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                                     Abstract 
  
Existing approaches to artificial intelligence problems such as  
sequence induction, automatic programming, machine learning, 
planning, and pattern recognition typically require specification 
in advance of the size and shape of the solution to the problem 
(often in a unnatural and difficult way). This paper reports on a 
new approach in which the size and shape of the solution to such 
problems is dynamically created using Darwinian principles of 
reproduction and survival of the fittest. Moreover, the resulting 
solution is inherently hierarchical. The paper describes computer 
experiments, using the author's 4341 line LISP program, in five 
areas of artifical intelligence, namely (1) sequence induction 
(e.g. inducing a computational procedure for the recursive 
Fibonacci sequence and inducing a computational procedure for a 
cubic polynomial sequence), (2) automatic programming (e.g. 
discovering a computational procedure for solving pairs of linear 
equations, solving quadratic equations for complex roots, and 
discovering trigonometric identities), (3) machine learning of 
functions (e.g. learning a Boolean multiplexer function 
previously studied in neural net and classifier system work and 
learning the exclusive-or and parity function), (4) planning 
(e.g. developing a robotic action sequence that can stack an 
arbitrary initial configuration of blocks into a specified 
order), and (5) pattern recognition (e.g. translation-invariant 
recognition of a simple one dimensional shape in a linear 
retina). 
 
1  Introduction 
 
Sequence induction requires developing a computational procedure 
that can generate any arbitrary element in a sequence S = 
S0,S1,...,Sj,... given a finite number of specific examples of 
the values of the sequence. Examples are finding a correct 
recursive computational procedure for the Fibonacci sequence or 
finding a polynomial sequence expression of the appropriate order 
given a finite sampling of the initial values of the sequence. 
Although induction problems admittedly do not have closed 
mathematical solutions, the ability to correctly perform 
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induction is widely accepted as a component of human 
intelligence. 
 
Automatic programming requires developing a computer program that 
can produce a desired output for a given set of inputs. Examples 
include finding a computational procedure for solving a given 
pair of linear equations a11x1 + a12x2 = b1 and a21x1 + a22x2 = 
b2 for the real numbers x1 and x2, finding a computational 

procedure for solving a given quadratic equation ax2 + bx + c = 0 
for complex-valued roots x1 and x2, and solving trigonometric 
identities. 
 
Machine learning of a function requires developing a 
computational procedure that can return the correct functional 
value for any combination of arguments given a finite number of 
specific examples of particular combinations of arguments and the 
associated functional value. An example is the problem of 
learning the Boolean multiplexer function. The Boolean 
multiplexer function has been repeatedly used as a test function 
in studies of neural nets (Barto et. al. 1985) and classifier 
systems (Wilson 1987a). Another example is the parity function. 
 
Planning in artificial intelligence and robotics requires finding 
a plan that receives information from sensors about the state of 
various objects in robotic environment and uses that information 
to select a sequence of functions to execute in order to change 
the state of the objects in the robotic environment. An example 
of a planning problem involves generating a general plan for 
stacking labeled blocks onto a target tower in a specified 
desired order, given an arbitrary initial configuration of 
blocks. 
 
Pattern recognition requires finding a computational procedure 
that processes a digitized input image to determine whether a 
particular pattern is present in the input image. 
 
All of these problems, and many similar problems in artifical 
intelligence and symbolic processing, can be viewed as requiring 
the creation of a LISP S-expression (i.e. a computer program, a 
computational procedure, a robotic plan) comprised of various 
functions and various atoms appropriate to the given problem 
domain that returns the desired values (and performs the desired 
side effects) when presented with a particular combination of 
input values.  
 
In each case, it would be difficult and unnatural to try to 
specify the size and shape of the eventual solution in advance. 
Moreover,  attempting such specification in advance narrows the 
window by which the system views the world and may well preclude 
finding the solution. 
 
The fitness of any LISP S-expression in a problem environment can 
be naturally measured by the sum of the distances (taken for all 
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the cases in the test suite) between the point in the solution 
space (whether Boolean-valued, integer-valued, real-valued, 
vector-valued, or complex-valued) created by the S-expression for 
a given set of arguments and the correct point in the solution 
space. The closer this sum is to zero, the better the  S-
expression. 
 
As will be seen, the LISP S-expression required to solve the 
problem will, in each case, emerge from a simulated evolutionary 
process which starts with an initial population of randomly 
generated LISP S-expressions containing functions and atoms 
appropriate to the problem domain. Predictably, these initial 
random individual S-expressions will have exceedingly low fitness 
(when measured by the previously mentioned objective function). 
Nonetheless, some individuals in the population will be somewhat 
more fit in the environment than others. Then, a process of 
sexual reproduction among two parental S-expression selected in 
proportion to fitness creates offspring S-expressions comprised 
of sub-expressions ("building blocks") from their parents. The 
offspring then replace their parents. At each stage, the only 
input is the fitness of the individuals in the current 
population. This process tends to produce populations which, over 
a period of generations, exhibit increasing average fitness in 
dealing with their environment and which also can robustly adapt 
to changes in their environment. 
 
2   Background 
 
Observing that sexual reproduction in conjunction with Darwinian 
natural selection based on reproduction and survival of the 
fittest enables biological species to robustly adapt to their  
environment, Professor John Holland of the University of Michigan 
presented the pioneering  mathematical formulation of simulated 
evolution (genetic algorithms) for fixed-length character strings 
in Adaptation in Natural and Artificial Systems (Holland 1975).  
 
