Chapter 3: Transport Layer

our goals:

" understand " learn about Internet
principles behind transport layer
transport layer protocols:

SEIVICES. « UDP: connectionless
* multiplexing, transport
demultiplexing » TCP: connection-
* reliable data oriented reliable
transfer transport
* flow control TCP congestion
* congestion control

control

Transport Layer 3-1

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-2

Transport services and
protocols

" provide logical

network [fosesry
data link
pRYSi

communication between
app processes running on
different hosts =

" transport protocols run in
end systems

e send side: breaks app
messages into
segments, passes to
network layer

* rcv side: reassembles \, P catio]
segments into <
messages, passes to f hetwork
app Iayer - = ' i ysical

" more than one transport
protocol available to apps

e Internet: TCP and UDP

\

Transport Layer 3-3

Host to
host

Network Topology

Host Host
A Router Router B

Data Flow

Application prGCESS-tG-DFOCESS » Application

l T

Transport _ hDSt-tQ-hpS_t ______ , Transport
Fy
Internet Internet Internet Internet
k J T kL J T v
Link Link Limk Link

T ¥ T L
Fiber,
Ethernet Satellite, Ethernet

etc.

Transport layer protocols

Feature Name ubDpP UDP-Lite TCP Multipath TCP SCTP DCCP RUDP
Packet header size 8 bytes 8 bytes 20-60 bytes | 50-90 bytes 12 bytes | 12 or 16 bytes | 6+ bytes
Transport layer packet entity Datagram Datagram | Segment Segment Datagram | Datagram Datagram
Connection oriented No No Yes Yes Yes Yes Yes
Reliable transport No No Yes Yes Yes No Yes
Unreliable transport Yes Yes No No Yes Yes Yes
Preserve message boundary Yes Yes No No Yes Yes Yes
Ordered delivery No No Yes Yes Yes No Yes
Unordered delivery Yes Yes No No Yes Yes Yes
Data checksum Optional Yes Yes Yes Yes Yes Optional
Checksum size (bits) 16 16 16 16 32 16 16
Partial checksum No Yes No No No Yes No
Path MTU No No Yes Yes Yes Yes Unsure
Flow control No No Yes Yes Yes No Yes
Congestion control No No Yes Yes Yes Yes Unsure
Explicit Congestion Notification No No Yes Yes Yes Yes
Multiple streams No No No Yes Yes No No
Multi-homing No No No Yes Yes No No
Bundling / Nagle No No Yes Yes Yes No Unsure

And more to come in a couple days!

Common applications

Applicofion-Layer Underlying Tronsport
Application Profocol Protocol
Electronic mail SMITP TCP
Remote terminol occess Telnet TCP
Web HTTP I(P
File transfer FP TCP
Remaote file server NFS Typically UDP
Streaming multimedio typically propriefary UDP or TCP
Internet telephony typically propriefary UDP or TCP
Network monagement SNMP Typically UDP
Routing protocol RIP Typically UDP
Mame translation NS Typically UDP

Transport vs. network layer

" network layer:
logical =~
communication
between hosts

" transport layer:

logical =

communication

between

Processes

* relies on,
enhances,

network layer
services

household analogy: ——
12 kids in Ann’s house

sending letters to 12
kids in"Bill’s house:

hosts = houses
processes = kids

apE) messages =
letters in envelopes
transport protocol =
Ann and Bill who
demux to in-house
siblings

network-layer protocol
= postal service

Transport Layer 3-7

Internet transport-layer

protocols

" reliable, in-order
delivery (TCP)
e congestion control
* flow control
e connection setup

" unreliable, unordered
delivery: UDP
* no-frills extension of
“best-effort” IP
" services not
available:
* delay guarantees
 bandwidth guarantees

PLaN

applicatio
oo
netw
data li n -
7 oh networ
~/ P netw&¥% data link
| data lin hysical ==
physical IR
Sy ork B
O K
NP2 p

7 \)
& q network JN%
A data link R
%@7 physical

[_networlk¥e
data link N
e y/SiCal
network

physical

network
data link
{ physical

network
data link
hysical

Transport Layer 3-8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-9

32 bits

Port ' '
O r S source port # Dest. port #
*the privileged port numbers ,

(1 < port < 1024) Other header fields

*the ephemeral port numbers

(officially 49152 <= port <= 65535)) Application

*the registered port numbers data

(officially 1024 <= port < 49152) (message)

*Each port number is a 16-bit number, ranging from 0 to
65535.

*The port numbers ranging from 0 to 1023 are called well-
known port numbers and are restricted, which means that
they are reserved for use by well-known application protocols
such as HTTP (which uses port number 80) and FTP (which
uses port number 21).

*The list of well-known port numbers is given in RFC 1700 and
Is updated at http://www.iana.org

*Text file on *nix hosts to see standard list, view with:

$ less /etc/services

http://www.iana.org/

32 bits

Port inversion

Source port # Dest. port #

Other header fields

Application
data
Request (message)

Source port : 1234
Destination port: 5678

L liemt

Source port : 5678
Destination port: 1234

Response

Scanning ports: nmap

‘Determining which applications are listening on which
ports is a relatively easy task. Indeed there are a number of
public domain programs, called port scanners, that do just
that.

*Perhaps the most widely used of these is nmap, freely
available at http://mmap.org and included in most Linux
distributions.

*For TCP, nmap sequentially scans ports, looking for ports
that are accepting TCP connections.

*For UDP, nmap again sequentially scans ports, looking for
UDP ports that respond to transmitted UDP segments.

°In both cases, nmap returns a list of open, closed, or
unreachable ports.

*A host running nmap can attempt to scan any target host
anywhere in the Internet.

‘Try it: $ nmap www.mail.com (what will be open?)
*Reconnaissance procedures, network enumeration
‘Check shodan.io

Multiplexing / demultiplexing

multiplexing at sender: —

handle data from
multiple

demultiplexing)

application

demultiplexing at receiver: __
use header info to deliver

sockets, add transport received segments to correct
header (later used for | |socket

application

transport

network

link
4 physical

SATYHR
trangport
netpyork
link D
phygical "

Transport Layer 3-13

How demultiplexing works

" host receives IP datagrams . 32 bits

e each datagram has source IP
address, destination IP address source port #| dest port #

e each datagram carries one
transport-layer segment

. each segment has source,
destination port number

" host uses IP addresses & port

other header fields

numbers to direct segment to ap%lg:t:tlon
appropriate socket (paylond)

TCP/UDP segment format

Transport Layer 3-14

Connectionless demultiplexing

" recall: created socket = recall: when creating

has host-local port #: datagram to send

DatagramSocket mySocketl into UDP socket, must
= hew if

DatagramSocket(12534); specity

e destination IP address
e destination port #

" when host receives IP datagrams with

UDP segment.: same dest. port #,
 checks destination but different source
port # in segment == |P addresses and/or

