#!/usr/bin/python3 # -*- coding: utf-8 -*- """ X**2 optimiziation """ # %% import sys import string import random from typing import TypedDict import numpy as np class Individual(TypedDict): genome: str fitness: int Population = list[Individual] def initialize_individual(genome: str, fitness: int) -> Individual: return {"genome": genome, "fitness": fitness} def initialize_pop(bitlen: int, pop_size: int) -> Population: population: Population = [] for _ in range(pop_size): genome = "".join(random.choice("01") for _ in range(bitlen)) individual = initialize_individual(genome=genome, fitness=0) population.append(individual) return population def recombine_pair(parent1: Individual, parent2: Individual) -> Population: place = random.choice(range(len(parent1["genome"]))) child1_genome = parent1["genome"][:place] + parent2["genome"][place:] child2_genome = parent2["genome"][:place] + parent1["genome"][place:] child1 = initialize_individual(genome=child1_genome, fitness=0) child2 = initialize_individual(genome=child2_genome, fitness=0) return [child1, child2] def recombine_group(parents: Population, recombine_rate: float) -> Population: children: Population = [] for ipair in range(0, len(parents) - 1, 2): if random.random() < recombine_rate: child1, child2 = recombine_pair( parent1=parents[ipair], parent2=parents[ipair + 1] ) else: child1, child2 = parents[ipair], parents[ipair + 1] children.extend([child1, child2]) return children def mutate_individual(parent: Individual, mutate_rate: float) -> Individual: new_genome = "".join( [ (random.choice("01") if random.random() < mutate_rate else ch) for ch in parent["genome"] ] ) mutant = initialize_individual(genome=new_genome, fitness=0) return mutant def mutate_group(children: Population, mutate_rate: float) -> Population: mutants: Population = [] for child in children: mutants.append(mutate_individual(parent=child, mutate_rate=mutate_rate)) return mutants def evaluate_individual(bitlen: int, individual: Individual) -> None: individual["fitness"] = int(individual["genome"], 2) ** 2 def evaluate_group(bitlen: int, individuals: Population) -> None: for ind_index in range(len(individuals)): evaluate_individual(bitlen, individuals[ind_index]) def rank_group(individuals: Population) -> None: individuals.sort(key=lambda ind: ind["fitness"], reverse=True) def parent_select(individuals: Population, number: int) -> Population: parents: Population = [] fitnesses = [i["fitness"] for i in individuals] parents = random.choices(individuals, fitnesses, k=number) return parents def survivor_select(individuals: Population, pop_size: int) -> Population: return individuals[:pop_size] def evolve(bitlen: int, pop_size: int) -> Population: population = initialize_pop(bitlen=bitlen, pop_size=pop_size) evaluate_group(bitlen=bitlen, individuals=population) best_fitness = -np.inf perfect_fitness = ((2**bitlen) - 1) ** 2 counter = 0 while best_fitness < perfect_fitness: print(population) counter += 1 parents = parent_select(individuals=population, number=pop_size) children = recombine_group(parents=parents, recombine_rate=0.8) mutate_rate = (1 - (best_fitness / perfect_fitness)) / 5 mutants = mutate_group(children=children, mutate_rate=mutate_rate) evaluate_group(bitlen=bitlen, individuals=mutants) everyone = population + mutants rank_group(individuals=everyone) population = survivor_select(individuals=everyone, pop_size=pop_size) if best_fitness != population[0]["fitness"]: best_fitness = population[0]["fitness"] print("Iteration number", counter, "with best individual", population[0]) return population if __name__ == "__main__": import json if len(sys.argv) == 3: with open(file=sys.argv[1]) as finput: obj_name = finput.readlines() OBJECTIVE = int(obj_name[0].strip()) POP_SIZE = int(obj_name[1]) with open(file=sys.argv[2], mode="w") as foutput: population = evolve(bitlen=OBJECTIVE, pop_size=POP_SIZE) foutput.write(json.dumps(population) + "\n") else: BITLEN = int(input("What size bitstring you like to evolve?\n")) POP_SIZE = int(input("How many individuals would you like to evolve?\n")) population = evolve(bitlen=BITLEN, pop_size=POP_SIZE)