Although genetic algorithms superficially seem to only process 
the particular  individual binary strings present in the current 
population, Holland's 1975 work focused attention on the fact 
that they actually also automatically process large amounts of 
useful information in parallel concerning unseen Boolean 
hyperplanes (called similarity templates or schemata) 
representing numerous similar individuals not actually present in 
the current population. Genetic algorithms have a property of 
"intrinsic parallelism" which enable them to create individual 
strings for the new population in such a way that all the 
hyperplanes representing similar other individuals are all 
automatically expected to be represented (without any explicit 
computation or memory beyond the population itself) in proportion 
to the fitness of the hyperplane relative to the average 
population fitness. As Schaffer (1987) points out, "Since there 
are very many more than N hyperplanes represented in a population 
of N strings, this constitutes the only known example of the 
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combinatorial explosion working to advantage instead of 
disadvantage." 
 
In addition, Holland established that the seemingly 
unprepossessing genetic operation of crossover in conjunction 
with the straight-forward operation of fitness proportionate 
reproduction causes the unseen hyperplanes (schemata) to grow 
(and decay) from generation to generation at rates that are 
mathematically near optimal when the process is viewed as a set 
of multi-armed slot machine problems requiring an optimal 
allocation of trials. 
 
Holland's l975 work also highlighted the relative unimportance of 
mutation in the evolutionary process and contrasts sharply in 
this regard with  numerous other efforts based on the approach of 
merely  saving the best from among asexual random mutants, such 
as the 1966 Artificial Intelligence through Simulated Evolution 
(Fogel et. al. 1966) and other  work (Lenat 1983, Hicklin 1986). 
 
Representation is a key issue in genetic algorithm work because 
the representation scheme can severely limit the window by which 
the system observes its world. However, as Davis and Steenstrup 
(1987) point out, "In all of Holland's work, and in the work of 
many of his students, chromosomes are bit strings." String-based 
representation schemes are difficult and unnatural for many 
problems (De Jong 1987, Smith 1980, Fujuki 1986, Hicklin 1986, 
Cramer 1985). String-based representation schemes do not provide 
the hierarchical structure central to the organization of 
computer programs (into programs and subroutines) and the 
organization of behavior (into tasks and subtasks). String-based 
representation schemes do not provide any convenient way of 
representing arbitrary computational procedures or of 
incorporating iteration or recursion when these capabilities are 
inherently necessary to solve the problem (e.g. the Fibonacci 
sequence). Moreover, string-based representation schemes do not 
facilitate computer programs modifying themselves and then  
executing themselves. Moreover, without dynamic variability, the 
initial selection of string length limits in advance the number 
of internal states of the system and the computational complexity 
of what the system can learn.  
 
3   Hierarhical Genetic Algorithms 
 
The LISP programming language is especially well-suited for 
handling hierarchies, recursions, logical functions, compositions 
of functions, self-modifying computer programs, self-executing 
computer programs, iterations, late typing of variables and 
expressions, and complex structures whose size and shape is 
dynamically determined (rather than predetermined in advance). 
Because of these features, the LISP programming language allows 
the creation of "hierarchical" genetic algorithms for simulated 
evolution in which the population consists of individual 
hierarchical LISP S-expressions, rather than strings of 
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characters or other objects (whether of fixed or variable 
length). 
 
In hierarchical genetic algorithms, the set of possible S-
expressions for a particular domain of interest depends on the 
functions and atoms that are available in the domain. The 
possible S-expressions are those that can be composed recursively 
from a set of n functions F = {f1, f2, ... , fn} and a set of m 
atoms A = {a1, a2, ... , am}. Each particular function f in F 
takes a specified number z(f) of arguments b1, b2, ..., bz(f). 

For example, the LISP S-expression (+ (σ (- J 1) 1) (σ (- J (+ 1 
1) 0))) is an S-expression for the Fibonacci sequence. In this 
representation, J is the index for the current sequence element 
and σ(x,y) is the  sequence referencing function returning the 
value of the sequence at position x (provided x is between 0 and 
J-1) or the default value y (if σ is being asked to provide a 
position of the sequence that is not yet defined). 
 
The operation of fitness proportionate reproduction for 
hierarchical genetic algorithms is the basic engine of Darwinian 
reproduction and survival of the fittest. It is an asexual 
operation in that it operates on only one parental S-expression. 
The result of this operation is  one offspring S-expression. In 
this operation, if si(t) is an individual in the population at 
generation t with fitness value f(si(t)), it will be copied into 
the mating pool for the next generation with probability 
f(si(t))/Σ f(si(t)).  
 
The crossover operation is a sexual operation that starts with 
two parental S-expressions. Its result is, for convenience, two 
offspring S-expressions.  Every LISP S-expression can be depicted 
graphically as a rooted point-labeled tree in a plane whose 
internal points are labeled with functions, whose external points 
(leaves) are labeled with atoms, and whose root is labeled with 
the function (or atom) appearing just inside the outermost left 
parenthesis. The crossover operation begins by randomly and 
independently selecting one point in each parent using a uniform 
probability distribution. This crossover operation is well-
defined for any two S-expressions and any two crossover points 
and the resulting offspring are always valid LISP S-expressions. 
Offspring  contain some traits from each  parent. 
 
The "crossover fragment" for a particular parent is the rooted 
sub-tree whose root is the crossover point for that parent and 
where the sub-tree consists of the entire sub-tree lying below 
the crossover point (i.e. more distant from the root of this 
parent). Viewed in terms of lists in LISP, the crossover fragment 
is the sub-list starting at the crossover point. 
 
The first offspring is produced by deleting the crossover 
fragment of the first parent from the first parent  and then 
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impregnating the crossover fragment of the second parent at the 
crossover point of the first parent.  In producing this first 
offspring the first parent acts as the base parent (the female 
parent) and the second parent acts as the impregnating parent 
(the male parent). The second offspring is produced  in a 
symmetric manner. 
 
