
Transport Layer 3-1

Chapter 3: Transport Layer
our goals:
 understand

principles behind
transport layer
services:

• multiplexing,
demultiplexing

• reliable data
transfer

• flow control
• congestion

control

 learn about Internet
transport layer
protocols:

• UDP: connectionless
transport

• TCP: connection-
oriented reliable
transport

• TCP congestion
control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-3

Transport services and
protocols
 provide logical

communication between
app processes running on
different hosts

 transport protocols run in
end systems

• send side: breaks app
messages into
segments, passes to
network layer

• rcv side: reassembles
segments into
messages, passes to
app layer

 more than one transport
protocol available to apps

• Internet: TCP and UDP

applicatio
n

transport
network
data link
physical

logical end-end transport

applicatio
n

transport
network
data link
physical

Host to
host

Transport layer protocols

And more to come in a couple days!

Common applications

Transport Layer 3-7

Transport vs. network layer
 network layer:

logical
communication
between hosts

 transport layer:
logical
communication
between
processes
• relies on,

enhances,
network layer
services

12 kids in Ann’s house
sending letters to 12
kids in Bill’s house:

 hosts = houses
 processes = kids
 app messages =

letters in envelopes
 transport protocol =

Ann and Bill who
demux to in-house
siblings

 network-layer protocol
= postal service

household analogy:

Transport Layer 3-8

Internet transport-layer
protocols
 reliable, in-order

delivery (TCP)
• congestion control
• flow control
• connection setup

 unreliable, unordered
delivery: UDP

• no-frills extension of
“best-effort” IP

 services not
available:

• delay guarantees
• bandwidth guarantees

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

logical end-end transport

Transport Layer 3-9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

●Each port number is a 16-bit number, ranging from 0 to
65535.
●The port numbers ranging from 0 to 1023 are called well-
known port numbers and are restricted, which means that
they are reserved for use by well-known application protocols
such as HTTP (which uses port number 80) and FTP (which
uses port number 21).
●The list of well-known port numbers is given in RFC 1700 and
is updated at http://www.iana.org
●Text file on *nix hosts to see standard list, view with:
$ less /etc/services

Ports
●the privileged port numbers
(1 < port < 1024)

●the ephemeral port numbers
(officially 49152 <= port <= 65535)

●the registered port numbers
(officially 1024 <= port < 49152)

http://www.iana.org/

Port inversion

●Determining which applications are listening on which
ports is a relatively easy task. Indeed there are a number of
public domain programs, called port scanners, that do just
that.
●Perhaps the most widely used of these is nmap, freely
available at http://nmap.org and included in most Linux
distributions.
●For TCP, nmap sequentially scans ports, looking for ports
that are accepting TCP connections.
●For UDP, nmap again sequentially scans ports, looking for
UDP ports that respond to transmitted UDP segments.
●In both cases, nmap returns a list of open, closed, or
unreachable ports.
●A host running nmap can attempt to scan any target host
anywhere in the Internet.
●Try it: $ nmap www.mail.com (what will be open?)
●Reconnaissance procedures, network enumeration
●Check shodan.io

Scanning ports: nmap

Transport Layer 3-13

Multiplexing / demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from
multiple
sockets, add transport
header (later used for
demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

Transport Layer 3-14

How demultiplexing works

 host receives IP datagrams
• each datagram has source IP

address, destination IP address
• each datagram carries one

transport-layer segment
• each segment has source,

destination port number
 host uses IP addresses & port

numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer 3-15

Connectionless demultiplexing

 recall: created socket
has host-local port #:

 DatagramSocket mySocket1
 = new
DatagramSocket(12534);

 when host receives
UDP segment:

• checks destination
port # in segment

• directs UDP segment
to socket with that
port #

 recall: when creating
datagram to send
into UDP socket, must
specify

• destination IP address
• destination port #
IP datagrams with
same dest. port #,
but different source
IP addresses and/or
source port numbers
will be directed to
same socket at dest

Transport Layer 3-16

Connectionless demux:
example

DatagramSocket serverSocket
= new DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket
 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-17

Connection-oriented demux

 TCP socket
identified by 4-
tuple:

• source IP address
• source port number
• dest IP address
• dest port number

 demux: receiver
uses all four values
to direct segment
to appropriate
socket

 server host may
support many
simultaneous TCP
sockets:

• each socket identified
by its own 4-tuple

 web servers have
different sockets for
each connecting client

• non-persistent HTTP
will have different
socket for each request

Transport Layer 3-18

Connection-oriented demux:
example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address

A

host: IP
address

C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server:
IP

address
B

Transport Layer 3-19

Connection-oriented demux:
example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address

A

host: IP
address

C

server:
IP

address
B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

If I send you a UDP joke, you might not get it...

