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Chapter 3: Transport Layer
our goals: 
 understand 

principles behind 
transport layer 
services:

• multiplexing, 
demultiplexing

• reliable data 
transfer

• flow control
• congestion 

control

 learn about Internet 
transport layer 
protocols:

• UDP: connectionless 
transport

• TCP: connection-
oriented reliable 
transport

• TCP congestion 
control
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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Transport services and 
protocols
 provide logical 

communication between 
app processes running on 
different hosts

 transport protocols run in 
end systems 

• send side: breaks app 
messages into 
segments, passes to  
network layer

• rcv side: reassembles 
segments into 
messages, passes to 
app layer

 more than one transport 
protocol available to apps

• Internet: TCP and UDP

applicatio
n

transport
network
data link
physical

logical end-end transport

applicatio
n

transport
network
data link
physical



Host to 
host



Transport layer protocols

And more to come in a couple days!



Common applications
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Transport vs. network layer
 network layer: 

logical 
communication 
between hosts

 transport layer: 
logical 
communication 
between 
processes 
• relies on, 

enhances, 
network layer 
services

12 kids in Ann’s house 
sending letters to 12 
kids in Bill’s house:

 hosts = houses
 processes = kids
 app messages = 

letters in envelopes
 transport protocol = 

Ann and Bill who 
demux to in-house 
siblings

 network-layer protocol 
= postal service

household analogy:
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Internet transport-layer 
protocols
 reliable, in-order 

delivery (TCP)
• congestion control 
• flow control
• connection setup

 unreliable, unordered 
delivery: UDP

• no-frills extension of 
“best-effort” IP

 services not 
available: 

• delay guarantees
• bandwidth guarantees

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

logical end-end transport
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control



●Each port number is a 16-bit number, ranging from 0 to 
65535. 
●The port numbers ranging from 0 to 1023 are called well-
known port numbers and are restricted, which means that 
they are reserved for use by well-known application protocols 
such as HTTP (which uses port number 80) and FTP (which 
uses port number 21). 
●The list of well-known port numbers is given in RFC 1700 and 
is updated at http://www.iana.org
●Text file on *nix hosts to see standard list, view with: 
$ less /etc/services

Ports
●the privileged port numbers 
(1 < port < 1024 )

●the ephemeral port numbers 
( officially 49152 <= port <= 65535 )

●the registered port numbers 
(officially 1024 <= port < 49152)

http://www.iana.org/


Port inversion



●Determining which applications are listening on which 
ports is a relatively easy task. Indeed there are a number of 
public domain programs, called port scanners, that do just 
that. 
●Perhaps the most widely used of these is nmap, freely 
available at http://nmap.org and included in most Linux 
distributions. 
●For TCP, nmap sequentially scans ports, looking for ports 
that are accepting TCP connections. 
●For UDP, nmap again sequentially scans ports, looking for 
UDP ports that respond to transmitted UDP segments. 
●In both cases, nmap returns a list of open, closed, or 
unreachable ports. 
●A host running nmap can attempt to scan any target host 
anywhere in the Internet.
●Try it: $ nmap www.mail.com (what will be open?)
●Reconnaissance procedures, network enumeration
●Check shodan.io

Scanning ports: nmap
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Multiplexing / demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from 
multiple
sockets, add transport 
header (later used for 
demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3
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How demultiplexing works

 host receives IP datagrams
• each datagram has source IP 

address, destination IP address
• each datagram carries one 

transport-layer segment
• each segment has source, 

destination port number 
 host uses IP addresses & port 

numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing

 recall: created socket 
has host-local port #:

  DatagramSocket mySocket1     
   = new 
DatagramSocket(12534);

 when host receives 
UDP segment:

• checks destination 
port # in segment

• directs UDP segment 
to socket with that 
port #

 recall: when creating 
datagram to send 
into UDP socket, must 
specify

• destination IP address
• destination port #
IP datagrams with 
same dest. port #, 
but different source 
IP addresses and/or 
source port numbers 
will be directed to 
same socket at dest
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Connectionless demux: 
example