For example, consider the two parental LISP S-expressions below. 
 
            *                                + 
     σ             *                    σ         - 
  -     1        J  J               -     0     J  1 
J  1                              J   + 
                                     1 1 
 
Assume that the points of trees are numbered in a depth-first way 
starting at the left. Suppose that point 2 (out of the 9 points 
of the first parent) was selected as the crossover point for the 
first parent (i.e. the σ) and that point 9 (out of the 11 points 
of the second parent) was selected as the crossover point of the 
second parent (i.e. the subtraction function - at the right). The 
two crossover fragments are below. 
 
     σ                             - 
  -     1                       J    1 
J   1 
 
In terms of LISP S-expressions, the two parents are (* (σ (- J 1) 
1) (* J J))) and (+ (σ (- J (+ 1 1)) 0) (- J 1)) and the two 
crossover fragments are the underlined sublists. 
 
The two offspring resulting from crossover are shown below. 
 
     *                                   + 
  -        *                    σ                 σ 
J   1    J   J              -      0           -     1     
                          J   +               J 1         
                             1 1 
      
Note that the second offspring  above is a perfect solution for 
the Fibonacci sequence, namely (+ (σ (- J (+ 1 1) 0)) (σ (- J 1) 
1) ).  
 
Crossover can be efficiently implemented in LISP using the RPLACA 
function in LISP (in conjunction with the COPY-TREE function) so 
as to destructively change the pointer of the CONS cell at the 
crossover point of one parent so that it points to the crossover 
fragment (sublist) of the other parent.  
 
In each of the runs reported herein, between 75% and 80% of the 
crossover points are restricted to function (internal) points of 
the tree in order to promote the recombining of larger structures 
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than is the case with an unrestricted selection (which may do an 
inordinate amount of mere swapping of atoms from tree to tree in 
a manner more akin to point mutation rather than true crossover).  
 
4   Experimental Results 
 
This section describes some experiments in machine learning using 
hierarchical genetic algorithms. The author's computer program, 
consisting of  4341 lines of Common Lisp code, was run on a Texas 
Instruments Explorer II computer with a 25 megaHertz LISP 
microprocessor chip with 32 megabytes of internal memory and a 
half gigabyte of external hard disk memory. For each experiment 
reported below, the author believes that  sufficient information 
is provided to allow the experiment to be independently 
replicated to produce substantially similar results (within the 
limits inherent in any process involving randomized selections). 
Substantially similar results were obtained  on several occasions 
for each experiment reported below. 
 
4.1.1 Sequence Induction - Fibonacci Sequence 
 
For this experiment, the problem is to induce the computational 
procedure (i.e. LISP S-expression) for the Fibonacci sequence. 
The environment in which adaptation is to take place consists of 
the first 20 elements of the actual Fibonacci sequence  S = 1, 1, 
2, 3, 5, 8, 13, 21, 34, 55,..., 4l8l, 6765. Recursion is known to 
be necessary to compute the Fibonacci sequence. 
 
The set of functions available for this problem is F = {+, -, 
σ,   ∗} and the set of atoms available is A = {0, 1, J}. For our 
purposes here we can view each atom as a function that requires 
no arguments in order to be evaluated. Thus, the combined set of  
functions and atoms is C = {+, -,  σ,   ∗,   0, 1, J} having 2, 2, 2, 
2, 0, 0, and 0 arguments, respectively. In order to make the 
experiment more realistic, extraneous functions or atoms are 
included in all the experiments reported herein. The 
multiplication function here is extraneous to a parsimonious 
solution of this problem. A population of 300 individuals was 
used. The algorithm begins by randomly generating 300 LISP S-
expressions recursively using the items from set C. Examples of 
such random S-expressions included (+ J J), (* 0 (- J 1)), and (* 
(- (+ J 1) 0) (σ J )). 
 
The raw fitness of an individual LISP S-expression in the 
population at any generational time step t is Σ | Phj(t) - Sj | 
where Sj is the actual Fibonacci sequence element and  Phj(t) is 
the value returned by S-expression h for sequence position j. In 
this case, the smaller the raw fitness, the closer the match 
between the performance of the LISP S-expression involved and the 
actual Fibonacci sequence. Note that genetic algorithms do not 
require knowing any ultimate target solution or computing any 
differences between current trials and such an ultimate target 
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solution. Genetic algorithms do use the relative performance of 
one individual compared to alternatives in the current 
population. 
  
 
The best S-expression for generation 0 (the initial random 
population) was (σ (- J (σ (- J J) 0)) 0) with a raw fitness of 
6765. The worst individual  had a raw fitness of 28979. The 
average value of raw fitness was 17621. An adjusted fitness  
value  ah = 1/(1+r) is then computed from the raw fitness r for 

each individual h. A normalized fitness value  uh = ah/Σ ah 
(ranging between 0 and 1 for each individual) is then computed 
for each individual. The average value of adjusted fitness for 
generation 0 was .0001 and the average normalized fitness was 
.0086. The number of exact matches for the best individual was 1 
(out of 20). These predictably poor values for generation 0 serve 
as a useful baseline for the entire process. 
 
A new population is then created from the current population.  
This process begins with the selection of a mating pool equal in 
size to the entire population using fitness proportionate 
reproduction (with replacement). In this run and each of the runs 
reported herein, the number of individuals involved with 
crossover equals 100% of the population for each generation. When 
these operations are completed, the new population  replaces the 
old population. 
 