» directs UDP segment source port numbers
to socket with that will be directed to

port # same socket at dest

Transport Layer 3-15

Connectionless demux:
example

DatagramSocket serverSocket
= new DatagramSocket

DatagramSocket (6428); DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket DatagramSocket
(9157); application (5775);

application <j§i:> application
.@ L 4
\ transpprt
trangport netwlolrk trangport
nefwork lnk netywprk
link pwsical link
q phydical — physical g
N
= S E— =
source port: 6428 source port: ?
’ dest port: 9157] dest port: ?
> e -
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-16

Connection-oriented demux

" TCP socket " server host may
identified by 4- support many
tuple: simultaneous TCP

sockets:

* source IP address each socket identified

* source port number by its own 4-tuple
* dest [P address " web servers have
* dest port number different sockets for
" demux: receiver each connecting client
uses all four values ’ cv?l?-hpae\fgiatigfgwjtTP
to direct segment socket for each request

to appropriate
socket

Transport Layer 3-17

Connection-oriented demux:
example

application

application

g

<4

host: IP
address

source IP,port: B,80
dest IP,port: A,9157

A

source IP,port: A,9157

dest IP, port: B,80

dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

application
andport .
netwlork transpo_rf_
lidk network
dhysical link
server: physica @
IP ——
address
B
<+ host: IP
~source IP,port: C,5775 address
dest IP,port: B,80 C
*]

source IP,port: C,9157

Transport Layer 3-18

Connection-oriented demux:

example

application

threaded server

trangport
netyork
link
q phypgical
“]
host: IP source IP,port: B,80

address dest IP,port: A,9157

A =
source IP,port: A,9157
dest IP, port: B,80

dest IP,port: B,80

application
[“transpo_rf_
network
link
server: physica @
IP =2
address
B
S host: IP
source IP,port: C,5775 address
dest IP,port: B,80 C

source IP,port: C,9157

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-20

If | send you a UDP joke, you might not get it...

UDP: User Datagram Protocol

[RFC 768]

" “no frills,” “bare bones”
Internet transport
protocol

" “best effort” service,
UDP segments may be:

e |ost

e delivered out-of-order
to app

" connectionless:

* no handshaking
between UDP sender,
receiver

e each UDP segment
handled independently
of others

" UDP use:

" streaming
multimedia apps
(loss tolerant, rate
sensitive)

" DNS
" SNMP

" reliable transfer

over UDP:

" add reliability at
application layer

" application-specific
error recovery!

Transport Layer 3-22

UDP: User Datagram Protocol
[RFC 768]

*Uses a simple connectionless communication model with a
minimum of protocol mechanism.

*Provides checksums for data integrity, and port numbers
for addressing different functions at the source and
destination of the datagram.

It has no handshaking dialogues, and thus exposes the
user's program to any unreliability of the underlying
network;

*There is no guarantee of delivery, ordering, or duplicate
protection.

*If error-correction facilities are needed at the network
interface level, an application layer protocol may be used.

UDP: User Datagram Protocol
[RFC 768]

‘Unreliable: When a UDP message is sent, it cannot be known
if it will reach its destination. No of acknowledgment,
retransmission, or timeout.

‘Not ordered: If two messages are sent to the same recipient,
the order in which they arrive cannot be predicted.
‘Lightweight: No ordering of messages, no tracking
connections, etc.

‘Datagrams: Packets are sent individually and are checked for
integrity only if they arrive. Packets have definite boundaries
which are honored upon receipt, meaning a read operation at
the receiver socket will yield an entire message as it was
originally sent.

‘No congestion control: UDP itself does not avoid
‘Broadcasts: being connectionless, UDP can broadcast; packets
can be addressed to be receivable by all devices on a subnet.

UDP: User Datagram Protocol
[RFC 768]

*the UDP service cannot deliver data segments larger
than 65507 bytes (65KB; 0.065MB)

*the UDP service does not guarantee the delivery of
segments (losses and desquencing can occur)

*the UDP service will not (generally) deliver a corrupted
segment to the destination

UDP: segment header

32 bits

source port #

length <~ | checksum

application
data
(payload)

UDP segment format

length, in bytes of

UDP segment,
including header

why Is there a UDP?

" no connection establishment
(which can add delay)

" simple: no connection state
at sender, receiver

" small header size

" no congestion control: UDP
can blast away as fast as
desired

" New protocol design at
application layer without
kernel re-write

Transport Layer 3-26

UDP header

Offsets Octet 0 1 2 3
Octet Bit e 1, 2 3 4 5 6/ 7| 8 9/10 11 /12 13(14|15 16 17|18 |19 20 21 22 23 24 25|26 27 28|29 30 31

0 0 Source port Destination port
4 32 Length Checksum

*Source port number: sender's port; should be assumed to be
the port to reply to if needed. If the source host is the client, the
port number is likely to be an ephemeral port number. If the
source host is the server, the port number is likely to be a well-
known port number.

‘Destination port number: receiver's port is required.
‘Length: specifies the length in bytes of the UDP header and
UDP data. The minimum length is 8 bytes because that is the
length of the header. Data length, which is imposed by the
underlying IPv4 protocol, is 65,507 bytes (65,535 - 8 byte UDP
header - 20 byte IP header).

‘Checksum: may be used for error-checking of the header and
data. This field is optional in IPv4, and mandatory in IPv6. The
field carries all-zeros if unused.

UDP checksum

Goal: detect “errors” (e.q., flipped bits) in
transmitted segment

sender receiver:
" treat segment contents, " compute checksum of
including header fields, received segment
as sequence of 16-bit " check if computed
integers checksum equals checksum
" checksum: addition field value:
(one’s complement * NO - error detected

sum) of segment * YES - no error detected.

contents But maybe errors

" sender puts checksum nonetheless? More later
value into UDP

checksum field

Transport Layer 3-28

Internet checksum:
example

example: add two 16-bit integers

1110011001100110
1101010101010101

wraparound (1)1011101110111011

sum 1011101110111100
checKsum 0100010001000011

Note: when adding numbers, a carryout from
the most significant bit needs to be added to the
result

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-29

UDP checksum - IP4

Offsets
Octet

12
16
20

Octet
Bit

52
64
26
128
160+

Zeroes

6

IPv4 Pseudo Header Format

1

2

7 89|10 11 /12 13 14 |15 16 17 18 19 20 21 22|23 24 25 26

Source Port
Length

Protocol

Source IPv4 Address

Destination IPv4 Address

Data

UDP Length
Destination Port

Checksum

Zj
27 28 29 30|31

Pseudo header includes IP addresses (which are normally in network layer), why?

1st complement of the sum of all the 16-bit words in the segment, such that adding
back the checksum to the same input will produce 111111111...