DatagramSocket serverSocket 
= new DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775);

DatagramSocket 
mySocket2 = new 
DatagramSocket
 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?
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Connection-oriented demux

 TCP socket 
identified by 4-
tuple: 

• source IP address
• source port number
• dest IP address
• dest port number

 demux: receiver 
uses all four values 
to direct segment 
to appropriate 
socket

 server host may 
support many 
simultaneous TCP 
sockets:

• each socket identified 
by its own 4-tuple

 web servers have 
different sockets for 
each connecting client

• non-persistent HTTP 
will have different 
socket for each request
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Connection-oriented demux: 
example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address 

A

host: IP 
address 

C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server: 
IP 

address 
B
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Connection-oriented demux: 
example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address 

A

host: IP 
address 

C

server: 
IP 

address 
B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control



If I send you a UDP joke, you might not get it...
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UDP: User Datagram Protocol 
[RFC 768]
 “no frills,” “bare bones” 

Internet transport 
protocol

 “best effort” service, 
UDP segments may be:

• lost
• delivered out-of-order 

to app
 connectionless:

• no handshaking 
between UDP sender, 
receiver

• each UDP segment 
handled independently 
of others

 UDP use:
 streaming 

multimedia apps 
(loss tolerant, rate 
sensitive)

 DNS
 SNMP

 reliable transfer 
over UDP: 
 add reliability at 

application layer
 application-specific 

error recovery!



●Uses a simple connectionless communication model with a 
minimum of protocol mechanism. 
●Provides checksums for data integrity, and port numbers 
for addressing different functions at the source and 
destination of the datagram. 
●It has no handshaking dialogues, and thus exposes the 
user's program to any unreliability of the underlying 
network; 
●There is no guarantee of delivery, ordering, or duplicate 
protection. 
●If error-correction facilities are needed at the network 
interface level, an application layer protocol may be used.

UDP: User Datagram Protocol 
[RFC 768]



●Unreliable:  When a UDP message is sent, it cannot be known 
if it will reach its destination. No of acknowledgment, 
retransmission, or timeout.
●Not ordered:  If two messages are sent to the same recipient, 
the order in which they arrive cannot be predicted.
●Lightweight: No ordering of messages, no tracking 
connections, etc. 
●Datagrams:  Packets are sent individually and are checked for 
integrity only if they arrive. Packets have definite boundaries 
which are honored upon receipt, meaning a read operation at 
the receiver socket will yield an entire message as it was 
originally sent.
●No congestion control:  UDP itself does not avoid 
●Broadcasts: being connectionless, UDP can broadcast; packets 
can be addressed to be receivable by all devices on a subnet.

UDP: User Datagram Protocol 
[RFC 768]



●the UDP service cannot deliver data segments larger 
than 65507 bytes (65KB; 0.065MB )
●the UDP service does not guarantee the delivery of 
segments (losses and desquencing can occur)
●the UDP service will not (generally) deliver a corrupted 
segment to the destination

UDP: User Datagram Protocol 
[RFC 768]
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UDP: segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

 no connection establishment 
(which can add delay)

 simple: no connection state 
at sender, receiver

 small header size
 no congestion control: UDP 

can blast away as fast as 
desired

 New protocol design at 
application layer without 
kernel re-write

why is there a UDP?



●Source port number: sender's port; should be assumed to be 
the port to reply to if needed. If the source host is the client, the 
port number is likely to be an ephemeral port number. If the 
source host is the server, the port number is likely to be a well-
known port number.
●Destination port number: receiver's port is required. 
●Length: specifies the length in bytes of the UDP header and 
UDP data. The minimum length is 8 bytes because that is the 
length of the header. Data length, which is imposed by the 
underlying IPv4 protocol, is 65,507 bytes (65,535 - 8 byte UDP 
header - 20 byte IP header).
●Checksum: may be used for error-checking of the header and 
data. This field is optional in IPv4, and mandatory in IPv6. The 
field carries all-zeros if unused.