The value of average fitness improved (i.e. dropped) from 17621 
for generation 0 to 16969 and 15515 for generations 1 and 2, 
respectively. It then continued to improve monotonically  to 5928 
for generation 10.  Between generations 11 and 24, the average 
fitness oscillated in the general neighborhood of 6000. Then, for 
generation 25, the value of average fitness improved to 5390. In 
addition, there was a monotonically  improving  trend for the 
fitness of the best individual in the population from generation 
to generation. The  worst individual in the population exhibited 
considerable variability (as is typical) but did improve overall.  
The average normalized fitness for each generation  was very 
small until generation 16 (when an almost perfect individual 
appeared) and thereafter showed a substantial upwards movement.  
 
The number of exact matches for the best individual of each 
generation started at 1 for generation 0, remained at 1 between 
generations 1 and 6, dropped to 0 at generation 7, rose to 2 
between generations 8 and 13, rose to 18 for generations 14 and 
15,  rose to 19 for generations 16 through 21. Starting at 
generation 22, the best individual had a perfect score of 20 
matches, namely 
(- (+ (σ (+ (- 0 1) J) 1) (σ (+ (- (- 0 1) 1) J) 0)) 0). This S-
expression equals (+ (σ (- J 1) 1) (σ (- J 2) 0))).                     
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The computer program takes approximately 150 seconds for 300 
individuals for 26 generations. The process includes extensive 
interactive output consisting of two full-color  graphs (with 
mouse-sensitive graph points  for inspecting the  various 
features) and five other windows for monitoring and controlling 
the process. 
 
An asexual mutation operator which inserts a randomly generated 
sub-tree at a randomly selected point was also programmed and 
tested in numerous runs.  No run using only mutation and fitness 
proportionate reproduction produced a solution or exhibited any 
meaningful increase in population fitness. Moreover, an 
examination of the hereditary history (i.e. LISP audit trail 
indicating parents, crossover points, mutations points, etc.) of 
solutions achieved in various runs using crossover revealed that 
the solution never came about as a result of the mutation 
operation. When a point mutation operation was programmed and 
tested, it yielded similar negative results. 
 
4.1.2 Sequence Induction - Cubic Polynomial Sequence 
 
For this experiment, the problem was to induce the computational 
procedure for cubic polynomials such as 1+2J+J2+J3. Note that 
neither the order of the polynomial required nor the size and 
shape of the computational procedures needed to solve this (and 
other problems herein) is provided to the problem solver in 
advance. The same functions and atoms as the Fibonacci sequence 
were used. Population size was 500. Starting with generation 5, a 
computational procedure emerged that returned values that exactly 
matched the actual cubic polynomial for all sequence positions. 
Similar results were obtained for a variety of different 
polynomials. Interestingly, in one run, the program unexpectedly 
factored the polynomial into a product of  factors (J - rk), 
where the rk were the roots of the polynomial. 
 
4.2.1  Automatic Programming - Pairs of Linear Equations 
 
The problem of automatic programming requires developing a 
computer program that can produce a desired output for a given 
set of inputs. For this experiment, the problem is to find the 
computational procedure for solving a pair of consistent non-
indeterminate linear equations, namely a11x1 + a12x2 = b1 and 
a21x1 + a22x2 = b2  for two real-valued variables.  The 
environment  consisted of a suite of 10 pairs of equations (to 
avoid being misled).  Without loss of generality, the 
coefficients of the equations were prenormalized so the 
determinant  is 1.  The set of available functions  is F = {+, -, 
∗} and the set of available atoms is A = {A11, A12, A21, A22, B1, 
B2}. The raw fitness of a particular S-expression is the sum of 
the Euclidian distances between the known solution point in the 
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plane and the point produced by the S-expression for all 10 pairs 
of equations in the test suite.  
 
Population size was 300. The average raw fitness of the 
population immediately begins improving from  the baseline value 
for generation 0 of 2622 to 632, 341, 342, 309, etc. In addition, 
the worst individual in the population also begins improving  
from 119051 for generation 0 to  68129, 2094, etc. The best 
individual from generation 0 is (+ (- A12 (* A12 B2)) (+ (* A12 
B1) B2)) and has a raw fitness value of 125.8. The best 
individual begins improving and has a value of 106 for 
generations 1 and 2, 103 for generation 3 through 5, 102 for 
generations 6 through 16, and 102 for generations 17-20. The 
computational procedure (+ (- A12 (* A12 B2)) (* A22 B1)) 
appearing in generations 21 and 22 had a fitness value of 62 and  
differed from the known correct solution only by one additive 
term -A12. The best individual for generations  23 through 26 is 
a similarly close S-expression (+ (- A22 (* A12 B2)) (* A22 B1)) 
with a raw fitness value of 58. Starting with generation 27, a 
perfect solution for x1 emerges, namely (- (* A22 B1) (* A12 
B2)). Between generations 27 and 30, the average normalized 
fitness rises to .39 (as the perfect solution starts dominating). 
 
4.2.2 Automatic Programming - Quadratic Equations 
 
For this experiment, the problem is to solve the quadratic 
equation x2 + bx + c = 0 for a complex-valued root. The available 
functions were multiplication, subtraction, a square root 
function S [which returns a LISP complex number, e.g. (S -4) is 
#C(0, 2)], and a modified division operation % (which returns a 
value of zero for division by zero). A population of size 300 was 
used for 3l generations. The environment consisted of a suite of 
10 quadratic equations (with some purely real roots, some  purely 
imaginary roots, and some complex-valued roots). A correct 
solution to the problem emerged at generation 22, namely, the S-
expression (- (S (- (* (% B 2) (% B 2)) C)) (% B 2)). 
 