This pseudo-header allows the receiver to detect errors affecting the IP source or
destination addresses placed in the IP layer below. This is a violation of the layering
principle that dates from the time when UDP and IP were elements of a single

protocol.

UDP checksum - IP6

*When UDP runs over IPv6, the checksum is mandatory. The method used to
compute it is changed as documented in RFC 2460:

*Any transport or other upper-layer protocol that includes the addresses from the IP
header in its checksum computation must be modified for use over IPv6 to include
the 128-bit IPv6 addresses.

*When computing the checksum, again a pseudo header is used that mimics the real

IPV6 header IPv6 Pseudo Header Format
Offsets Octet 0 1 2 3
Octet Bit 0 (1|2 |3 4(5|6 |7 8|9 10|/11(12|13|14 15|16|17 |15 19 20|21 | 22|23 | 24|25 26|27 (2829|3031
0 i
4 32
- = Source |IPve Address
12 96
16 128
20 160 Destination IPvE Address
24 192
28 224
32 256 UDP Length
36 288 Zeroes Mext Header
40 320 Source Port Destination Port
44 352 Length Checksum
48 384+ Data

The source address is the one in the IPv6 header. The destination address is the final destination;
if the IPv6 packet does not contain a Routing header, that will be the destination address in the
IPv6 header; otherwise, at the originating node, it will be the address in the last element of the
Routing header, and, at the receiving node, it will be the destination address in the IPv6 header.
The value of the Next Header field is the protocol value for UDP: 17. The UDP length field is the
length of the UDP header and data.

UDP is well suited for certain
applications

*It is transaction-oriented, suitable for simple query-response
protocols such as the Domain Name System or the Network Time
Protocol.

*It provides datagrams, suitable for modeling other protocols such
as IP tunneling or Remote Procedure Call and the Network File
System.

*It is simple, suitable for bootstrapping or other purposes without a
full protocol stack, such as the DHCP and Trivial File Transfer
Protocol.

*It is stateless, suitable for very large numbers of clients, such as in
streaming media applications such as IPTV,

*The lack of retransmission delays makes it suitable for real-time
applications such as Voice over IP, online games, and many
protocols built on top of the Real Time Streaming Protocol.

It works well in unidirectional communication and is suitable for
broadcast information such as in many kinds of service discovery
and shared information such as broadcast time or Routing
Information Protocol.

Datagram Transport Layer
Security (DTLS)

*The DTLS protocol is based on the stream-oriented
Transport Layer Security (TLS) protocol and is
Intended to provide similar security guarantees.

*The DTLS protocol datagram preserves the
semantics of the underlying transport the application
does not suffer from the delays associated with
stream protocols, but has to deal with packet
reordering, loss of datagram and data larger than
the size of a datagram network packet.

Check out some UDP packets in Wireshark

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-35

Reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| Eal 1

L()relicuble Chczlhhel)I

application
layer

fransport
layer

() provided service

" characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

Transport Layer 3-36

Reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| Eal 1

L()relicuble Chczlhhel)I

application
layer

fransport
layer

Junreliable Chcmnel)<1A

(a) provided service (b) service implementation

" characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

Transport Layer 3-37

Reliable data transfer

" important in application, transport, link layers

e top-10 list of importa

nt networking topics!

() provided service

rdt send()

reliable data
tfransfer protocol
(sending side)

deliver data()

relicble data
fransfer protocol
(receiving side)

[packet| Irdt rev ()

-

O

O O

O 5* senalngl receiver I
% - process process

O l quiq t
% L()relicuble Chczlhhel)I

S =

udt_send ()1 [packet |

Junreliable Chcmnel)<1A

(b) service implementation

" characteristics of unreliable channel will determine complexity of reliable data

transfer protocol (rdt)

Transport Layer 3-38

Reliable data transfer:

getting started

(e.g., by app.). Passed data to

dt_send(): called from above,
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side]

send
side

deliver_data(): called
by rdt to deliver data to

upper /

data Tdeliver_data ()

reliable data receive
fransfer protocol id
(receiving side) side

udt_send ()} [packel

packet Irdt_rcv ()

T—»()unreliable channel)<T

udt_send() : called by rdt,
to transfer packet over
unreliable channel to
receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

Transport Layer 3-39

Reliable data transfer: getting started

we'’ll:
" incrementally develop sender, receiver sides
of reliable data transfer protocol (rdt)
" consider only unidirectional data transfer
* but control info will flow on both directions!

" use finite state machines (FSM) to specify
sender, receiver

event causing state transition
actions taken on state transition

/ \
event @
actions)

Transport Layer 3-40

state: when in this
“state” next state
uniquely
determined by
next event

rdtl.0:

reliable transfer over a reliable channel
" underlying channel perfectly reliable

* no bit errors

* no loss of packets

" separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

rdt_send(data)

¥'Wait for
call from
above

udt_send(packet)

sender

“Y\Wait for
call from
below

packet = make pkt(data)

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

receiver

Transport Layer 3-41

rdt2.0;
channel with bit errors

" underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors:

How do humans recover from “errors”
during conversation?

Transport Layer 3-42

rdt2.0;
channel with bit errors

" underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly
tells sender that pkt received OK

* negative acknowledgements (NAKs): receiver
explicitly tells sender that pkt had errors

* sender retransmits pkt on receipt of NAK
" hew mechanisms in rdt2.e (beyond rdt1.0):

 error detection

* feedback: control msgs (ACK, NAK) from
receiver to sender

Transport Layer 3-43

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Walit for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-44

rdt2.0: operation with no
errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&

ISNAK(rcvpkt
(rvpkd) rdt_rcv(rcvpkt) &&

dt_send(sndpkt) corrupt(rcvpkt)
udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

Wait for
call from

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-45

rdt2.0: error scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

Wait for
call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-46

rdt2.0 has a fatal flaw!

what happens if handllng duplicates:
ACK/NAK " sender retransmits current
corru pted? pkt if ACK/NAK corrupted

* sender doesn’t know " sender adds sequence

number to each pkt

receiver discards (doesn’t
deliver up) duplicate pkt

what happened at .
receiver!

" can’t just retransmit:
possible duplicate

-stop and wait
sender sends one
packet,
then walits for
receiver
response Transport Layer 3-47

rdt2.1: sender, handles garbled
ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-48

rdt2.1: receiver, handles garbled
ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)

\ udt_send(sndpkt)

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&

\
coryupt(rcvpkt corrupt(rcvpkt
(anpIEt(: m%k%_pkt(NAK, chksum) \ (sndplgt(: mgkg_pkt(NAK, chksum)
udt_send(sndpkt) \ udt_send(sndpkt)
Q‘ Wait fo -

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (,
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-49

rdt2.1: discussion

sender:
" seq # added to pkt

" two seq. #'s (0,1)
will suffice. Why?