Transport Layer 3-22

UDP: User Datagram Protocol
[RFC 768]
 “no frills,” “bare bones”

Internet transport
protocol

 “best effort” service,
UDP segments may be:

• lost
• delivered out-of-order

to app
 connectionless:

• no handshaking
between UDP sender,
receiver

• each UDP segment
handled independently
of others

 UDP use:
 streaming

multimedia apps
(loss tolerant, rate
sensitive)

 DNS
 SNMP

 reliable transfer
over UDP:
 add reliability at

application layer
 application-specific

error recovery!

●Uses a simple connectionless communication model with a
minimum of protocol mechanism.
●Provides checksums for data integrity, and port numbers
for addressing different functions at the source and
destination of the datagram.
●It has no handshaking dialogues, and thus exposes the
user's program to any unreliability of the underlying
network;
●There is no guarantee of delivery, ordering, or duplicate
protection.
●If error-correction facilities are needed at the network
interface level, an application layer protocol may be used.

UDP: User Datagram Protocol
[RFC 768]

●Unreliable: When a UDP message is sent, it cannot be known
if it will reach its destination. No of acknowledgment,
retransmission, or timeout.
●Not ordered: If two messages are sent to the same recipient,
the order in which they arrive cannot be predicted.
●Lightweight: No ordering of messages, no tracking
connections, etc.
●Datagrams: Packets are sent individually and are checked for
integrity only if they arrive. Packets have definite boundaries
which are honored upon receipt, meaning a read operation at
the receiver socket will yield an entire message as it was
originally sent.
●No congestion control: UDP itself does not avoid
●Broadcasts: being connectionless, UDP can broadcast; packets
can be addressed to be receivable by all devices on a subnet.

UDP: User Datagram Protocol
[RFC 768]

●the UDP service cannot deliver data segments larger
than 65507 bytes (65KB; 0.065MB)
●the UDP service does not guarantee the delivery of
segments (losses and desquencing can occur)
●the UDP service will not (generally) deliver a corrupted
segment to the destination

UDP: User Datagram Protocol
[RFC 768]

Transport Layer 3-26

UDP: segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection establishment
(which can add delay)

 simple: no connection state
at sender, receiver

 small header size
 no congestion control: UDP

can blast away as fast as
desired

 New protocol design at
application layer without
kernel re-write

why is there a UDP?

●Source port number: sender's port; should be assumed to be
the port to reply to if needed. If the source host is the client, the
port number is likely to be an ephemeral port number. If the
source host is the server, the port number is likely to be a well-
known port number.
●Destination port number: receiver's port is required.
●Length: specifies the length in bytes of the UDP header and
UDP data. The minimum length is 8 bytes because that is the
length of the header. Data length, which is imposed by the
underlying IPv4 protocol, is 65,507 bytes (65,535 - 8 byte UDP
header - 20 byte IP header).
●Checksum: may be used for error-checking of the header and
data. This field is optional in IPv4, and mandatory in IPv6. The
field carries all-zeros if unused.

UDP header

Transport Layer 3-28

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment
 check if computed

checksum equals checksum
field value:

• NO - error detected
• YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Transport Layer 3-29

Internet checksum:
example
example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from
the most significant bit needs to be added to the

result

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Pseudo header includes IP addresses (which are normally in network layer), why?

1st complement of the sum of all the 16-bit words in the segment, such that adding
back the checksum to the same input will produce 111111111…

This pseudo-header allows the receiver to detect errors affecting the IP source or
destination addresses placed in the IP layer below. This is a violation of the layering
principle that dates from the time when UDP and IP were elements of a single
protocol.

UDP checksum - IP4

UDP checksum - IP6
●When UDP runs over IPv6, the checksum is mandatory. The method used to
compute it is changed as documented in RFC 2460:
●Any transport or other upper-layer protocol that includes the addresses from the IP
header in its checksum computation must be modified for use over IPv6 to include
the 128-bit IPv6 addresses.
●When computing the checksum, again a pseudo header is used that mimics the real
IPv6 header:

The source address is the one in the IPv6 header. The destination address is the final destination;
if the IPv6 packet does not contain a Routing header, that will be the destination address in the
IPv6 header; otherwise, at the originating node, it will be the address in the last element of the
Routing header, and, at the receiving node, it will be the destination address in the IPv6 header.
The value of the Next Header field is the protocol value for UDP: 17. The UDP length field is the
length of the UDP header and data.