4.2.3 Automatic Programming - Trigonometric Identities 
 
For this group of experiments, the problem was to derive various 
trigonometric identities. This particular group of experiments 
yielded a number of unexpected results. The environment consisted 
of a Monte Carlo suite of 20 pairs of randomly generated X  
values between 0 and 2Π radians and the value of cox 2X (which is 
equivalent to 1 - 2 sin2 X).  The available functions were SIN,  
multiplication,  and subtraction (with the addition and cosine 
function were intentionally deleted from the repertoire of 
available functions).  The correct S-expression (- (- 1 (* SIN X) 
(SIN X))) (* (SIN X) (SIN X))) was obtained after 13 generations 
in one run and the somewhat more parsimonious correct S-
expression (- 1 (* (* (SIN X) (SIN X)) 2)) was obtained after 16 
generations. In one run with cos 2X, the S-expression (SIN (- (- 
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2 (* X 2)) (SIN (SIN (SIN (SIN (SIN (SIN (* (SIN (SIN 1)) (SIN 
(SIN 1))))))))))), where 1 is in radians, was obtained as the 
best individual. This expression approximately equals sin (Π/2 - 
2X). 
 
  
4.3.1 Machine Learning - Boolean Multiplexer Function 
 
For this experiment, the problem is to find the Boolean 
expression which gives the correct Boolean output value for a 
given Boolean multiplexer function. The input to the  Boolean 
multiplexer function  consists of k "address" bits ai and 2k 

"data" bits di and is a string of length k+2k of the form  ak-

1...a1a0 d2k-1...d1 d0. The value of the multiplexer function is 
the value (0 or 1) of the particular data bit that is singled out 
by the  k address bits of the multiplexer. For example, for the 
6-multiplexer (where k = 2), if the two address bits a1a0 are 11, 
then the output is the third data bit d3. The Boolean multiplexer 
function can be represented in disjunctive normal form as (OR 
(AND A1 A0 D3) (AND A1 (NOT A0) D2) (AND (NOT A1) A0 D1) (AND 
(NOT A1) (NOT A0) D0). This function has been studied in 
connection with neural nets (Barto et. al. 1985) and classifier 
systems (Wilson 1987a) 
 
The combined set of  functions and atoms for this problem is C = 
{NOT, OR, OR, OR, AND, AND, IF, IF, A0, A1, D0, D1, D2, D3 } with 
1,2,3,4,2,3,2,3,0,0,0,0,0, and 0 arguments, respectively. Note 
that the OR, AND, and IF functions appear with varying number of 
arguments (e.g. 2, 3, or 4). For example, the IF function with 3 
arguments is an if-then-else function. Population size was 300. 
The environment consisted of the 2w (where w = k+2k) possible 
inputs.  
 
Initial random individuals include contradictions such as (AND A0 
(NOT A0)), inefficiencies such as (OR D3 D3), irrelevancies such 
as (IF A0 A0 (NOT A1)), and nonsense such as (IF (IF (IF D2 D2) 
D2) D2). The best individual from generation 0 was (IF A0 D1 D2) 
with a raw fitness value of 16 (i.e. 16 mismatches out of a 
possible 64). This individual uses just one of the address bits 
(A0) to decide whether the output is data line D1 or D2 and can 
never give an output of D0 or D3. Nonetheless, in the valley of 
the blind, the one-eyed man is king.  
 
The average raw fitness of the population immediately begins 
improving  from  the baseline value for generation 0 of 29.05 to 
26.89, 25.74, 23.78, 22.09, 21.38, 20.13, 19.91, etc. In 
generation 9 a best individual arises that has only 12 
mismatches, namely (IF (IF A0 (OR A1 D0)) D3 (IF A0 D1 D2)). Note 
that (IF A0 D1 D2) from generation 0 is now embedded as a sub-
expression within this new individual. In generation 11, a new 
best individual arises that has only 8 mismatches, namely (IF A0 
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D1 (IF Al D2 D0)). The sub-expression (IF Al D2 D0) contributes 
substantially to this improved performance because it perfectly 
deals with the case when A0 is NIL (False) by taking either data 
line D2 or D0 as its output (depending on A1). Note also that (IF 
A0 D1 ... ) is partially correct  when A0 is T (True). In 
generations 12, 13, and 14, a new individual arises with only 4 
mismatches, namely, (IF (IF (A0 (OR A1 D0) D3 (IF A0 D1 (IF Al D2 
D0)))). 
 
In generation 15, a perfect solution i.e. an individual with 0 
mismatches) emerges, namely, (IF (IF A0 A1) D3  (IF A0 D1 (IF Al 
D2 D0)) as a result of a crossover where the unfit sub-expression 
(IF (A0 (OR Al D0))) is replaced by the more fit sub-expression 
(IF A0 A1).  
 
The interpretation of this solution expression is as follows: The 
output of the multiplexer is  D3 if (IF A0 A1) is true (i.e. the 
two address bits are 11). Note that IF function in LISP (unlike 
the predicate calculus) is equivalent to the AND function. If 
that is not true, the output is D1 if A0 is true (because the two 
address bits are necessarily now 01). Note that setting the 
output to D1 if merely A0 were true in a vacuum is not a correct 
solution to the problem. However, after  (IF A0 Al) has been 
considered (and found to be false), then (IF A0 D1 ... ) is 
correct. Finally, (IF Al D2 D0) now  handles the case when 
address bit A0 must necessarily be NIL. In this context, the 
partially correct sub-expression that was around since generation 
0, namely (IF A1 D2 D0), sets the output of the multiplexer to D2 
if A1 is T (because  the two address bits are 10) and, otherwise, 
it sets the output to D0 (because the two address bits are 00).  
 
Note that a default hierarchy emerged here which incorporated 
partially correct sub-rules into a perfect overall procedure by 
dealing with ever more specific cases. Although default 
hierarchies are considered desirable in classifier systems 
(Goldberg 1989, Holland 1986), none emerged in Wilson's (1987) 
otherwise noteworthy experiments involving classifier systems and 
the multiplexer. 
 