" must check if
received ACK/NAK
corrupted

" twice as many states

* state must
“remember” whether
“expected” pkt
should have seq # of
Oorl

recejver:

" must check if
received packet is
duplicate

» state indicates

whether O or 1 is
expected pkt seq

#

" note: receiver can
not know If its last
ACK/NAK received
OK at sender

Transport Layer 3-50

rdt2.2: a NAK-free protocol

" same functionality as rdt2.1, using ACKs only

" instead of NAK, receiver sends ACK for last
pkt received OK

* receiver must explicitly include seq # of pkt being
ACKed

" duplicate ACK at sender results in same
action as NAK: retransmit current pkt

Transport Layer 3-51

rdt2.2: sender, receiver

fragments
rdt_send(data)
sndpkt = make_pkt(0, data, checksum)
~o udtﬂ(sndpkt)\ rdt_rcv(rcvpkt) &&
- i Wait for (corrupt(revpk) ||
Ca"a(; frz:n ACK iISACK(rcvpkt,1))
\ above 0 udt_send(sndpkt)
T~ sender FSM

fragment rdt_rcv(rcvpkt)
\ && notcorrupt(rcvpkt)
rdt_rcv(rcvpkt) && ™ && isACK(rcvpkt,0)
(corrupt(revpkt) || \ A

has_seqi(rcvpkt)) receiver FSM ~__

[ragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) -
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-52

udt_send(sndpkt)

rdt3.0: channels with errors and

loss

new assumption:
underlying
channel can also
lose packets
(data, ACKSs)
 checksum, seq. #,
ACKs,
retransmissions

will be of help ...
but not enough

approach: sender waits
“reasonable" amount
of time for ACK

" retransmits if no ACK
received in this time
" If pkt (or ACK? just
delayed (not lost):
 retransmission will be
duplicate, but seq. #'s
already handles this

* receiver must specify
seq # of pkt being
ACKed

" requires countdown timer

Transport Layer 3-53

rdt3.0
sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

\ start_timer
——

\
rdt_rcv(rcvpkt)
A

Wait for
call Ofrom
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& ISACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

O

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
|sACK(rxvpkt,O))

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-54

rdt3.0 In
action

sender receiver
send pktO t0
\FCV pkto
ac send ackO
rcv ackO/Q/
send pktl\ﬂ\‘
rcv pktl
ack send ackl
rcv ackl
send pktO\K
rcv pktO
ack send ackO
(a) no loss

sender recejver

send pktO ktO
\\ rcv pktO

ac send ackO
il
sen t
pktl kL

loss
‘tlmeout.
resend pktl\m\‘
rcv pktl

/Send aCkl
rcv ackl
send pkto\\
rcv pktO
/send ackO

(b) packet loss

Transport Layer 3-55

rdt3.0 In
a Ct| on sender receiver

sender receiver send pkto\\
rcv pkt0
Send pktO\wo\‘rCV pkto /Q/Send aCkO
ac send ackO rC\é ac|:<k0
rcv ackO/ﬂ/ send pkt Kt1
send pktl ktl "CV pkt
\p\,rcv oktl send ackl
yokl—"send ack1 ackl
loss Otlmeou
‘t/meout. resend pklzl rcv pktl
resend pktl ktl rcv ac detect duplicate)
P rcv pktl send pktO pkto send aucIOI

detect duplicate)

ack rcv pktO
rcv ackl 0 send ackl seracnvdapckt%)><send ack0
send pkt0 /FCV pkt0

/‘

rcv pktO T at
ack send ackO g‘éﬁé glép icate)

(c) ACK loss (d) premature timeout/ delayed ACK

Transport Layer 3-56

Performance of rdt3.0

" rdt3.0 is correct, but performance stinks
" e.qg.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

8000 bits

_ L _ — 9 mi
Diars = B =109 pits Jcec - 8 microsecs
"U .4 Utilization - fraction of time sender busy
sending
L/R .008
u — = 0.00027

sender ~ RTT+L /R - 30.008

"if RTT=30 msec, 1KB pkt every 30 msec:
33kB/sec thruput over 1 Gbps link

" network protocol limits use of physical
resources!

Transport Layer 3-57

rdt3.0: stop-and-wait
operation

sender receiver

first packet bit transmitted, t = 0
last packet bit transmitted, t =L / R1]

—first packet bit arrives
RTT —last packet bit arrives, send
ACK

ACK arrives, send next |
packet,t=RTT+L/R

L/R .008
U — = 0.00027

sender ~ RTT+L/R - 30.008

Transport Layer 3-58

Pipelined protocols

pipelining: sender allows multiple, “in-
flight”, yet-to-be-acknowledged pkts

* range of sequence numbers must be
Increased

* buffering at sender and/or receiver

data packets—» p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

" two generic forms of pipelined protocols: go-Back-N,

selective repeat
Transport Layer 3-59

Pipelining: increased
utilization

sender receiver

first packet bit transmitted, t = 0 —xo- - oo -
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next |
packet,t=RTT+L/R |

bl

3-packet pipelining increases
utilization by a factor of 3!

3L/R .0024 /
U _ _ = —

Transport Layer 3-60

Pipelined protocols:

overview

Go-back-N: Selective Repeat:

" sender can have up " sender can have up to
to N unacked N unack’ed packets in
packets in pipeline pipeline

" receiver only sends " rcvr sends individual
cumulative ack ack for each packet

 doesn’t ack packet
If there’s a gap

" sender has timer " sender maintains
for oldest unacked timer for each
packet unacked packet

* when timer expires,
retransmit only that
unacked packet

 when timer expires,
retransmit all
unacked packets

Transport Layer 3-61

Go-Back-N: sender

" k-bit seq # In pkt header

" “window” of up to N, consecutive unack’ed pkts
allowed

send_base nex|fseqnum already usable, not
v v ack’ed yet sent
sent, not
||||||[HLHHHHHlIJﬂ|]ﬂ|]ﬂﬂ|] | sentnot || netusabe
t __ window size —%
N

ACK(n): ACKs all pkts up to, including seq # n -
“cumulative ACK”

* may receive duplicate ACKs (see receiver)
" timer for oldest in-flight pkt

timeout(n): retransmit packet n and all higher seq
pkts in window

Transport Layer 3-62

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextseqnum)

start_timer
nextsegnum-++
}
A else
base=1 refuse data(data)

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)
udt_send(sndpkt[nextsegnum-

: ‘ timeout
start_timer
udt_send(sndpkt[base])
O U udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt) &&l])
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else
start_timer

Transport Layer 3-63

GBN: receiver extended
FSM

default

udt_send(sndpkt) rdt_rev(revpkt)
sssss (D && notcurrupt(rcvpkt)

A TS =a && hassegnum(rcvpkt,expectedsegnum)
il N

expectedsegnum=1 Qextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) snhdpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum-++

ACK-only: always send ACK for correctly-
received pkt with highest in-order seq #

