Computing and compilers

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ Computer Science

Outline

Objectives

o Objectives

Objectives

Objectives

e Evaluate the difference between hardware and software
e Find out about the various types of software

e Get a high level understanding of how program code is
transformed into working software applications

Outline

Introduction

9 Introduction

Introduction

What is a computer program?

A sequence of instructions that dictate the flow of
electrical impulses in a computer system.

Can perform useful tasks, solve high-level problems, play
games.

We can be oblivious to the lower-level activity

Most programmers write software at this higher, more
abstract level also.

An accomplished computer programmer can develop
sophisticated software with little or no interest or
knowledge of the actual computer system upon which it
runs.

Software construction tools hide the lower-level details
from programmers, allowing them to solve problems in
higher-level terms.

What is a computer system?

Introduction

e Hardware (only sometimes important to CS)
e Software (CS!)

Outline

Hardware

@ Hardware

Hardware

Hardware

¢ Peripheral devices: Input/Output devices, Printers,
Monitor, Speakers, Mic, The power supply,

e Internals: The "motherboard” with memory chips, The
CPU (central processing unit), Hard drive, A lot of wires,
etc

e What is a CPU?

What is a transistor?

Hardware

Outline

Software

@ Software

What is software?

Software

Outline

@ Software

Low level

Machine code

For example, adding the registers 1 and 2 and placing the result in register 6 is encoded:

[op | rs | rt | rd |shamt] funct]
] 1 2 6] 32 decimal
000000 00001 016 60116 AOOOO 100000 binary

e Computers understand language that consists of sets of
instructions made of ones and zeros.

e This computer language is often called machine code.

e Programming a computer directly in machine language
using only ones and zeros is very tedious and error prone.

Outline

@ Software

High level

High level languages

To make programming easier, high level languages can be
used.

A computer can only understand machine language
Humans wish to write in high level languages

High level languages have to be re-written (translated)
into machine language

Done by special programs called compilers, interpreters, or
assemblers

Outline

@ Software

Interpreted and compiled

Interpreted versus compiled languages

source
code

f———

The interpreter
reads the
source code...

interpreter

... and the result
appears on
the screen.

source object

COde COde
The compiler ... and generates You execute the ... and the result
reads the object code. program (one way appears on
source code... or another)... the screen.

Outline

@ Software

CH++

C++

C++ is a human readable high level language

The higher-level language code is called source code.
C++ is designed to be a compiled language
Generated program is often highly efficient.

Machine translated code is also called object code or an
executable.

A compiler translates your C++ code into machine
readable low level language

The set of tools is sometimes known as the development
tool-chain, whose core are a compiler and its linker.

Outline

@ Software

Compilers

Simplified steps of a compiler

@ Checking the syntax:
o Compiler will check that you are using the language
(C++) correctly
o If you make a mistake, the compiler will issue an error
message.
® Produce the executable file:

e Produces a file containing the machine code that the
computer can execute.
e You "run” the executable.

The target code may be the machine language for a particular
platform or embedded device.

Parts of the development tool-chain

Don't usually think about the C++ pre-processor, compiler,
and linker working as three separate programs (although they
are):
e Pre-processor adds to or modifies the contents of the
source file before the compiler begins processing the code.
#include information about libraries

e Compiler translates C + + source code to machine code.

e Most compiled C + + code is incapable of running by
itself and needs some additional machine code to make a
complete executable program. The missing machine code
has been pre-compiled and stored in a repository of code
called a library. Linker combines the compiler-generated
machine code with pre-compiled library code or compiled
code from other sources to make a complete executable
program.

Outline

@ Software

Editors

)

Concept of - X
(Design
problem .
solution program logic)

(Edit)

Source code -

Library
declarations
(source code)

N

Enhanced
source code

.

N
Object code .
Pre-compiled
libraries
(object code)

Executable
program

Editors

Programmer’s
responsibility

Automated
by tools

and compilers

Editors

Allows the user to enter the program source code and save
it to files.

Increase programmer productivity by using colors to
highlight language features.

Syntax of a language refers to the way pieces of the
language are arranged to make well-formed sentences.
e "The tall boy runs quickly to the door.” uses proper

English syntax.
e "Boy the tall runs door to quickly the.” is not correct
syntactically, though has correct words.
Syntax-aware editors can use colors or other special
annotations to alert programmers of syntax errors before
the program is compiled.

Outline

@ Software

Debuggers

Objectives

Introduction

Debuggers

A debugger allows a programmer to more easily trace a
program’s execution in order to locate and correct errors in
the program’s implementation.