The perfect solution above arose after processing 4500 
individuals. Others have required processing as few as 3900 
individuals. Note that the hierarchical algorithm does not start 
with any advance information identifiying inputs versus outputs 
or any advance information about the size and shape of the 
ultimate solution.   
 
4.3.2 Machine Learning -  The Parity Function 
 
For this experiment, the problem is to find the Boolean 
expression for the Boolean parity function. The k-parity function 
takes k Boolean arguments and returns T if an odd number of its 
arguments are T and returns NIL otherwise. The exclusive-or 
function and the k-parity function  were not realizable by early 
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simple perceptrons (Minsky and Papert 1969) and are, as a result, 
commonly used as test functions for  multi-layered non-linear 
neural networks (Rumelhart et. al. 1986). Moreover, these 
functions yield uninformative schema (similarity templates) with 
conventional linear genetic algorithms using fixed length binary 
strings so that these functions are not realizable with such 
linear genetic algorithms. 
  
The combined set of functions and atoms used for the 3-parity 
function was C = {AND, OR, NOT, IF, D2, D1, D0} with 2, 2, 1, 3, 
0, 0, and 0 arguments, respectively. Population size was 300. The 
S-expression (AND (IF D2 D0 (NOT D0)) D1) appeared in generation 
0 and was correct 6 out of the 8 cases constituting the 
environment. In generation 4, a rather complex S-expression 
appeared which contained part of this individual from generation 
0 and was correct 7 out of 8 times. Finally, in generation 5, a 
new individual emerged which was correct in all 8 cases, namely 
(IF (IF D2 D0 (NOT D0)) D1 (NOT D1)). Note that this final 
individual consisted of a substantial portion of the earlier best 
individual. Note also that the sub-expression (IF (D2 D0 (NOT 
D0))) is a partially correct solution to the problem (i.e. if 
only the two items of data D0 and D2 need to be considered) and 
that this sub-expression is embedded in a default hierarchy using 
it in conjunction with the value of D1 to produce the overall 
correct solution to the problem. 
 
The exclusive-or function (i.e. parity function of order 2) was 
similarly discovered and then successfully used in learning 
parity functions of up to order 10. 
 
4.4  Planning 
 
 
Nilsson (1988a) has presented a robotic action network that 
solves a problem described to Nilsson (1988b) by Ginsberg 
involving rearranging uniquely labeled blocks in various towers 
from an arbitrary initial arrangement into an arbitrary specified 
new order on a single target tower. In the experiment here, the 
goal is to automatically generate a general plan that solves this 
problem using hierarchical genetic algorithms.  
 
Three lists are involved in the formulation of the problem. The 
GOAL-LIST is the list specifying the desired final order in which 
the blocks are to be stacked in the target tower (i.e. 
"FRUITCAKE" or "UNIVERSAL"). The STACK is the list of blocks that 
are currently in the target tower (where the order is important). 
The TABLE is the list of blocks that are currently not in the 
target tower. The initial configuration consists of certain 
blocks in the STACK and the remaining blocks on the TABLE. The 
desired final configuration consists of all the blocks being in 
the STACK in the order specified by GOAL-LIST and no blocks being 
on the TABLE. 
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The environment can be viewed as consisting of up to (N+1)! 
different initial configurations of N blocks in the STACK list 
and on the TABLE list.  The raw fitness of a particular 
individual plan in the population is the number of initial 
configurations for which the particular plan produces the desired 
final configuration of blocks after the plan is executed. The 
computation of fitness can be significantly shortened by 
consolidating functionally equivalent initial configurations.  
 
In the problem as stated, three sensors dynamically track the 
environment in the formulation of the problem. TB is a sensor 
that dynamically specifies the CAR (i.e. first element) of the 
list which is the longest CDR (i.e. list of remaining elements) 
of the list STACK that matches a CDR of GOAL-LIST. NN is a sensor 
that dynamically specifies the next needed block for the STACK 
(i.e. the immediate predecessor of TB in GOAL-LIST). CS 
dynamically specifies the CAR of the STACK (i.e. the top block). 
Thus, the set of atoms available for solving the problem here is 
A = {TB, NN, CS}. Each of these atoms may assume the value of one 
of the block labels or the value NIL.  
 
The set of functions available for solving the problem here 
contains 6 functions F = {MS, MT, DU, QUOTE, NOT, EQ}. The 
function MS has one argument and moves block X to the top of the 
STACK if X is on the table. The function MT has one argument and 
moves the top item to the TABLE if the STACK contains X anywhere 
in the STACK. The iterative function DU ("do until") has two 
arguments, namely a predicate PRED and some WORK. Both the MS and 
MT functions have return values, although their true 
functionality consists of their side effects on STACK and TABLE. 
The function DU tests the predicate PRED and does the WORK (via 
the LISP evaluation function EVAL) repeatedly until the predicate 
PRED becomes T (True). Note that the fact that each function 
returns some value (in addition to whatever side effects it has 
on the STACK and TABLE) and the flexibility of the LISP language 
guarantees that the DU function can be executed and evaluated for 
any combination of functions and arguments (however unusual, 
pointless, or counter-productive). Since individuals in the 
population will often contain complicated nestings of DU 
functions and unsatisfiable termination predicates, limits are 
placed on both the number of iterations allowed  (without 
preventing any plan from being executed and evaluated).  The LISP 
function QUOTE has one argument and suppresses the usual 
immediate evaluation of arguments that occurs in LISP and thereby 
provides a way to prevent premature evaluation of the WORK 
argument of a DU function until it is inside the function DU. 
Note that the QUOTE function also has the interesting and highly 
epistatic effect of smothering the functionality of its arguments 
when it appears elsewhere.  
 