UDP header
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UDP checksum

sender:
 treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers

 checksum: addition 
(one’s complement 
sum) of segment 
contents

 sender puts checksum 
value into UDP 
checksum field

receiver:
 compute checksum of 

received segment
 check if computed 

checksum equals checksum 
field value:

• NO - error detected
• YES - no error detected. 

But maybe errors 
nonetheless? More later 
….

Goal: detect “errors” (e.g., flipped bits) in 
transmitted segment



Transport Layer 3-29

Internet checksum: 
example
example: add two 16-bit integers

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

Note: when adding numbers, a carryout from 
the most significant bit needs to be added to the 

result

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/



Pseudo header includes IP addresses (which are normally in network layer), why?

1st complement of the sum of all the 16-bit words in the segment, such that adding 
back the checksum to the same input will produce 111111111…

This pseudo-header allows the receiver to detect errors affecting the IP source or 
destination addresses placed in the IP layer below. This is a violation of the layering 
principle that dates from the time when UDP and IP were elements of a single 
protocol. 

UDP checksum - IP4



UDP checksum - IP6
●When UDP runs over IPv6, the checksum is mandatory. The method used to 
compute it is changed as documented in RFC 2460:
●Any transport or other upper-layer protocol that includes the addresses from the IP 
header in its checksum computation must be modified for use over IPv6 to include 
the 128-bit IPv6 addresses.
●When computing the checksum, again a pseudo header is used that mimics the real 
IPv6 header: 

The source address is the one in the IPv6 header. The destination address is the final destination; 
if the IPv6 packet does not contain a Routing header, that will be the destination address in the 
IPv6 header; otherwise, at the originating node, it will be the address in the last element of the 
Routing header, and, at the receiving node, it will be the destination address in the IPv6 header. 
The value of the Next Header field is the protocol value for UDP: 17. The UDP length field is the 
length of the UDP header and data. 



●It is transaction-oriented, suitable for simple query-response 
protocols such as the Domain Name System or the Network Time 
Protocol.
●It provides datagrams, suitable for modeling other protocols such 
as IP tunneling or Remote Procedure Call and the Network File 
System.
●It is simple, suitable for bootstrapping or other purposes without a 
full protocol stack, such as the DHCP and Trivial File Transfer 
Protocol.
●It is stateless, suitable for very large numbers of clients, such as in 
streaming media applications such as IPTV.
●The lack of retransmission delays makes it suitable for real-time 
applications such as Voice over IP, online games, and many 
protocols built on top of the Real Time Streaming Protocol.
●It works well in unidirectional communication and is suitable for 
broadcast information such as in many kinds of service discovery 
and shared information such as broadcast time or Routing 
Information Protocol.

UDP is well suited for certain 
applications



Datagram Transport Layer 
Security (DTLS)

●The DTLS protocol is based on the stream-oriented 
Transport Layer Security (TLS) protocol and is 
intended to provide similar security guarantees. 
●The DTLS protocol datagram preserves the 
semantics of the underlying transport the application 
does not suffer from the delays associated with 
stream protocols, but has to deal with packet 
reordering, loss of datagram and data larger than 
the size of a datagram network packet. 



Check out some UDP packets in Wireshark
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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Reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data 
transfer protocol (rdt)
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 characteristics of unreliable channel will determine complexity of reliable data 
transfer protocol (rdt)

Reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!
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 characteristics of unreliable channel will determine complexity of reliable data 
transfer protocol (rdt)

 important in application, transport, link layers
• top-10 list of important networking topics!

Reliable data transfer



Transport Layer 3-39

Reliable data transfer: 
getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 
unreliable channel to 

receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called 
by rdt to deliver data to 

upper
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we’ll:
 incrementally develop sender, receiver sides 

of reliable data transfer protocol (rdt)
 consider only unidirectional data transfer

• but control info will flow on both directions!
 use finite state machines (FSM)  to specify 

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely 
determined by 

next event

event
actions

Reliable data transfer: getting started
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rdt1.0: 
reliable transfer over a reliable channel
 underlying channel perfectly reliable

• no bit errors
• no loss of packets

 separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver
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 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly 

tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver 

explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond 
rdt1.0):