●It is transaction-oriented, suitable for simple query-response
protocols such as the Domain Name System or the Network Time
Protocol.
●It provides datagrams, suitable for modeling other protocols such
as IP tunneling or Remote Procedure Call and the Network File
System.
●It is simple, suitable for bootstrapping or other purposes without a
full protocol stack, such as the DHCP and Trivial File Transfer
Protocol.
●It is stateless, suitable for very large numbers of clients, such as in
streaming media applications such as IPTV.
●The lack of retransmission delays makes it suitable for real-time
applications such as Voice over IP, online games, and many
protocols built on top of the Real Time Streaming Protocol.
●It works well in unidirectional communication and is suitable for
broadcast information such as in many kinds of service discovery
and shared information such as broadcast time or Routing
Information Protocol.

UDP is well suited for certain
applications

Datagram Transport Layer
Security (DTLS)

●The DTLS protocol is based on the stream-oriented
Transport Layer Security (TLS) protocol and is
intended to provide similar security guarantees.
●The DTLS protocol datagram preserves the
semantics of the underlying transport the application
does not suffer from the delays associated with
stream protocols, but has to deal with packet
reordering, loss of datagram and data larger than
the size of a datagram network packet.

Check out some UDP packets in Wireshark

Transport Layer 3-35

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-36

Reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

Transport Layer 3-37

 characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

Reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!

Transport Layer 3-38

 characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

 important in application, transport, link layers
• top-10 list of important networking topics!

Reliable data transfer

Transport Layer 3-39

Reliable data transfer:
getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to

receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called
by rdt to deliver data to

upper

Transport Layer 3-40

we’ll:
 incrementally develop sender, receiver sides

of reliable data transfer protocol (rdt)
 consider only unidirectional data transfer

• but control info will flow on both directions!
 use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely
determined by

next event

event
actions

Reliable data transfer: getting started

Transport Layer 3-41

rdt1.0:
reliable transfer over a reliable channel
 underlying channel perfectly reliable

• no bit errors
• no loss of packets

 separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-42

 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly

tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver

explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond
rdt1.0):

• error detection
• receiver feedback: control msgs (ACK,NAK)

rcvr->sender

rdt2.0:
channel with bit errors

How do humans recover from “errors”
during conversation?

Transport Layer 3-43

 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly

tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver

explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK, NAK) from

receiver to sender

rdt2.0:
channel with bit errors

Transport Layer 3-44

rdt2.0: FSM specification

Wait for
call from
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

belowsender

receiver
rdt_send(data)

Transport Layer 3-45

rdt2.0: operation with no
errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Transport Layer 3-46

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Transport Layer 3-47

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK
corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits current

pkt if ACK/NAK corrupted
 sender adds sequence

number to each pkt
 receiver discards (doesn’t

deliver up) duplicate pkt

stop and wait
sender sends one
packet,
then waits for
receiver
response

Transport Layer 3-48

rdt2.1: sender, handles garbled
ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
 call 1 from

above

Wait for
ACK or
NAK 1

Transport Layer 3-49

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: receiver, handles garbled
ACK/NAKs

Transport Layer 3-50

rdt2.1: discussion

sender:
 seq # added to pkt
 two seq. #’s (0,1)

will suffice. Why?
 must check if

received ACK/NAK
corrupted

 twice as many states
• state must

“remember” whether
“expected” pkt
should have seq # of
0 or 1

receiver:
 must check if

received packet is
duplicate

• state indicates
whether 0 or 1 is
expected pkt seq
#

 note: receiver can
not know if its last
ACK/NAK received
OK at sender

Transport Layer 3-51

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only
 instead of NAK, receiver sends ACK for last

pkt received OK
• receiver must explicitly include seq # of pkt being

ACKed
 duplicate ACK at sender results in same

action as NAK: retransmit current pkt

Transport Layer 3-52

rdt2.2: sender, receiver
fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
 (corrupt(rcvpkt) ||
 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Transport Layer 3-53

rdt3.0: channels with errors and
loss

new assumption:
underlying
channel can also
lose packets
(data, ACKs)