* may generate duplicate ACKs
* need only remember expectedseqgnum

" out-of-order pkt:

 discard (don’t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer 3-64

GBN In action

sender window (N=4) sender receijver

WY 5678 send pktO
WY 5678 send pktl
01 2 3 MY send pkt2 4
01 2 3 MY send pkt3 -
(wait)

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, discard,

o FEZER®s 6 7 8 rcv ackO, send pkt4 (re)send ackl

0 1 ER¥Y 78 rcv ackl, send pkt51

receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

‘kt 2 timeout_

0 1 EYY6 7 8 send pkt2

0 1 EEEY6 7 8 send pkt3 _

0 1 EYEEs 7 8 send pkt4 rcv pkt2, deliver, send ack?2
0 1 P EF6 7 8 send pkt5 rcv pkt3, deliver, send ack3

rcv pkt4d, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-65

Selective repeat

" receiver individually acknowledges all
correctly received pkts

e buffers pkts, as needed, for eventual in-
order delivery to upper layer

" sender only resends pkts for which ACK
not received

* sender timer for each unACKed pkt

" sender window
N consecutive seq #'s
* [imits seq #s of sent, unACKed pkts

Transport Layer 3-66

Selective repeat: sender, receiver
windows

send_base nexfsegnum dlready Usable. not
, ack’ed yet sent
00N TITIIINNN | s { oon
S wEndow size —24
PN

(a) sender view of sequence numlbers

' out of order

E acceptable
_ (buffered) but — § (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂllﬂlllllIIIIIIIIIII |opectes ner | retscete

t _ window size—4

1 N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-67

Selective repeat

sender receiver
data from above: Pkt N IN [rcvbase,
" if next available seq # revbase+N-1]
in window, send pkt " send ACK(n)
timeout(n): " out-of-order: buffer
" resend pkt n, restart " in-order: deliver (also
timer deliver buffered, in-
ACK(n) in order pkts), advance
[sendbase,sendbase+N1: window 1.:0 next not-
" mark pkt n as received yet-r.ecelved pkt
" if n smallest unACKed PKE N IN [revbase-
pkt, advance window N,rcvbase-1]
base to next unACKed " ACK(n)
seq # otherwise:

" ignhore

Transport Layer 3-68

Selective repeat in action

sender window (N=4)

YRR 5678
(PRI 5678
Y 5678
PR 5678

VNR? 3 4 5 Sl
VNR? 3 4 5 SIS
UNR? 3 4 5 SIS
VNR? 3 4 5 Sl

record ack3 arrived

I<t 2 timeout |

record ack5 arrived

sender

receiver

send pktO
send ktl\ .
P receive pktO, send ackO

send pkt2
send pkt3 ?\‘X/OSS

(wait)
oFIZER¥ 6 7 8 rcv ackO, send pkt4 /

0 1EEE¥¥6 7 8 rcv ackl, send pkt5=

P

send pkt2

record ack4 arrivec

receive pktl, send ackl

receive pkt3, buffer,
send ack3

receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,

pkt3, pkt4, pkt5;
/ send ack?2

Q: what happens when ack2 arrives?

Transport Layer 3-69

Selective repeat:
dilemma

example:
"seq #'s:0,1, 2,3
" window size=3

" receiver sees no
difference in two
scenarios!

" duplicate data
accepted as new
N (bf

Q: what relationship
between seq #
size and window
size to avoid
problem in (b)?

sender window receiver window

(after receipt) (after receipt)
FP)s 012 R
[z 012 43\] 1 2 3[oW
0 1 2 kYol 2 —o0 1EEN)1 2
— 01 22
0123012
0123012
———will accept packet
(a) no problem with seq nhumber 0

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

Y3012 —R<Y

3012 — ofEElo 12

3012 — 01EKEI1 2
0 1 2K 2

timeout

retransmlt pktOX |

ER:o012 —RKO

—Wwill accept packet
W/th seq number 0

(b) oops!

Transport Layer 3-70

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-71

Mechanism Use, Comments
Checksum Used fo detect bit errors in o transmitted packet.
Timer Used to timeout /retransmit a packet, possibly because the packet (or ifs ACK)

was lost within the channel. Becouse timeouts can occur when o packet is deloyed
but not lost (premature timeout), or when a packet has been received by the
receiver but the receiver-fo-sender ACK has been lost, duplicate copies of a packet
may be received by o receiver.

Sequence number

Used for sequential numbering of packets of data flowing from sender to receiver.
Gaps in the sequence numbers of received packets allow the receiver fo defect a
lost packet. Puckets with duplicote sequence numbers allow the receiver to defect
duplicote copies of o packet.

Acknowledgment

Used by the receiver to tell the sender that a packet or set of packets has been
received correctly. Acknowledgments will typically carry the sequence number of
the packet or packets being acknowledged. Acknowledgments may be individual
or cumulotive, depending on the protocol.

Negotive acknowledgment

Used by the receiver to tell the sender thot a packet has not been received
correctly. Negative acknowledgments will typically carry the sequence number
of the packet that wos not received correctly.

Window, pipelining

The sender may be restricted to sending only packets with sequence numbers that
fall within o given range. By collowing multiple packets to be transmitted but not
yet acknowledged, sender utilization can be increased over a stop-and-wait mode
of operation. We'll see shortly that the window size may be set on the basis of
the receiver’s ability fo receive and buffer messages, or the level of congestion in
the network, or both.

TCP: Overview

RFCs: 793,1122,1323, 2018, 2581

" point-to-point:
e ohe sender, one
receiver

" reliable, in-order
byte steam:

° NO “mes_sag,e
boundaries

" pipelined:
 TCP congestion and

flow control set
window size

" full duplex data:

* bi-directional data flow
In same connection

e MSS: maximum
segment size
" connection-oriented:

* handshaking
(exchange of control
msgs) inits sender,
receiver state before
data exchange

" flow controlled:

 sender will not
overwhelm receiver

Transport Layer 3-73

TCP segment structure

< 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Ssequence number

valid

\%knowledgement number

PSH: push data now
(generally not used) —|

head um\galg RIS|F| receive window

Sum Urg data pointer

RST, SYN, N
connection estab

op/a{ s (variable length)

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Transport Layer 3-74

TCP seqg. numbers, ACKSs

outgoing segment from sender

source port # dest port #

segquence numbers:

“ PN sequence number |
’ byte Stream, number acknowledgement number
of first byte in [wnd
segment’s data checksum | urg pointer
acknowledgements: indow sjze

*seq # of next byte
expected from other
side

sender sequence number space

e cumulative ACK
) sent sent not- usable not
Q: how receiver handles ACKed |yet but not usable
out-of-order segments Cinght T
* A: TCP spec doesn’t ‘thcoming segment to sender
Say, _ up to source port # dest port #
' | t - sequence number
Imp ementor acknowledgement number
A rwnd
checksum urg pointer

Transport Layer 3-75

Host A Host B
User -
types —
1] C’ ,
Seq=42, ACK=79,data = ‘C
\host ACKs
/ receipt of
'C’, echoes
Seq=79, ACK=43, data = ‘C’ ‘(0
host ACKSs q back ‘C
receipt
of echoed——no___
] C’

Seq=43, ACK:K>

simple telnet scenario

TCP seqg. numbers, ACKSs

Transport Layer 3-76

TCP round trip time,

timeout

Q: how to set TCP
timeout value?