A population of 300 individual plans was used. The initial random 
population of plans had predictably low fitness. Typical random 
plans are plans such as (EQ (MT CS) NN) and (MS TB). This first 
plan unconditionally moves the top of the STACK to the TABLE and 
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the performs the useless Boolean comparison on the return value 
of the MT function with the sensor value NN. The second plan 
futilely attempts to move the block TB (which already is in the 
STACK) from the TABLE to the STACK. The single best individual in 
this initial population of plans typically can successfully 
handle perhaps one or two of the very simplest one or two initial 
configurations. 
 
After about 5 generations, we typically see the emergence of 
perhaps one plan in the population that correctly deals with the 
simplest group of cases in the environment (i.e. the cases in 
which the blocks, if any, in the initial STACK are already all in 
the correct order and in which there are no out-of-order blocks 
on top of those blocks). In several runs,  the rather 
parsimonious (DU (QUOTE (MS NN)) (NOT NN)) emerged as a partially 
correct plan.  This plan works by improving a partially correct 
initial STACK  by moving needed blocks (NN) in the correct 
sequence from the TABLE onto the STACK until there are no more 
blocks needed to finish the STACK (i.e. the sensor NN is no 
longer a block). 
 
After about 10 generations, the best single individual in the 
population is typically a plan that achieves a perfect score 
(that is, the plan produces the final desired configuration of 
blocks in the STACK for all initial configuration of blocks in 
the environment). One such plan is (NOT (EQ (DU (QUOTE (MT CS)) 
(NOT NN)) (EQ (MS (DU (QUOTE (MS NN)) (NOT NN))) (DU NN (QUOTE 
TB))))). Note that this plan contains a default hierarchy. In 
particular, the sub-plan (DU (QUOTE (MS NN)) (NOT NN)) comes from 
an ancestor from an earlier generation (which performed correctly 
for a simple set of cases of initial configurations). This sub-
plan is now incorporated as a sub-plan (i.e. a small "building 
block"). Note also that another sub-plan (DU (QUOTE (MT CS)) (NOT 
NN)) from another individual from an earlier generation correctly 
deals with the remaining cases by first moving out-of-order 
blocks from the STACK to the TABLE until the STACK contains no 
incorrect blocks. By combining these two somewhat fit sub-plans 
from earlier generations, a solution to the entire problem is 
achieved. Note also that the third sub-plan, namely (DU NN (QUOTE 
TB)), and the functions NOT and EQ perform no useful function 
(but also do no harm).   
  
4.5 Pattern Recognition 
 
Hinton (1988) has discussed the problem of translation-invariant 
recognition of a one-dimensional shape in a linear binary retina 
(with wrap-around) in connection with the claim that 
connectionist neural networks cannot possibly solve this type of 
problem. In the simplified experiment here, the retina has 6 
pixels (with wrap-around) and the shape consists of three 
consecutive binary 1's.  
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The functions available are a zero-sensing function H0, a one-
sensing function H1, ordinary multiplication, and a disjunctive 
function U. The atoms available are the integers 0, l, and 2, and 
a universally quantified atom k.  
 
LISP's comparative tolerance as to typing is well suited to 
pattern recognition problems where it is desirable to freely 
combine numerical concepts such as positional location (either 
absolute,  or universally quantified), relative displacement 
(e.g. the symbol 2 pixels to the right) with various combinations 
of Boolean tests. The functions U and * so defined resolve 
potential type problems that would otherwise arise when integers 
identify positions in the retina.  
 
In one particular run, the number of mismatches for the best 
individual of generation 0 was 48 and rapidly improved to 40 for 
generations 1 and 3. It then improved to 0 mismatches in 
generation 3 for the individual (* 1 (* (H1 K 1) (H1 K 0) (H1 K 
2)) 1). Ignoring the extraneous outermost conjunction of two l's, 
this individual returns a value of the integer 1 if and only if a 
binary 1 is found in the retina in positions 0, 1, and 2 (each 
displaced by the same constant k). 
 
5   Robustness 
 
The existence and nurturing of a population of disjunctive 
alternative solutions to a problem allows hierarchical genetic 
algorithms to effectively perform even when the environment 
changes. To demonstrate this ability, the environment for 
generations 0 through 9 is the quadratic polynomial x2 +x +2; 
however, at generation 10, the environment abruptly changes to 
the cubic polynomial x3 + x2 +2x +1; and, at generation 20, it 
changes again to a new quadratic polynomial x2 +2x + 1 . 
Population size was 300. A perfect-scoring quadratic polynomial 
for the first environment was created by generation 3. Normalized 
average population fitness stabilized in the neighborhood 0.5 for 
generations 3 through 9 (with genetic diversity maintained). 
Predictably, the fitness level abruptly dropped to virtually 0 
for generation 10 and 11 when the environment changed. 
Nonetheless, fitness increased for generation 12 and stabilized 
in the neighborhood of 0.7 for generations 13 to 19 (after 
creation of a perfect-scoring cubic polynomial).  The fitness 
level again abruptly dropped to virtually 0 for generation 20 
when the environment again changed. However, by generation 22, a 
fitness level again stabilized in the neighborhood of 0.7 after 
creation of a new perfect-scoring quadratic polynomial. 
  