• checksum, seq. #,
ACKs,
retransmissions
will be of help …
but not enough

approach: sender waits
“reasonable” amount
of time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just
delayed (not lost):

• retransmission will be
duplicate, but seq. #’s
already handles this

• receiver must specify
seq # of pkt being
ACKed

 requires countdown timer

Transport Layer 3-54

rdt3.0
sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

rdt_rcv(rcvpkt)

Transport Layer 3-55

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in
action

Transport Layer 3-56

rdt3.0 in
action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)

Transport Layer 3-57

Performance of rdt3.0
 rdt3.0 is correct, but performance stinks
 e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy
sending

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

 if RTT=30 msec, 1KB pkt every 30 msec:
33kB/sec thruput over 1 Gbps link

 network protocol limits use of physical
resources!

Dtrans =
L
R

 8000 bits
109 bits/sec= = 8 microsecs

Transport Layer 3-58

rdt3.0: stop-and-wait
operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

Transport Layer 3-59

Pipelined protocols

pipelining: sender allows multiple, “in-
flight”, yet-to-be-acknowledged pkts

• range of sequence numbers must be
increased

• buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-60

Pipelining: increased
utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

Transport Layer 3-61

Pipelined protocols:
overview
Go-back-N:
 sender can have up

to N unacked
packets in pipeline

 receiver only sends
cumulative ack

• doesn’t ack packet
if there’s a gap

 sender has timer
for oldest unacked
packet

• when timer expires,
retransmit all
unacked packets

Selective Repeat:
 sender can have up to

N unack’ed packets in
pipeline

 rcvr sends individual
ack for each packet

 sender maintains
timer for each
unacked packet

• when timer expires,
retransmit only that
unacked packet

Transport Layer 3-62

Go-Back-N: sender
 k-bit seq # in pkt header
 “window” of up to N, consecutive unack’ed pkts

allowed

 ACK(n): ACKs all pkts up to, including seq # n -
“cumulative ACK”
• may receive duplicate ACKs (see receiver)

 timer for oldest in-flight pkt
 timeout(n): retransmit packet n and all higher seq

pkts in window

Transport Layer 3-63

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-
1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

Transport Layer 3-64

ACK-only: always send ACK for correctly-
received pkt with highest in-order seq #

• may generate duplicate ACKs
• need only remember expectedseqnum

 out-of-order pkt:
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)

GBN: receiver extended
FSM

Transport Layer 3-65

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Transport Layer 3-66

Selective repeat

 receiver individually acknowledges all
correctly received pkts

• buffers pkts, as needed, for eventual in-
order delivery to upper layer

 sender only resends pkts for which ACK
not received

• sender timer for each unACKed pkt
 sender window

• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts

Transport Layer 3-67

Selective repeat: sender, receiver
windows

Transport Layer 3-68

Selective repeat

data from above:
 if next available seq #

in window, send pkt
timeout(n):
 resend pkt n, restart

timer
ACK(n) in

[sendbase,sendbase+N]:
 mark pkt n as received
 if n smallest unACKed

pkt, advance window
base to next unACKed
seq #

sender
pkt n in [rcvbase,

rcvbase+N-1]
 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also

deliver buffered, in-
order pkts), advance
window to next not-
yet-received pkt

pkt n in [rcvbase-
N,rcvbase-1]

 ACK(n)
otherwise:
 ignore

receiver

Transport Layer 3-69

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5;
send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-70

Selective repeat:
dilemma

example:
 seq #’s: 0, 1, 2, 3
 window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

 receiver sees no
difference in two
scenarios!

 duplicate data
accepted as new
in (b)

Q: what relationship
between seq #
size and window
size to avoid
problem in (b)?

Transport Layer 3-71

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-73

TCP: Overview
RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
• bi-directional data flow

in same connection
• MSS: maximum

segment size
 connection-oriented:

• handshaking
(exchange of control
msgs) inits sender,
receiver state before
data exchange

 flow controlled:
• sender will not

overwhelm receiver

 point-to-point:
• one sender, one

receiver
 reliable, in-order

byte steam:
• no “message

boundaries”

 pipelined:
• TCP congestion and

flow control set
window size

Transport Layer 3-74

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-75

TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number”
of first byte in
segment’s data

acknowledgements:
• seq # of next byte
expected from other
side

• cumulative ACK
Q: how receiver handles
out-of-order segments
• A: TCP spec doesn’t
say, - up to
implementor

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet
ACKed
(“in-flight
”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-76

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-77

TCP round trip time,
timeout
Q: how to set TCP

timeout value?
 longer than RTT

• but RTT varies
 too short:

premature timeout,
unnecessary
retransmissions

 too long: slow
reaction to
segment loss

Q: how to estimate
RTT?