• error detection
• receiver feedback: control msgs (ACK,NAK) 

rcvr->sender

rdt2.0: 
channel with bit errors

How do humans recover from “errors”
during conversation?
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 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly 

tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver 

explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK, NAK) from 

receiver to sender

rdt2.0: 
channel with bit errors
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rdt2.0: FSM specification

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
   notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
   isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
  corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

belowsender

receiver
rdt_send(data)
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rdt2.0: operation with no 
errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
   notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
   isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
  corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)
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rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
   notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
   isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
  corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)
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rdt2.0 has a fatal flaw!

what happens if 
ACK/NAK 
corrupted?

 sender doesn’t know 
what happened at 
receiver!

 can’t just retransmit: 
possible duplicate

handling duplicates: 
 sender retransmits current 

pkt if ACK/NAK corrupted
 sender adds sequence 

number to each pkt
 receiver discards (doesn’t 

deliver up) duplicate pkt

stop and wait
sender sends one 
packet, 
then waits for 
receiver 
response
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rdt2.1: sender, handles garbled 
ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

Wait for
 call 1 from 

above

Wait for 
ACK or 
NAK 1
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Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
   not corrupt(rcvpkt) &&
   has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
  && has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
  && has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
   not corrupt(rcvpkt) &&
   has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: receiver, handles garbled 
ACK/NAKs
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rdt2.1: discussion

sender:
 seq # added to pkt
 two seq. #’s (0,1) 

will suffice.  Why?
 must check if 

received ACK/NAK 
corrupted 

 twice as many states
• state must 

“remember” whether 
“expected” pkt 
should have seq # of 
0 or 1 

receiver:
 must check if 

received packet is 
duplicate

• state indicates 
whether 0 or 1 is 
expected pkt seq 
#

 note: receiver can 
not know if its last 
ACK/NAK received 
OK at sender
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rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only
 instead of NAK, receiver sends ACK for last 

pkt received OK
• receiver must explicitly include seq # of pkt being 

ACKed 
 duplicate ACK at sender results in same 

action as NAK: retransmit current pkt
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rdt2.2: sender, receiver 
fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
  isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0) 

Wait for 
ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
  && has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && 
   (corrupt(rcvpkt) ||
     has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment
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rdt3.0: channels with errors and 
loss

new assumption: 
underlying 
channel can also 
lose packets 
(data, ACKs)

• checksum, seq. #, 
ACKs, 
retransmissions 
will be of help … 
but not enough

approach: sender waits 
“reasonable” amount 
of time for ACK 

 retransmits if no ACK 
received in this time

 if pkt (or ACK) just 
delayed (not lost):

• retransmission will be  
duplicate, but seq. #’s 
already handles this

• receiver must specify 
seq # of pkt being 
ACKed

 requires countdown timer
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rdt3.0 
sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0) 

rdt_rcv(rcvpkt) && 
 
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1) 

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1



rdt_rcv(rcvpkt)
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sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in 
action
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rdt3.0 in 
action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)
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Performance of rdt3.0
 rdt3.0 is correct, but performance stinks
 e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy 
sending

 

U 
sender = 

.008 
30.008 

= 0.00027  
L / R 

RTT + L / R 
= 

 if RTT=30 msec, 1KB pkt every 30 msec: 
33kB/sec thruput over 1 Gbps link

 network protocol limits use of physical 
resources!

Dtrans =
L
R

 8000 bits
109 bits/sec= = 8 microsecs



Transport Layer 3-58

rdt3.0: stop-and-wait 
operation

first packet bit transmitted, t = 0

sender receiver

RTT 

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send 
ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender = 

.008 
30.008 

= 0.00027  
L / R 

RTT + L / R 
= 
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Pipelined protocols

pipelining: sender allows multiple, “in-
flight”, yet-to-be-acknowledged pkts

• range of sequence numbers must be 
increased

• buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N, 
selective repeat
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Pipelining: increased 
utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  
3L / R 