" longer than RTT
* but RTT varies

" too short:
premature timeout,
unnecessary
retransmissions

" too long: slow
reaction to
segment loss

Q: how to estimate
RTT?

" SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

" SampleRTT will vary,
want estimated RTT
“smoother”

e average several
recent measurements,
not just current
SampleRTT

Transport Layer 3-77

TCP round trip time,
timeout

EstimatedRTT = (1- o)*EstimatedRTT + a*SampleRTT

" exponential weighted moving average

" influence of past sample decreases
exponentially fast

" typical value: a =0.125

RTT (milliseconds)

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time

Transport Layer 3-78
(seconds) P Y

TCP round trip time,
timeout

" timeout interval: EstimatedRTT plus “safety margin”
e large variation in EstimatedRTT -> larger safety margin

" estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-8)*DevRTT +
B* |SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DeVvRTT

I

estimated RTT “safety margin”

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-79

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-80

TCP reliable data transfer

" TCP creates rdt
service on top of
IP’s unreliable

service o |
. pipelined segments |et’s initially consider

. . simplified TCP
cymulatlve acks <ender:
* single ignore duplicate acks
retransmission timer '9 P
. C * ignore flow control,
retransmissions congestion control

triggered by:
* timeout events
* duplicate acks

Transport Layer 3-81

TCP sender events:

data rcvd from app: timeout:
" create segment with ® retransmit segment
seq # that caused timeout

" seq # Is byte-stream " restart timer
number of first data -k rcvg:
byte In segment

" start timer If not

already running segments
* think of timer as for « update what is
oldest unacked known to be ACKed

ment . .
. seg. et. interval: e start timer if there
expiration intervat. are still unacked

TimeOutInterval seg ments

" If ack acknowledges
previously unacked

Transport Layer 3-82

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
extSegNum = NextSegNum + length(data)

f (timer currently not running)

A B start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum
timeout
retransmit not-yet-acked
segment with

smallest seq. #
ACK received, with ACK field valuey Starttimer

If (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)
start timer
else stop timer

} Transport Layer 3-83

TCP: retransmission
scenarios

Host A

g

s

H——timeout—

Host B

B

=

\
Seq=92, 8 bytes of data

ACK=100

x,

Seq=92, 8 bytes of data

/

ACK=100

/

lost ACK scenario

HEA Host B

SendBase=92

SendBase=100
SendBase=120

l——timeout——

/

Seq=92, 8 bytes_of data

\

Seq=100, 20 bytes of d

ACKzlo/

ACK=120

/

eq=92, 8
bytes of data__|

/

ACK=120

SendBase=12(

\

premature timeout

Transport Layer 3-84

TCP: retransmission

scenarios

Host A

g

N

o— timeout ——

/

Seq=92, 8 bytes_of data

/

A

Seq=100, 20 bytes of

ACK=100
X
ACK=120

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-85

TCP ACK generation [RFC 1122, RFC

2581]
event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK
arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending
arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-86

TCP fast
retransmit

" time-out period
often relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

 sender often sends
many segments
back-to-back

* if segment is |lost,
there will likely be
many duplicate ACKs.

TCP fast retransmit

If sender receives
3 ACKs for same
data

(“triple duplicate
ACKs"), resend
unacked segment
with smallest seq
#

" likely that unacked
segment lost, so
don’t wait for
timeout

Transport Layer 3-87

TCP fast

retransmit

Seq=92, 8 bytes of data

?eq=1oo,w
\X

|_Ack=100
ACK=100
ACK=100
/

_ACK=100
Seq=100, 20 bytes of data

timeout

A 4

v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-88

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
* flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-89

TCP flow control

application ‘
application may Process
remove data from e
TCP socket buffers | Ly | a_pPl'Eét_'E”
TCP socket 0S
receiver buffers
... Slower than N\
TCP —— \
recglve_r IS TCP
delivering e
(sender is
sending) [
L
—flow control
receiver controls sender, T,
so sender won’'t overflow | !
receiver’s buffer by from sendey
transmitting too much, receiver protocol stack
too fast

Transport Layer 3-90

TCP flow control

" receiver “advertises”

free buffer space by to application process
iIncluding rwnd value in Fﬁ
TCP header of receiver- 5
to-sender segments RevBuffer | buffered data
o Rckauffer. size set vi? T
t options (typi
Sacket options (typica .|| free buffer space
« many operating systems ” I
autoadjust RcvBuffer
" sender limits amount of TCP segment payloads
unacked (“in-flight”)
data to receiver’s rwnd receiver-side buffering

value

" guarantees receive
buffer will not overflow

Transport Layer 3-91

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-92

Connection Management

before exchanging data, sender/receiver
“handshake”:

" agree to establish connection (each knowing the
other willing to establish connection)

" agree on connection parameters

application application

connectio e: :I
ESTAB connection state:
connection variables: ESTAB

connection Variables:
seq # client-to-
server
server-to-
client
rcvBuffer size

seq # client-to-
server
server-to-client
rcvBuffer size
at server,client

network |
= 'network
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept();
number") ;

Transport Layer 3-93

Agreeing to establish a
connection

2-way handshake:
Q: will 2-way handshake

> e always work in network?
B Pt " variable delays
" Let's talk " retransmitted messages
__"®ESTAB (e.g. reg_conn(x)) due to
estag #— OK message loss
" message reordering

" can't “see” other side

g

choose X |~
req_conn(x)

—8ESTAB
acc conn(x)
ESTAB &#— ~

Transport Layer 3-94

Agreeing to establish a

connection
2-way handshake failure scenarios:

g

-

choose x

retransmit
req_conn(
X)

ESTAB

client™

terminat
es

\req_conn(Q»

R ESTAB

acc_conn(x)

req_conn(x)

\

~connection _
x completes

server
forgets x

ESTAB

half open connection!