 SampleRTT: measured
time from segment
transmission until ACK
receipt

• ignore retransmissions
 SampleRTT will vary,

want estimated RTT
“smoother”

• average several
recent measurements,
not just current
SampleRTT

Transport Layer 3-78

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT
 exponential weighted moving average
 influence of past sample decreases

exponentially fast
 typical value: = 0.125

TCP round trip time,
timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time
(seconds)

Transport Layer 3-79

 timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +
 *|SampleRTT-EstimatedRTT|SampleRTT-EstimatedRTT|SampleRTT-EstimatedRTT|

TCP round trip time,
timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-80

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-81

TCP reliable data transfer
 TCP creates rdt

service on top of
IP’s unreliable
service

• pipelined segments
• cumulative acks
• single

retransmission timer
 retransmissions

triggered by:
• timeout events
• duplicate acks

let’s initially consider
simplified TCP
sender:

• ignore duplicate acks
• ignore flow control,

congestion control

Transport Layer 3-82

TCP sender events:
data rcvd from app:
 create segment with

seq #
 seq # is byte-stream

number of first data
byte in segment

 start timer if not
already running

• think of timer as for
oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:
 retransmit segment

that caused timeout
 restart timer
 ack rcvd:
 if ack acknowledges

previously unacked
segments

• update what is
known to be ACKed

• start timer if there
are still unacked
segments

Transport Layer 3-83

TCP sender (simplified)

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)
 start timer

data received from application above

retransmit not-yet-acked
segment with
smallest seq. #
start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-acked segments)
 start timer
 else stop timer
 }

ACK received, with ACK field value y

Transport Layer 3-84

TCP: retransmission
scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u

t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-85

TCP: retransmission
scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u

t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-86

TCP ACK generation [RFC 1122, RFC

2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-87

TCP fast
retransmit
 time-out period

often relatively long:
• long delay before

resending lost packet
 detect lost segments

via duplicate ACKs.
• sender often sends

many segments
back-to-back

• if segment is lost,
there will likely be
many duplicate ACKs.

if sender receives
3 ACKs for same
data
(“triple duplicate
ACKs”), resend
unacked segment
with smallest seq
#

 likely that unacked
segment lost, so
don’t wait for
timeout

TCP fast retransmit

Transport Layer 3-88

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u

t

ACK=100

ACK=100

ACK=100

TCP fast
retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-89

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-90

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than
TCP

receiver is
delivering
(sender is
sending)

from sender

receiver controls sender,
so sender won’t overflow
receiver’s buffer by
transmitting too much,
too fast

flow control

Transport Layer 3-91

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

 receiver “advertises”
free buffer space by
including rwnd value in
TCP header of receiver-
to-sender segments

• RcvBuffer size set via
socket options (typical
default is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

 sender limits amount of
unacked (“in-flight”)
data to receiver’s rwnd
value

 guarantees receive
buffer will not overflow

receiver-side buffering

Transport Layer 3-92

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-93

Connection Management
before exchanging data, sender/receiver

“handshake”:
 agree to establish connection (each knowing the

other willing to establish connection)
 agree on connection parameters

connection state:
ESTAB
connection variables:

seq # client-to-
server
 server-to-client
rcvBuffer size
 at server,client

application

connection state:
ESTAB
connection Variables:

seq # client-to-
server
 server-to-
client
rcvBuffer size
 at server,client

application

Socket clientSocket =
 newSocket("hostname","port

number");

Socket connectionSocket =
welcomeSocket.accept();

network
network

Transport Layer 3-94

Q: will 2-way handshake
always work in network?

 variable delays
 retransmitted messages

(e.g. req_conn(x)) due to
message loss

 message reordering
 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a
connection

Transport Layer 3-95

Agreeing to establish a
connection

2-way handshake failure scenarios:

retransmit
req_conn(

x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminat

es

server
forgets x

connection
x completes

retransmit
req_conn(

x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1
)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminat

es

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1
)

connection
x completes server

forgets x

Transport Layer 3-96

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-97

TCP 3-way
handshake: FSM

closed

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
 newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

Transport Layer 3-98

TCP: closing a connection
 client, server each close their side of

connection
• send TCP segment with FIN bit = 1

 respond to received FIN with ACK
• on receiving FIN, ACK can be combined with

own FIN
 simultaneous FIN exchanges can be

handled

Transport Layer 3-99

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-100

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-101

congestion:
 informally: “too many sources sending

too much data too fast for network to
handle”

 different from flow control!
 manifestations:

• lost packets (buffer overflow at
routers)

• long delays (queueing in router
buffers)

 a top-10 problem!