RTT + L / R 
= 
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Pipelined protocols: 
overview
Go-back-N:
 sender can have up 

to N unacked 
packets in pipeline

 receiver only sends 
cumulative ack

• doesn’t ack packet 
if there’s a gap

 sender has timer 
for oldest unacked 
packet

• when timer expires, 
retransmit all 
unacked packets

Selective Repeat:
 sender can have up to 

N unack’ed packets in 
pipeline

 rcvr sends individual 
ack for each packet

 sender maintains 
timer for each 
unacked packet

• when timer expires, 
retransmit only that 
unacked packet
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Go-Back-N: sender
 k-bit seq # in pkt header
 “window” of up to N, consecutive unack’ed pkts 

allowed

 ACK(n): ACKs all pkts up to, including seq # n - 
“cumulative ACK”
• may receive duplicate ACKs (see receiver)

 timer for oldest in-flight pkt
 timeout(n): retransmit packet n and all higher seq 

# pkts in window
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GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-
1])

timeout

rdt_send(data) 

if (nextseqnum < base+N) {
    sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
    udt_send(sndpkt[nextseqnum])
    if (base == nextseqnum)
       start_timer
    nextseqnum++
    }
else
  refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
    stop_timer
  else
    start_timer

rdt_rcv(rcvpkt) && 
   notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
   && corrupt(rcvpkt) 
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ACK-only: always send ACK for correctly-
received pkt with highest in-order seq #

• may generate duplicate ACKs
• need only remember expectedseqnum

 out-of-order pkt: 
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
  && notcurrupt(rcvpkt)
  && hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    
  make_pkt(expectedseqnum,ACK,chksum)



GBN: receiver extended 
FSM
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GBN in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, discard, 
           (re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
           (re)send ack1
receive pkt5, discard, 
           (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
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Selective repeat

 receiver individually acknowledges all 
correctly received pkts

• buffers pkts, as needed, for eventual in-
order delivery to upper layer

 sender only resends pkts for which ACK 
not received

• sender timer for each unACKed pkt
 sender window

• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver 
windows
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Selective repeat

data from above:
 if next available seq # 

in window, send pkt
timeout(n):
 resend pkt n, restart 

timer
ACK(n) in 

[sendbase,sendbase+N]:
 mark pkt n as received
 if n smallest unACKed 

pkt, advance window 
base to next unACKed 
seq # 

sender
pkt n in [rcvbase, 

rcvbase+N-1]
 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also 

deliver buffered, in-
order pkts), advance 
window to next not-
yet-received pkt

pkt n in [rcvbase-
N,rcvbase-1]

 ACK(n)
otherwise: 
 ignore 

receiver
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Selective repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, buffer, 
           send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2

Xloss

receive pkt4, buffer, 
           send ack4
receive pkt5, buffer, 
           send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; 
send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?
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Selective repeat:
dilemma

example: 
 seq #’s: 0, 1, 2, 3
 window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

 receiver sees no 
difference in two 
scenarios!

 duplicate data 
accepted as new 
in (b)

Q: what relationship 
between seq # 
size and window 
size to avoid 
problem in (b)?
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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TCP: Overview  
RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
• bi-directional data flow 

in same connection
• MSS: maximum 

segment size
 connection-oriented: 

• handshaking 
(exchange of control 
msgs) inits sender, 
receiver state before 
data exchange

 flow controlled:
• sender will not 

overwhelm receiver

 point-to-point:
• one sender, one 

receiver 
 reliable, in-order 

byte steam:
• no “message 

boundaries”

 pipelined:
• TCP congestion and 

flow control set 
window size
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” 
of first byte in 
segment’s data

acknowledgements:
• seq # of next byte 
expected from other 
side

• cumulative ACK
Q: how receiver handles 
out-of-order segments
• A: TCP spec doesn’t 
say, - up to 
implementor

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet 
ACKed
(“in-flight
”)

usable
but not 
yet sent

not 
usable

window size
 N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender
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TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP round trip time, 
timeout
Q: how to set TCP 

timeout value?
 longer than RTT

• but RTT varies
 too short: 

premature timeout, 
unnecessary 
retransmissions

 too long: slow 
reaction to 
segment loss

Q: how to estimate 
RTT?

