the rather
par si noni ous (DU (QUOTE (M5 NN)) (NOT NN)) energed as a partially
correct plan. This plan works by inproving a partially correct
initial STACK by noving needed blocks (NN) in the correct
sequence from the TABLE onto the STACK until there are no nore
bl ocks needed to finish the STACK (i.e. the sensor NN is no
| onger a bl ock).

After about 10 generations, the best single individual in the
popul ation is typically a plan that achieves a perfect score
(that is, the plan produces the final desired configuration of
bl ocks in the STACK for all initial configuration of blocks in
the environnent). One such plan is (NOT (EQ (DU (QUOTE (Mr CS))
(NOT NN)) (EQ (M5 (DU (QUOTE (Ms NN)) (NOT NN))) (DU NN (QUOTE
TB))))). Note that this plan contains a default hierarchy. In
particular, the sub-plan (DU (QUOTE (M5 NN)) (NOT NN)) cones from
an ancestor from an earlier generation (which perfornmed correctly
for a sinple set of cases of initial configurations). This sub-
plan is now incorporated as a sub-plan (i.e. a small "building
bl ock”). Note also that another sub-plan (DU (QUOTE (MI CS)) (NOT
NN)) from another individual froman earlier generation correctly
deals with the remaining cases by first noving out-of-order
bl ocks from the STACK to the TABLE until the STACK contains no
incorrect blocks. By conbining these two sonewhat fit sub-plans
from earlier generations, a solution to the entire problem is
achieved. Note also that the third sub-plan, nanely (DU NN (QUOTE
TB)), and the functions NOT and EQ perform no useful function
(but also do no harm.

4.5 Pattern Recognition

Hi nton (1988) has discussed the problem of translation-invariant
recognition of a one-dinmensional shape in a linear binary retina
(wth wap-around) in connection wth the claim that
connectioni st neural networks cannot possibly solve this type of
problem In the sinplified experinment here, the retina has 6
pixels (wth wap-around) and the shape consists of three
consecutive binary 1's.
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The functions available are a zero-sensing function HO, a one-
sensing function Hl, ordinary multiplication, and a disjunctive
function U The atons available are the integers 0, |, and 2, and
a universally quantified atom k.

LISP's conparative tolerance as to typing is well suited to
pattern recognition problenms where it is desirable to freely
conbi ne nunerical concepts such as positional |ocation (either
absol ut e, or wuniversally quantified), relative displacenent
(e.g. the synbol 2 pixels to the right) with various conbinations
of Boolean tests. The functions U and * so defined resolve
potential type problens that would otherw se arise when integers
identify positions in the retina.

In one particular run, the nunber of msmatches for the best
i ndi vi dual of generation 0 was 48 and rapidly inproved to 40 for
generations 1 and 3. It then inproved to O msmatches in
generation 3 for the individual (* 1 (* (HL K1) (HL K0) (Hl K
2)) 1). lgnoring the extraneous outernost conjunction of two |'s,
this individual returns a value of the integer 1 if and only if a
binary 1 is found in the retina in positions 0, 1, and 2 (each
di spl aced by the sane constant k).

5 Robustness

The existence and nurturing of a population of disjunctive
alternative solutions to a problem allows hierarchical genetic
algorithms to effectively perform even when the environnent
changes. To denonstrate this ability, the environnment for

generations O through 9 is the quadratic polynomal x2 +x +2;
however, at generation 10, the environment abruptly changes to

the cubic polynomal x3 + x2 +2x +1; and, at generation 20, it

changes again to a new quadratic polynomial x2 +2x + 1 .
Popul ation size was 300. A perfect-scoring quadratic polynom al
for the first environnment was created by generation 3. Normalized
average popul ation fitness stabilized in the nei ghborhood 0.5 for
generations 3 through 9 (with genetic diversity naintained).
Predictably, the fitness level abruptly dropped to virtually O
for generation 10 and 11 when the environnent changed.
Nonet hel ess, fitness increased for generation 12 and stabilized
in the neighborhood of 0.7 for generations 13 to 19 (after
creation of a perfect-scoring cubic polynomal). The fitness
| evel again abruptly dropped to virtually 0O for generation 20
when the environnent again changed. However, by generation 22, a
fitness level again stabilized in the neighborhood of 0.7 after
creation of a new perfect-scoring quadratic polynom al

6 Theoretical Discussion

Holland showed that for genetic algorithms wusing fitness
proportionate reproduction and crossover, the expected nunber of
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occurrences of every schema H in the next generation is
approxi matel y

mHt+l) >= ]]:_(_H)_n'(H,t) (1 - ¢

where f* is the average fitness of the population and € is small.
In particular, viewed over several generations where either
f(H/f* is stationary or remains above 1 by at |east a constant
anount, this nmeans that schemata wth above-average (bel ow
average) fitness appear in succeeding generations at an
approxi mat el y exponentially i ncreasi ng (decr easi ng) rat es.
Hol l and al so showed that the form of the optinmal allocation of
trials anmong random variables in a nulti-armed slot nachine
problem (involving mnimzing |osses while exploring new or
seenmingly non-optinmal schemata while also exploiting seeningly
optimal schemata) is simlarly approxi mtely exponential so that
the processing of schemata by genetic algorithns using fitness
proportionate reproduction and crossover is nathematical near

optimal. This allocation of trials is nost nearly optiml when ¢

is small. eis the defining length 6(H) of the schemata invol ved
(i.e. the distance between the outernost specific, non-* synbols)
divided by L-1 (i.e. the nunber of points where crossover nmay

occur). Therefore, € is short when oH) is short (i.e. the
schemata is a small, short, conpact "building block™). Thus,
genetic algorithns process short-defining length schemata npst
favorably and problens structured so that their solutions can be
"built up" from such small "building blocks" are nost optimlly
handl ed by genetic al gorithns.