With a debugger, a developer can simultaneously run a
program and see which line in the source code is
responsible for the program’s current actions.

The programmer can watch the values of variables and
other program elements to see if their values change as
expected.

Debuggers are valuable for locating errors (also called
bugs) and repairing programs that contain errors.

Learning to debug and troubleshoot on your own may
be one of the most important skills of a good
programmer.

Outline

@ Software

Profilers

Profilers

A profiler collects statistics about a program’s execution
allowing developers to tune appropriate parts of the
program to improve its overall performance.

e A profiler indicates how many times a portion of a
program is executed during a particular run, and how long
that portion takes to execute.

e Profilers also can be used for testing purposes to ensure all
the code in a program is actually being used somewhere
during testing.

e The main purpose of profiling is to find the parts of a
program that can be improved to make the program run
faster.

Outline

@ Software

Overview

The whole process

e Someone has a problem
e They write a C++ solution to the problem
e The compiler translates C++ into machine code

e The program you write will demand memory space for
variables, communication from and to the keyboard and
monitor, and possibly other uses of peripherals.

e The OS will schedule the use of these resources of the
computer.

e The CPU, RAM, disk drives, etc follow those instructions

Outline

Computational

thinking

@ Computational thinking

What is a program?

e Sequence of instructions that specifies how to perform a
computation.

e The instructions (or commands, or statements) look
different in different programming languages, but there are
a few basic functions that appear in just about every
language:

e input: Get data from the keyboard, or a file, or some other

Computational device.

Gy e output: Display data on the screen or send data to a file
or other device. math: Perform basic mathematical
operations like addition and multiplication.

e testing: Check for certain conditions and execute the
appropriate sequence of statements.

e repetition: Perform some action repeatedly, usually with
some variation.

Outline

@ Computational thinking
Algorithms

Algorithms

e The concepts of computer programming are logical and
mathematical in nature.

e In theory, computer programs can be developed without
the use of a computer.

e Programmers can describe a procedure using abstract
symbols that correspond to the features of real-world
programming languages but appear in no real-world
programming language.

Algorithms and computational problem solving

Our goals this week include:

e learn how to break apart a big problem into several smaller
problems

e Create a sequence of steps for automatically solving these
problems

e Pattern these small solutions together in such a way that
together, they automatically solve the large problem

Algorithms

What is an algorithm?

e Algorithm is a concise, correct step-by-step sequence of
steps to solve a problem.

And why do we care to discuss algorithms here?

e To be successful in writing programs, you need to write, or
at least think, algorithms.

Outline

@ Computational thinking

Pseudocode

Pseudocode

Step-by-step verbal outline of your code that you can
gradually transcribe into programming language.

Many programmers use it to plan out the function of an
algorithm before setting themselves to the more technical
task of coding.

Informal guide, a tool for thinking through program
problems

Shows how a computing algorithm should and could work.

Intermediate step in programming, in between the initial
planning stage and the stage of writing actual, executable
code.

Allows the designer to focus on the logic of the algorithm
without being distracted by details of language syntax.

Good pseudocode practices

e Pseudocode needs to be complete.

e |t describe the entire logic of the algorithm so that
implementation becomes a rote mechanical task of
translating line by line into source code.

e In general, the vocabulary used in the pseudocode should
be the vocabulary of the problem domain, not of the
implementation domain.

Computational

thinking

What are the basic constructs of pseudocode?

It has been proven that three basic constructs for flow of
control are sufficient to implement any " proper” algorithm.
@ SEQUENCE is a linear progression where one task is
performed sequentially after another.
® WHILE is a loop (repetition) with a simple conditional
test at its beginning.
© |IF-THEN-ELSE is a decision (selection) in which a choice
is made between two alternative courses of action.
Although these constructs are sufficient, it is often useful to
include three more constructs:
@ REPEAT-UNTIL is a loop with a simple conditional test at
the bottom.
@® CASE is a multiway branch (decision) based on the value
of an expression. CASE is a generalization of
IF-THEN-ELSE.

® FOR is a "counting” loop.

Example problems

How can we look up a word in a dictionary?
How can we sort a stack of cards?

Wrapping it up

Step 1: Define the problem to be solved

y
Step 20 Design a solution

)
Step 30 Write @ program that implements the solution

3
Step 4: Compile the program

)
Step & Link object files

3
Step 6: Test and debug program

	Objectives
	Introduction
	Hardware
	Software
	Low level
	High level
	Interpreted and compiled
	C++
	Compilers
	Editors
	Debuggers
	Profilers
	Overview

	Computational thinking
	Algorithms
	Pseudocode