(no client!)

g

g

choose x

retransmit
req_conn(
X)

ESTAB

retransmit
data(x+1)

\
req_conn(x)

acc_conn(x)

ata(x+1)

~ |

.
client
terminat
es

~ ' x completes ~

connection

\
eq_conn(x)

data(x+1)

A ESTAB

accept
data(x+1

server
forgets x

ESTAB
accept
data(x+1

)

Transport Layer 3-95

TCP 3-way handshake

client state q = server state
LISTEN e 2l LISTEN
choose init seq num, x
send TCP SYN msg ~_
SYNSENT SYNbit=1, Seq=x

choose init seq num, y
send TCP SYNACK

/;nsg, acking SYN SYN RCVD

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
v received SYNACK(x)
ESTAB indicates server is Iive/
send ACK for SYNACK! ~~—
this segment may containp ckpit=1 ACKnum=y+1
client-to-server data '
T~ eceived ACK(y)

indicates client is live v
ESTAB

Transport Layer 3-96

TCP 3-way
handshake: FSM

Socket connectionSocket =
welcomeSocket.accept();

A Socket clientSocket =
SYN(x) v newSocket ("hostname", "port
number") ;
SYNACK(seg=y,ACKnum=x+1)
create new socket for SYN(seq=x)

communication back to client

[‘,

‘ [
»

ACK(ACKnum=y+1)
A

%YNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)

A

Transport Layer 3-97

TCP: closing a connection

" client, server each close their side of
connection

* send TCP segment with FIN bit =1

" respond to received FIN with ACK

* on receiving FIN, ACK can be combined with
own FIN

" simultaneous FIN exchanges can be
handled

Transport Layer 3-98

TCP: closing a connection

client state q E

ESTAB -

clientSocket.close()

FIN. WAIT_1 can no longer
send but can

l receive data

/

FIN WAIT 2 wait for server

T - close
TIMED WAIT T

timed wait

for 2*max

segment lifetime

CLOSED J,

\

server state
ESTAB
Wb-t 1
it= ,seqk
_— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 .
can still
— send data
_— LAST ACK
A/FINbit=1, seq=y
can no longer
~— send data
ACKbit=1; ACKnum=y+1

CLOSED

Transport Layer 3-99

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-100

Principles of congestion
control

congestion:

" Informally: “too many sources sending
too much data too fast for network to
handle”

" different from flow control!
" manifestations:

* lost packets (buffer overflow at
routers)

* long delays (queueing in router
buffers)

" a top-10 problem!

Transport Layer 3-101

Causes/costs of congestion:

scenario 1

original data: 7\m

two senders, two
receivers Host A

one router, infinite

buffers _ g

\A. 1

output link capacity: R
no retransmission

R/2- -

|

- |
& i

|

!

|

A R/2

n
" maximum per-
connection throughput:
R/2

throughput: A

out

4
unlimited shared I
output link buffers II ﬁ

____—/

delay

A, R
large delays as arrival
rate, A, approaches

vin?’
CapaC|ty Transport Layer 3-102

Causes/costs of congestion:
scenario 2

" one router, finite buffers

" sender retransmission of timed-out packet
* application-layer input = application-layer output: A,=

Nout
* transport-layer input includes retransmissions : A, ki,
>
A original data ,

C A—1—)\

M @ original data, plus out
retransmitted data
. i S—— n

5 vm

S=== “EEENRRR

=9
= A
=\
=

Transport Layer 3-103

finite shared output

Host B link buffers

Causes/costs of congestion:
scenario 2

. . R/2-4-----------
idealization: perfect |
knowledge 5 ;

" sender sends only when < i
router buffers available |

|

B{— A\ : original data

out

copy

A’ : original data, plus
retransmitted data

free buffer space!
» £,]

S=== “EEENRRR

—

=k

=
[

Transport Layer 3-104

finite shared output
link buffers

Causes/costs of congestion:
scenario 2

Idealization: known

loss packets can be
lost, dropped at router
due to full buffers

" sender only resends if
packet known to be lost

B{— A\ : original data Y
] Ae]—
copy A > original data, plus out

retransmitted data

no buffer space! l

b LI 11]]

=9
1
=
\
i ———

Transport Layer 3-105

Host B

Causes/costs of congestion:

scenario 2

Idealization: known

loss packets can be
lost, dropped at router
due to full buffers

" sender only resends if
packet known to be lost

R/2

7\'Out

A original data

free buffer space!
>

b LI 11]]

when sending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

}\” R/2

— A > original data, plus out
retransmitted data

=9

1

=

=
i

Transport Layer 3-106

Causes/costs : scenario 2
Realistic: duplicates

" packets can be lost, dropped Rz
at router due to full buffers Z 1 Jhen sending at R/,
" sender times out prematurely, 3 . some packets are
sending two copies, both of | including duplioatec
which are delivered ~ thatare delivered!
A RI2
ZiQ

free buffer space! n
T 5 mm A

SSS=== “EENERNR
IERRRRE

Transport Layer 3-107

Causes/costs of congestion:

scenario 2
Realistic: duplicates

RI2}-----mmmmmmmmemmmm oo S —
" packets can be lost,

dropped at router due 77| " whensending at Ri2,
= ! some packets are
to full buffers < | retransmissions
" sender times out | that are deivered
prematurely, sending R
two copies, both of "

which are delivered

“costs” of congestion:
" more work (retrans) for given “goodput”

" unneeded retransmissions: link carries multiple
copies of pkt

e decreasing goodput

Transport Layer 3-108

Causes/costs of congestion:

scenario 3 Q: what happens as 2,
" four senders and A\ "increase ?
" multihop paths A: as red), increases, all

arriving blue pkts at upper
queue are dropped, blue
throughput 0 0O

L A
A, : original data out \ Host B
Sl g

" timeout/retransmit

Host A

[~ A, original data, plus
retransmitted data
finite shared output

Eﬂ - link buffers

)

Host D
4} Host C
49 |
K
= I I
= — CNC

i

Transport Layer 3-109

Causes/costs of congestion:
scenario 3

C/2

7\‘0ut

another “cost” of congestion:

" when packet dropped, any “upstream
transmission capacity used for that
packet was wasted!

Transport Layer 3-110

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing
and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of
reliable data
transfer

3.5 connection-oriented
transport: TCP

* segment structure
e reliable data transfer
 flow control

e connection
management

3.6 principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-111

TCP congestion control: additive
iIncrease multiplicative decrease

" approach: sender increases transmission
rate (window size), probing for usable
bandwidth, until loss occurs

e additive increase: increase cwnd by 1
MSS every RTT until loss detected

 multiplicative decrease: cut cwnd In half

after IOSS additively increase window size ...
.... until loss occurs (then cut window in half)

VA

time

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size

Transport Layer 3-112

TCP Congestion Control:

details

sender sequence number space
|¢—— cwnd —>]

Il
_

last byteJ ‘ last byte
ACKed sent, not- cent
yet ACKed
(llin_
flight”)
" sender limits transmission:

LastByteSent -
LastByteAcked

" cwnd is dynamic, function of
perceived network congestion

< cwnd

TCP sending rate:

" roughly: send
cwnd bytes, wait
RTT for ACKS,

then send more
bytes

cwnd
~ bytes/sec
rate RTT y

Transport Layer 3-113

TCP Slow Start

" when connection
begins, increase rate
exponentially until
first loss event:

« initially cwnd = 1 MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

" summary: initial rate
Is slow but ramps up
exponentially fast

Host A Host B

oUr segments

time

Transport Layer 3-114

TCP: detecting, reacting to
loss

" loss indicated by timeout:
* cwnd set to 1 MSS;

* window then grows exponentially (as in slow start) to threshold,
then grows linearly

" loss indicated by 3 duplicate ACKs: TCP RENO
* dup ACKs indicate network capable of delivering some segments
e cwnd is cut in half window then grows linearly

" TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

Transport Layer 3-115

TCP: switching from slow start
to CA

Q: when should the

exponential
increase switch to 4
linear? TCP Reno
12—
A: when cwnd gets to 2
1/2 of its value g2 .
before timeout. i
22 6
Q; ssthresh
5= 4
v TCP Tahoe
2_
OT—T—T T T 1T T 1T T 71 |

ImDIementation: 5 6 7 8 9 1ID 1I'| 1|2 1|3 '||4 15
" Variable SSthreSh Transmission round

" on loss event, ssthresh
Is set to 1/2 of cwnd
just before loss event

o
[NS]
w
I~

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-116

Summary: TCP Congestion
Control

new ACk “Z~
cwnd = cwnd + MSS « (MSS/cwnd)

duplicate ACK ii!l :

dupACKcount++ new ACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed
m dupACKcount =0
A />transmit new segment(s), as allowed
cwnd = 1 MSS
ssthresh = 64 KB cwnd > ssthresh

_dupACKcount=0__ A -
7= -
e n,Q\ timeout
(& $))ssthresh = cwnd/2 .
20 cwnd = 1 MSS duplicate ACK
{2 timeout dupACKcount =0 dupACKcount++
Q" ssthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 ;OQQ\
retransmit missing segment ((c “p)
timeout ‘).
ssthresh = cwnd/2 pl¢
cwnd =1 New ACK
dupACKcount =0 cwnd = ssthresh d
__ e = upACKcount ==
dupACKcount == retransmit missing segment dupACKcount = 0 p
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-117

TCP throughput

" avg. TCP thruput as function of window
size, RTT?

* ignore slow start, assume always data to send
" W: window Size (measured in bytes) where loss

OCCUrs

e avg. window size (# in-flight bytes) is 3% W
* avg. thruput is 3/4W per RTT

W —

W/2 —

/

/

4

avg TCP thruput 3 W

ﬁ_l.bytes/sec

14

/

/

Transport Layer 3-118

TCP Futures: TCP over “long, fat

pipes”

" example: 1500 byte segments, 100ms
RTT, want 10 Gbps throughput

" requires W = 83,333 in-flight segments

" throughput in terms of segment loss
probability, L [Mathis 19971]:

_1.22-MSS
TCP throughput = RTTJf

- to achieve 10 Gbps throughput, need a loss
rate of L = 2:10-10 - g very small loss rate!

" new versions of TCP for high-speed

Transport Layer 3-119

TCP Fairness

fairness goal: if K TCP sessions share
same bottleneck link of bandwidth R,
each should have average rate of R/K

TCP connection 1

..
%—t
ﬂottleneck
router

capacity R

TCP connection 2

Transport Layer 3-120

Why is TCP fair?

two competing sessions:

" additive increase gives slope of 1, as throughout
Increases

" multiplicative decrease decreases throughput
proportionally

equal ba/mdwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-121

Fairness (more)

Fairness and UDP Fairness, parallel TCP
" multimedia apps connections
often do not use " application can open
TCP multiple parallel
. do not want rate connections between
throttled by two hosts |
congestion control " web browsers do this
" instead use UDP: " e.g., link of rate R with

. send audio/video 9 existing connections:
* new app asks for 1 TCP, gets

at constant rate, rate R/10

tolerate packet * new app asks for 11 TCPs,
loss gets R/2

Transport Layer 3-122

Explicit Congestion Notification
(ECN)

network-assisted congestion control:

" two bits in IP header (ToS field) marked by network
router to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP
datagram)) sets ECE bit on receiver-to-sender ACK
segment to notify sender of congestion

TCP ACK segment

source destination
« P E— E
=
ECN=00
—_—>
IP datagram

Transport Layer 3-123

Chapter 3: summary

" principles behind transport
layer services:

* multiplexing, next: .
demultiplexing " leaving the

- reliable data transfer network “edge”

» flow control (application,

» congestion control transport layers)

" instantiation, " iInto the network

iImplementation in the “core”
Internet

. UDP " two network

+ TCP layer chapters:

» data plane
e control plane

Transport Layer 3-124

	Chapter 3: Transport Layer
	Chapter 3 outline
	Transport services and protocols
	Slide 4
	Slide 5
	Slide 6
	Transport vs. network layer
	Internet transport-layer protocols
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux: example
	Connection-oriented demux
	Connection-oriented demux: example
	Slide 19
	Slide 20
	Slide 21
	UDP: User Datagram Protocol [RFC 768]
	Slide 23
	Slide 24
	Slide 25
	UDP: segment header
	Slide 27
	UDP checksum
	Internet checksum: example
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Principles of reliable data transfer
	Slide 37
	Slide 38
	Reliable data transfer: getting started
	Slide 40
	rdt1.0: reliable transfer over a reliable channel
	rdt2.0: channel with bit errors
	Slide 43
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	Slide 56
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelining: increased utilization
	Pipelined protocols: overview
	Go-Back-N: sender
	GBN: sender extended FSM
	GBN: receiver extended FSM
	GBN in action
	Selective repeat
	Selective repeat: sender, receiver windows
	Slide 68
	Selective repeat in action
	Selective repeat: dilemma
	Slide 71
	Slide 72
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	TCP seq. numbers, ACKs
	Slide 76
	TCP round trip time, timeout
	Slide 78
	Slide 79
	Slide 80
	TCP reliable data transfer
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	Slide 85
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	Slide 88
	Slide 89
	TCP flow control
	Slide 91
	Slide 92
	Connection Management
	Agreeing to establish a connection
	Slide 95
	TCP 3-way handshake
	TCP 3-way handshake: FSM
	TCP: closing a connection
	Slide 99
	Slide 100
	Principles of congestion control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Causes/costs of congestion: scenario 3
	Slide 110
	Slide 111
	TCP congestion control: additive increase multiplicative decrease
	TCP Congestion Control: details
	TCP Slow Start
	TCP: detecting, reacting to loss
	TCP: switching from slow start to CA
	Summary: TCP Congestion Control
	TCP throughput
	TCP Futures: TCP over “long, fat pipes”
	TCP Fairness
	Why is TCP fair?
	Fairness (more)
	Explicit Congestion Notification (ECN)
	Chapter 3: summary