 SampleRTT: measured 
time from segment 
transmission until ACK 
receipt

• ignore retransmissions
 SampleRTT will vary, 

want estimated RTT 
“smoother”

• average several 
recent measurements, 
not just current 
SampleRTT
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT
 exponential weighted moving average
 influence of past sample decreases 

exponentially fast
 typical value:  = 0.125

TCP round trip time, 
timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time 
(seconds)
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 timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT: 

DevRTT = (1-)*DevRTT +
             *|SampleRTT-EstimatedRTT|SampleRTT-EstimatedRTT|SampleRTT-EstimatedRTT|

TCP round trip time, 
timeout

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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TCP reliable data transfer
 TCP creates rdt 

service on top of 
IP’s unreliable 
service

• pipelined segments
• cumulative acks
• single 

retransmission timer
 retransmissions  

triggered by:
• timeout events
• duplicate acks

let’s initially consider 
simplified TCP 
sender:

• ignore duplicate acks
• ignore flow control, 

congestion control
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TCP sender events:
data rcvd from app:
 create segment with 

seq #
 seq # is byte-stream 

number of first data 
byte in  segment

 start timer if not 
already running 

• think of timer as for 
oldest unacked 
segment

• expiration interval: 
TimeOutInterval 

timeout:
 retransmit segment 

that caused timeout
 restart timer
 ack rcvd:
 if ack acknowledges 

previously unacked 
segments

• update what is 
known to be ACKed

• start timer if there 
are  still unacked 
segments
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TCP sender (simplified)

wait
for 

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum



create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 
if (timer currently not running)
    start timer
                 

data received from application above

retransmit not-yet-acked 
segment         with 
smallest seq. #
start timer

timeout

if (y > SendBase) { 
    SendBase = y 
    /* SendBase–1: last cumulatively ACKed byte */
    if (there are currently not-yet-acked segments)
         start timer
       else stop timer 
     } 

ACK received, with ACK field value y 



Transport Layer 3-84

TCP: retransmission 
scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

ti
m

e
o
u

t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92
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TCP: retransmission 
scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

ti
m

e
o
u

t

Seq=100, 20 bytes of data

ACK=120
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TCP ACK generation [RFC 1122, RFC 

2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK, 
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP fast 
retransmit
 time-out period  

often relatively long:
• long delay before 

resending lost packet
 detect lost segments 

via duplicate ACKs.
• sender often sends 

many segments 
back-to-back

• if segment is lost, 
there will likely be 
many duplicate ACKs.

if sender receives 
3 ACKs for same 
data
(“triple duplicate 
ACKs”), resend 
unacked segment 
with smallest seq 
#

 likely that unacked 
segment lost, so 
don’t wait for 
timeout

TCP fast retransmit
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X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u

t

ACK=100

ACK=100

ACK=100

TCP fast 
retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than 
TCP 

receiver is 
delivering
(sender is 
sending)

from sender

receiver controls sender, 
so sender won’t overflow 
receiver’s buffer by 
transmitting too much, 
too fast

flow control
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TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

 receiver “advertises” 
free buffer space by 
including rwnd value in 
TCP header of receiver-
to-sender segments

• RcvBuffer size set via 
socket options (typical 
default is 4096 bytes)

• many operating systems 
autoadjust RcvBuffer

 sender limits amount of 
unacked (“in-flight”) 
data to receiver’s rwnd 
value 

 guarantees receive 
buffer will not overflow

receiver-side buffering
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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Connection Management
before exchanging data, sender/receiver 

“handshake”:
 agree to establish connection (each knowing the 

other willing to establish connection)
 agree on connection parameters

connection state: 
ESTAB
connection variables:

seq # client-to-
server
         server-to-client
rcvBuffer size
   at server,client 
           

application

connection state: 
ESTAB
connection Variables:

seq # client-to-
server
          server-to-
client
rcvBuffer size
   at server,client 
           

application

Socket clientSocket =   
  newSocket("hostname","port 

number");

Socket connectionSocket = 
welcomeSocket.accept();

network
network
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Q: will 2-way handshake 
always work in network?