Principles of congestion
control

Transport Layer 3-102

Causes/costs of congestion:
scenario 1
 two senders, two

receivers
 one router, infinite

buffers
 output link capacity: R
 no retransmission

 maximum per-
connection throughput:
R/2

unlimited shared
output link buffers

Host A

original data: in

Host B

throughput:out

R/2

R/2

o

ut

in R/2
d

el
a

y
in

 large delays as arrival
rate, in, approaches
capacity

Transport Layer 3-103

 one router, finite buffers
 sender retransmission of timed-out packet

• application-layer input = application-layer output:in =
out

• transport-layer input includes retransmissions :in in

finite shared output
link buffers

Host A

in : original data

Host B

out'in: original data, plus

retransmitted data

‘

Causes/costs of congestion:
scenario 2

Transport Layer 3-104

idealization: perfect
knowledge

 sender sends only when
router buffers available

finite shared output
link buffers

in : original data
out'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

o

u
t

in

Causes/costs of congestion:
scenario 2

Host B

A

Transport Layer 3-105

in : original data
out'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known
loss packets can be
lost, dropped at router
due to full buffers

 sender only resends if
packet known to be lost

Causes/costs of congestion:
scenario 2

A

Host B

Transport Layer 3-106

in : original data
out'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion:
scenario 2

Idealization: known
loss packets can be
lost, dropped at router
due to full buffers

 sender only resends if
packet known to be lost

R/2

R/2in

ou

t

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

A

Host B

Transport Layer 3-107

A

in
out'in

copy

free buffer space!

timeout

R/2

R/2in

ou

t

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers
 sender times out prematurely,

sending two copies, both of
which are delivered

Causes/costs : scenario 2

Transport Layer 3-108

R/2

ou

t

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple

copies of pkt
• decreasing goodput

R/2in

Causes/costs of congestion:
scenario 2
Realistic: duplicates
 packets can be lost,

dropped at router due
to full buffers

 sender times out
prematurely, sending
two copies, both of
which are delivered

Transport Layer 3-109

 four senders
 multihop paths
 timeout/retransmit

Q: what happens as in
and in

’ increase ?

finite shared output
link buffers

Host A out

Causes/costs of congestion:
scenario 3

Host B

Host C
Host D

in : original data

'in: original data, plus

retransmitted data

A: as red in
’ increases, all

arriving blue pkts at upper
queue are dropped, blue
throughput 0

Transport Layer 3-110

another “cost” of congestion:
 when packet dropped, any “upstream

transmission capacity used for that
packet was wasted!

Causes/costs of congestion:
scenario 3

C/2

C/2

o

u
t

in
’

Transport Layer 3-111

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection

management
3.6 principles of

congestion control
3.7 TCP congestion

control

Transport Layer 3-112

TCP congestion control: additive
increase multiplicative decrease

 approach: sender increases transmission
rate (window size), probing for usable
bandwidth, until loss occurs
• additive increase: increase cwnd by 1

MSS every RTT until loss detected
• multiplicative decrease: cut cwnd in half

after loss

c
w
n
d
:

 T
C

P
 s

en
de

r
co

ng
es

tio
n

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-113

TCP Congestion Control:
details

 sender limits transmission:

 cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
 roughly: send

cwnd bytes, wait
RTT for ACKS,
then send more
bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 3-114

TCP Slow Start
 when connection

begins, increase rate
exponentially until
first loss event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing
cwnd for every ACK
received

 summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

R
T

T

Host B

time

two segments

four segments

Transport Layer 3-115

TCP: detecting, reacting to
loss

 loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start) to threshold,

then grows linearly
 loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of delivering some segments
• cwnd is cut in half window then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

Transport Layer 3-116

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets to
1/2 of its value
before timeout.