6   Theoretical Discussion  
 
Holland showed that for genetic algorithms using fitness 
proportionate reproduction and crossover, the expected number of 
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occurrences of every schema H, in the next generation is 
approximately                                    
            m(H,t+1) >= f(H) m(H,t) (1 - ε) 
                        f* 
where f* is the average fitness of the population and ε is small. 
In particular, viewed over several generations where either 
f(H)/f* is stationary or remains above 1 by at least a constant 
amount, this means that schemata with above-average (below-
average) fitness appear in succeeding generations at an 
approximately exponentially increasing (decreasing) rates. 
Holland also showed that the form of the optimal allocation of 
trials among random variables in a multi-armed slot machine 
problem (involving minimizing losses while exploring new or 
seemingly non-optimal schemata while also exploiting seemingly 
optimal schemata) is similarly approximately exponential so that 
the processing of schemata by genetic algorithms using fitness 
proportionate reproduction and crossover is mathematical near 
optimal. This allocation of trials is most nearly optimal when ε 
is  small. ε is the defining length δ(Η) of the schemata involved 
(i.e. the distance between the outermost specific, non-* symbols) 
divided by L-1 (i.e. the number of points where crossover may 
occur). Therefore, ε is short when δ(Η) is short (i.e. the 
schemata is a small, short, compact "building block"). Thus, 
genetic algorithms process short-defining length schemata most 
favorably and problems structured so that their solutions can be 
"built up" from such small "building blocks" are most optimally 
handled by genetic algorithms. 
  
In hierarchical genetic algorithms, the individuals in the 
population are LISP S-expressions (i.e. rooted point-labeled 
trees in a plane), instead of linear character strings. The set 
of similar individuals sharing common  features (i.e. the 
schemata) is a hyperspace of LISP S-expressions (i.e. rooted 
point-labeled trees in a plane) sharing common features. 
 
Consider first the case where the common features are a single 
sub-tree consisting of h specified points with no unspecified 
(don't care) points in that sub-tree. The set of individuals 
sharing the common feature is the hyperspace consisting of all 
rooted point-labeled trees in a plane containing the designated 
sub-tree as a sub-tree. This set of trees is infinite, but it can 
be partitioned into finite subsets by using the number of points 
in the tree as the partitioning parameter. If the subset of trees 
having a particular number of points and sharing a fully 
specified sub-tree is considered, fitness proportionate 
reproduction causes growth (or decay) in the size of that subset 
in the new population in accordance with the relative fitness of 
the subset to the average population fitness in the same near 
optimal way as it does for string-based linear genetic 
algorithms. Holland's results on optimal allocation or trials and 
Holland's result on growth (or decay) of number of occurrences of 
schemata as a result of fitness proportionate reproduction alone 
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(1975) do not depend, in any way, on the character of the 
individual objects in the population. The deviation from this 
optimal rate of growth (or decay) of schema is caused by the 
crossover operation. This deviation is relatively small when the 
number of points defining the common feature (i.e. the number of 
points in the sub-tree) is relatively small. In particular, if 
ε  is the ratio of the number of points in the sub-tree to the 
number of points in the  tree, then ε  is relatively small when 
the sub-tree is relatively small. Thus, for the case where the 
specific positions of the schemata are coextensive with a sub-
tree, the overall effect of fitness proportionate reproduction 
and crossover is that subprograms (i.e. sub-trees, sub-lists) 
from  relatively high fitness programs are used as "building 
blocks" for constructing new individuals in an approximately near 
optimal way.  Over a period of time, this concentrates the search 
of the solution space  into sub-hyperspaces of LISP S-expressions 
of ever decreasing  dimensionality and ever increasing  fitness. 
 
This argument appears to extend to similarities defined by a sub-
tree containing one or more non-specific points internal to the 
sub-tree and to similarities defined by a disjoint set of two or 
more sub-trees of either type. The deviation from optimality is 
relatively small to the extent that both the number of points 
defining the common feature is relatively small and the number of 
disjoint sub-trees is relatively small. Thus, the overall effect 
is that subprograms (i.e. sub-trees) from relatively high fitness 
individuals are used as "building blocks" for constructing new 
individuals. 
 
Hierarchical genetic algorithms are a natural extension of 
string-based linear genetic algorithms in another way. Genetic 
algorithms, in general, are mathematical algorithms which are 
based on Darwinian principles of reproduction and survival of the 
fittest and which transform a population of individuals (and 
their fitness in the environment) into a new population of 
individuals using operations analogous to genetic operations 
actually observed in nature. In this view, a character found at a 
particular position in a mathematical character string in a 
conventional string-based genetic algorithm is considered 
analogous to one of the four nucleiotide bases (adenine, 
cytosine, guanine, or thymine) found in molecules of 
deoxyribonucleic acid (DNA). The observed fitness in the 
environment of the entire actual biological individual created 
using the passive information in a particular linear string of 
DNA is then used in the computation of average schemata fitness 
for each schemata represented by that individual. In contrast, 
the proactive computational procedure carried out by a LISP S-
expression in a hierarchical genetic algorithm can be viewed as 
analogous to the work performed by a protein in a living cell. 
The observed fitness in the environment of the entire actual 
biological individual created as a result of the action of the 
proactive LISP S-expressions contribute, in the same way as with 
string-based genetic algorithms, directly to the computation of 
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average schemata fitness for each schemata represented by that 
individual.  That is, hierarchical genetic algorithms employ the 
same automatic allocation of credit inherent in the basic string-
based genetic algorithm described by Holland (1975) and inherent 
in Darwinian reproduction and survival of the fittest amongst 
biological populations in nature. This automatic allocation of 
credit contrasts with the connectionistic "bucket brigade" credit 
allocation and reinforcement algorithm used in classifier systems 
(Holland 1986, Holland and Reitman 1978) which is not founded on 
any observed natural mechanism involving adaptation amongst 
biological populations (Westerdale 1985). 
  
7 Conclusions 
 
The examples from the five areas of artificial intelligence, 
including sequence induction, automatic programming, function 
learning, robotic planning, and pattern recognition support the 
view that computational procedures (i.e. computer programs, LISP 
S-expressions) can be built up from appropriate small "building 
blocks" using hierarhical genetic algorithms. 
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