 variable delays
 retransmitted messages 

(e.g. req_conn(x)) due to 
message loss

 message reordering
 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a 
connection
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Agreeing to establish a 
connection

2-way handshake failure scenarios:

retransmit
req_conn(

x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminat

es

server
forgets x

connection 
x completes

retransmit
req_conn(

x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1
)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client 
terminat

es

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1
)

connection 
x completes server

forgets x
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN
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TCP 3-way 
handshake: FSM

closed



listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   
  newSocket("hostname","port 

number");

SYN(seq=x)

Socket connectionSocket = 
welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for 

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)
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TCP: closing a connection
 client, server each close their side of 

connection
• send TCP segment with FIN bit = 1

 respond to received FIN with ACK
• on receiving FIN, ACK can be combined with 

own FIN
 simultaneous FIN exchanges can be 

handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control
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congestion:
 informally: “too many sources sending 

too much data too fast for network to 
handle”

 different from flow control!
 manifestations:

• lost packets (buffer overflow at 
routers)

• long delays (queueing in router 
buffers)

 a top-10 problem!

Principles of congestion 
control
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Causes/costs of congestion: 
scenario 1 
 two senders, two 

receivers
 one router, infinite 

buffers 
 output link capacity: R
 no retransmission

 maximum per-
connection throughput: 
R/2

unlimited shared 
output link buffers

Host A

original data: in 

Host B

throughput:out

R/2

R/2


o

ut

in R/2
d

el
a

y
in

 large delays as arrival 
rate, in, approaches 
capacity
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 one router, finite buffers 
 sender retransmission of timed-out packet

• application-layer input = application-layer output:in = 
out

• transport-layer input includes retransmissions :in    in

finite shared output 
link buffers

Host A

in : original data

Host B

out'in: original data, plus 

retransmitted data

‘

Causes/costs of congestion: 
scenario 2 
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idealization: perfect 
knowledge

 sender sends only when 
router buffers available 

finite shared output 
link buffers

in : original data
out'in: original data, plus 

retransmitted data

copy

free buffer space!

R/2

R/2


o

u
t

in

Causes/costs of congestion: 
scenario 2 

Host B

A



Transport Layer 3-105

in : original data
out'in: original data, plus 

retransmitted data

copy

no buffer space!

Idealization: known 
loss packets can be 
lost, dropped at router 
due  to full buffers

 sender only resends if 
packet known to be lost

Causes/costs of congestion: 
scenario 2 

A

Host B
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in : original data
out'in: original data, plus 

retransmitted data

free buffer space!

Causes/costs of congestion: 
scenario 2 

Idealization: known 
loss packets can be 
lost, dropped at router 
due  to full buffers

 sender only resends if 
packet known to be lost

R/2

R/2in


ou

t

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput 
is still R/2 (why?)

A

Host B
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A

in
out'in

copy

free buffer space!

timeout

R/2

R/2in


ou

t

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered!

Host B

Realistic: duplicates 
 packets can be lost, dropped 

at router due  to full buffers
 sender times out prematurely, 

sending two copies, both of 
which are delivered

Causes/costs : scenario 2 
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R/2


ou

t

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered!

“costs” of congestion: 
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple 

copies of pkt
• decreasing goodput

R/2in

Causes/costs of congestion: 
scenario 2 
Realistic: duplicates 
 packets can be lost, 

dropped at router due  
to full buffers

 sender times out 
prematurely, sending 
two copies, both of 
which are delivered
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 four senders
 multihop paths
 timeout/retransmit

Q: what happens as in 
and in

’ increase ?

finite shared output 
link buffers

Host A out

Causes/costs of congestion: 
scenario 3 

Host B

Host C
Host D

in : original data

'in: original data, plus 

retransmitted data

A: as red  in
’ increases, all 

arriving blue pkts at upper 
queue are dropped, blue 
throughput  0
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another “cost” of congestion: 
 when packet dropped, any “upstream 

transmission capacity used for that 
packet was wasted!