Implementation:
 variable ssthresh
 on loss event, ssthresh

is set to 1/2 of cwnd
just before loss event

TCP: switching from slow start
to CA

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-117

Summary: TCP Congestion
Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd > ssthresh
congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++

duplicate ACK

 fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-118

TCP throughput
 avg. TCP thruput as function of window

size, RTT?
• ignore slow start, assume always data to send

 W: window size (measured in bytes) where loss
occurs

• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 34
W

RTTbytes/sec

Transport Layer 3-119

TCP Futures: TCP over “long, fat
pipes”

 example: 1500 byte segments, 100ms
RTT, want 10 Gbps throughput

 requires W = 83,333 in-flight segments
 throughput in terms of segment loss

probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss
rate of L = 2·10-10 – a very small loss rate!

 new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L

Transport Layer 3-120

fairness goal: if K TCP sessions share
same bottleneck link of bandwidth R,
each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-121

Why is TCP fair?
two competing sessions:
 additive increase gives slope of 1, as throughout

increases
 multiplicative decrease decreases throughput

proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
c t

io
n

2
t h

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-122

Fairness (more)
Fairness and UDP
 multimedia apps

often do not use
TCP

• do not want rate
throttled by
congestion control

 instead use UDP:
• send audio/video

at constant rate,
tolerate packet
loss

Fairness, parallel TCP
connections

 application can open
multiple parallel
connections between
two hosts

 web browsers do this
 e.g., link of rate R with

9 existing connections:
• new app asks for 1 TCP, gets

rate R/10
• new app asks for 11 TCPs,

gets R/2

Transport Layer 3-123

network-assisted congestion control:
 two bits in IP header (ToS field) marked by network

router to indicate congestion
 congestion indication carried to receiving host
 receiver (seeing congestion indication in IP

datagram)) sets ECE bit on receiver-to-sender ACK
segment to notify sender of congestion

Explicit Congestion Notification
(ECN)

source

application
transport
network

link
physical

destination

application
transport
network

link
physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-124

Chapter 3: summary
 principles behind transport

layer services:
• multiplexing,

demultiplexing
• reliable data transfer
• flow control
• congestion control

 instantiation,
implementation in the
Internet

• UDP
• TCP

next:
 leaving the

network “edge”
(application,
transport layers)

 into the network
“core”

 two network
layer chapters:

• data plane
• control plane

	Chapter 3: Transport Layer
	Chapter 3 outline
	Transport services and protocols
	Slide 4
	Slide 5
	Slide 6
	Transport vs. network layer
	Internet transport-layer protocols
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux: example
	Connection-oriented demux
	Connection-oriented demux: example
	Slide 19
	Slide 20
	Slide 21
	UDP: User Datagram Protocol [RFC 768]
	Slide 23
	Slide 24
	Slide 25
	UDP: segment header
	Slide 27
	UDP checksum
	Internet checksum: example
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Principles of reliable data transfer
	Slide 37
	Slide 38
	Reliable data transfer: getting started
	Slide 40
	rdt1.0: reliable transfer over a reliable channel
	rdt2.0: channel with bit errors
	Slide 43
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	Slide 56
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelining: increased utilization
	Pipelined protocols: overview
	Go-Back-N: sender
	GBN: sender extended FSM
	GBN: receiver extended FSM
	GBN in action
	Selective repeat
	Selective repeat: sender, receiver windows
	Slide 68
	Selective repeat in action
	Selective repeat: dilemma
	Slide 71
	Slide 72
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	TCP seq. numbers, ACKs
	Slide 76
	TCP round trip time, timeout
	Slide 78
	Slide 79
	Slide 80
	TCP reliable data transfer
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	Slide 85
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	Slide 88
	Slide 89
	TCP flow control
	Slide 91
	Slide 92
	Connection Management
	Agreeing to establish a connection
	Slide 95
	TCP 3-way handshake
	TCP 3-way handshake: FSM
	TCP: closing a connection
	Slide 99
	Slide 100
	Principles of congestion control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Causes/costs of congestion: scenario 3
	Slide 110
	Slide 111
	TCP congestion control: additive increase multiplicative decrease
	TCP Congestion Control: details
	TCP Slow Start
	TCP: detecting, reacting to loss
	TCP: switching from slow start to CA
	Summary: TCP Congestion Control
	TCP throughput
	TCP Futures: TCP over “long, fat pipes”
	TCP Fairness
	Why is TCP fair?
	Fairness (more)
	Explicit Congestion Notification (ECN)
	Chapter 3: summary