In hierarchical genetic algorithnms, the individuals in the
popul ation are LISP S-expressions (i.e. rooted point-I|abeled
trees in a plane), instead of |inear character strings. The set
of simlar individuals sharing comon features (i.e. the
schemata) is a hyperspace of LISP S-expressions (i.e. rooted
poi nt-1abeled trees in a plane) sharing conmon features.

Consider first the case where the comon features are a single
sub-tree consisting of h specified points with no unspecified
(don't care) points in that sub-tree. The set of individuals
sharing the common feature is the hyperspace consisting of all
rooted point-labeled trees in a plane containing the designated
sub-tree as a sub-tree. This set of trees is infinite, but it can
be partitioned into finite subsets by using the nunber of points
in the tree as the partitioning paraneter. If the subset of trees
having a particular nunber of points and sharing a fully
speci fi ed sub-tree is consi der ed, fitness proportionate
reproduction causes growth (or decay) in the size of that subset
in the new population in accordance with the relative fitness of
the subset to the average population fitness in the sane near
opti mal way as it does for string-based I|inear genetic
algorithms. Holland's results on optimal allocation or trials and
Holland's result on growh (or decay) of nunber of occurrences of
schemata as a result of fitness proportionate reproduction al one
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(1975) do not depend, in any way, on the character of the
i ndi vidual objects in the population. The deviation from this
optimal rate of growh (or decay) of schema is caused by the
crossover operation. This deviation is relatively small when the
nunber of points defining the comon feature (i.e. the nunber of
points in the sub-tree) is relatively small. In particular, if

eis the ratio of the nunber of points in the sub-tree to the

nunber of points in the tree, then ¢is relatively snall when
the sub-tree is relatively small. Thus, for the case where the
specific positions of the schenata are coextensive with a sub-
tree, the overall effect of fitness proportionate reproduction
and crossover is that subprogranms (i.e. sub-trees, sub-lists)
from relatively high fitness progranms are used as "building
bl ocks"” for constructing new individuals in an approxi mately near
optimal way. Over a period of time, this concentrates the search
of the solution space into sub-hyperspaces of LISP S-expressions
of ever decreasing dinensionality and ever increasing fitness.

This argunent appears to extend to sinmilarities defined by a sub-
tree containing one or nore non-specific points internal to the
sub-tree and to sinmlarities defined by a disjoint set of two or
nore sub-trees of either type. The deviation from optimality is
relatively small to the extent that both the nunber of points
defining the common feature is relatively small and the nunber of
di sjoint sub-trees is relatively small. Thus, the overall effect
is that subprogranms (i.e. sub-trees) fromrelatively high fitness
individuals are used as "building blocks" for constructing new
i ndi vi dual s.

Hi erarchical genetic algorithnse are a natural extension of
string-based linear genetic algorithns in another way. GCenetic
algorithnms, in general, are mthematical algorithnms which are
based on Darw nian principles of reproduction and survival of the
fittest and which transform a population of individuals (and
their fitness in the environnent) into a new population of
i ndi viduals using operations analogous to genetic operations
actually observed in nature. In this view, a character found at a
particular position in a mathematical character string in a
conventi onal string-based genetic algorithm s considered
anal ogous to one of the four nucleiotide bases (adenine,
cyt osi ne, guani ne, or t hym ne) f ound in nol ecul es of
deoxyri bonucleic acid (DNA). The observed fitness in the
environnent of the entire actual biological individual created
using the passive information in a particular linear string of
DNA is then used in the conputation of average schemata fitness
for each schemata represented by that individual. In contrast,
the proactive conputational procedure carried out by a LISP S-
expression in a hierarchical genetic algorithm can be viewed as
anal ogous to the work perforned by a protein in a living cell.
The observed fitness in the environment of the entire actual
bi ol ogi cal individual created as a result of the action of the
proactive LISP S-expressions contribute, in the same way as with
string-based genetic algorithns, directly to the conputation of
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average schemata fitness for each schemata represented by that
individual. That is, hierarchical genetic algorithnms enploy the
sanme automatic allocation of credit inherent in the basic string-
based genetic al gorithm described by Holland (1975) and i nherent
in Darwi nian reproduction and survival of the fittest anongst
bi ol ogi cal populations in nature. This automatic allocation of
credit contrasts with the connectionistic "bucket brigade" credit
al l ocation and reinforcenent algorithmused in classifier systens
(Hol l and 1986, Holland and Reitman 1978) which is not founded on
any observed natural mechanism involving adaptation anongst
bi ol ogi cal popul ati ons (Westerdal e 1985).

7 Conclusions

The exanples from the five areas of artificial intelligence,
i ncluding sequence induction, automatic progranm ng, function
| earning, robotic planning, and pattern recognition support the
vi ew that conputational procedures (i.e. conputer prograns, LISP
S-expressions) can be built up from appropriate small "building
bl ocks" using hierarhical genetic algorithns.
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