Causes/costs of congestion: 
scenario 3 

C/2

C/2


o

u
t

in
’
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing 
and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of 
reliable data 
transfer

3.5 connection-oriented 
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection 

management
3.6 principles of 

congestion control
3.7 TCP congestion 

control



Transport Layer 3-112

TCP congestion control: additive 
increase multiplicative decrease

 approach: sender increases transmission 
rate (window size), probing for usable 
bandwidth, until loss occurs
• additive increase: increase  cwnd by 1 

MSS every RTT until loss detected
• multiplicative decrease: cut cwnd in half 

after loss 

c
w
n
d
:

 T
C

P
 s

en
de

r 
co

ng
es

tio
n 

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP Congestion Control: 
details

 sender limits transmission:

 cwnd is dynamic, function of 
perceived network congestion

TCP sending rate:
 roughly: send 

cwnd bytes, wait 
RTT for ACKS, 
then send more 
bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space 

rate ~~
cwnd

RTT
bytes/sec
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TCP Slow Start 
 when connection 

begins, increase rate 
exponentially until 
first loss event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing 
cwnd for every ACK 
received

 summary: initial rate 
is slow but ramps up 
exponentially fast

Host A

one segment

R
T

T

Host B

time

two segments

four segments
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TCP: detecting, reacting to 
loss

 loss indicated by timeout:
• cwnd set to 1 MSS; 
• window then grows exponentially (as in slow start) to threshold, 

then grows linearly
 loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of  delivering some segments 
• cwnd is cut in half window then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)
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Q: when should the 
exponential 
increase switch to 
linear? 

A: when cwnd gets to 
1/2 of its value 
before timeout.

 

Implementation:
 variable ssthresh 
 on loss event, ssthresh 

is set to 1/2 of cwnd 
just before loss event

TCP: switching from slow start 
to CA

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Summary: TCP Congestion 
Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment 



cwnd > ssthresh
congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++

duplicate ACK

 fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment 

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment 

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK



cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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TCP throughput
 avg. TCP thruput as function of window 

size, RTT?
• ignore slow start, assume always data to send

 W: window size (measured in bytes) where loss 
occurs

• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 34
W

RTTbytes/sec
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TCP Futures: TCP over “long, fat 
pipes”

 example: 1500 byte segments, 100ms 
RTT, want 10 Gbps throughput

 requires W = 83,333 in-flight segments
 throughput in terms of segment loss 

probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss 
rate of L = 2·10-10   – a very small loss rate!

 new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L
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fairness goal: if K TCP sessions share 
same bottleneck link of bandwidth R, 
each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2
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Why is TCP fair?
two competing sessions:
 additive increase gives slope of 1, as throughout 

increases
 multiplicative decrease decreases throughput 

proportionally 

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
c t

io
n 

2 
t h

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)
Fairness and UDP
 multimedia apps 

often do not use 
TCP

• do not want rate 
throttled by 
congestion control

 instead use UDP:
• send audio/video 

at constant rate, 
tolerate packet 
loss

Fairness, parallel TCP 
connections

 application can open 
multiple parallel 
connections between 
two hosts

 web browsers do this 
 e.g., link of rate R with 

9 existing connections:
• new app asks for 1 TCP, gets 

rate R/10
• new app asks for 11 TCPs, 

gets R/2 
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network-assisted congestion control:
 two bits in IP header (ToS field) marked by network 

router to indicate congestion
 congestion indication carried to receiving host
 receiver (seeing congestion indication in IP 

datagram) ) sets ECE bit on receiver-to-sender ACK 
segment to notify sender of congestion

Explicit Congestion Notification 
(ECN)

source

application
transport
network

link
physical

destination

application
transport
network

link
physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment
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Chapter 3: summary
 principles behind transport 

layer services:
• multiplexing, 

demultiplexing
• reliable data transfer
• flow control
• congestion control

 instantiation, 
implementation in the 
Internet

• UDP
• TCP

next:
 leaving the 

network “edge” 
(application, 
transport layers)

 into the network 
“core”

 two network 
layer chapters:

• data plane
• control plane
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