Operators, integer division, casting, modular
arithmetic

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ Computer Science




Outline

Integer
division

G Integer division




Integer division

Integer
division

#include <iostream>
using namespace std;

int main() {
float celc;
int fahr;

celc = (5/9)*(fahr —32);
cout << celc << endl;

celc = (5.0/9)«(fahr —32);
cout << celc << endl;

return O;




Integer
division

Integer division

When an int (int-type) is divided by another int, the result
is an int.

Program to convert Fahrenheit to Celcius (see code)
Regardless of the value of fahr that is used, celc will be
assigned 0.

Both of the literal constants 5 and 9 are stored by the
compiler as integers.

Integer division will give you 0 (9 goes into 5 zero times),
and 0 times anything is 0.



Outline

Type
conversion

9 Type conversion




Type conversion

Implicit conversions are automatically performed when a value
is copied to a compatible type.

Type

conversion short a:2000v
int b:
b=a;

e The value of a is promoted from short to int without the
need of any explicit operator.

e This is known as a standard conversion.

e Standard conversions affect fundamental data types, and
allow the conversions between numerical types (short to
int, int to float, double to int...), to or from bool, and
more

e Converting to int from some smaller integer type, or to
double from float is known as promotion, and is
guaranteed to produce the exact same value in the
destination type.




Type
conversion

int integerl;

float floatl;

floatl 4+ integerl
floatl — integerl
floatl * integerl
floatl / integerl
integerl / floatl
floatl % integerl
integerl % floatl

//
//
//
//
//
//
//

gives
gives
gives
gives
gives
can't
can't

L L L L

a

float
float
float
float
float

be done
be done

Conversions

Alternatively, if conversion is from a floating-point type to an
integer type, the value is truncated (the decimal part is

removed). If the result lies outside the range of representable
values by the type, the conversion causes undefined behavior.



Outline

9 Type conversion
Casting




Casting

e C++ is a strong-typed language.

e Many conversions, specially those that imply a different
interpretation of the value, require an explicit conversion,
known in C++ as type-casting.

e Several forms for generic type-casting:

double x = 10.3;

int y;
y = int (x); // functional notation
y = (int) x; // c—like cast notation

// static casting

int someValue;

double Numl, Num?2;

someValue = Numl + Num2; // warning issued
someValue = static_cast<int >(Numl + Num2);



Static casting

We want average_age to have a decimal point, but the result of
the quotient on the rhs will be an int.

int total_of_ages;
int numPeople;

average_age = total_of_ages / numPeople;
average_age = static_cast<float >(total_of_ages) / numPeople;

e We cast either the numerator or the denominator or both,
but NOT the quotient.

e Now, a float divided by an int will give you a float as
desired.

e Note: you have not changed the nature of either

total_of_ages or numPeople, and they are both still ints
after this line of code is executed.



Outline

Modular
arithmetic

9 Modular arithmetic




Modular
arithmetic

The mod operator, %, works this way:

e 4%7 is 4 (since 4/7 is 0 with remainder 4)
e 7%3 is 1 (since 7/3 is 2 with remainder 1)
e 27%3 is 0 (since 27/3 is 9 with remainder 0)

e a mod b is the remainder after a is divided by b.

mod



mod to choose place

@ Suppose you read in an integer from a user into a variable
named Xx.

® Assume x is 5 digits long, and let's represent it as

Modular x=abcde.

arithmetic

© So, e is the "ones” digit, d is the "tens” digit, etc.

O Thus, we don't know any of these digits at compile time.

@ But suppose that we need to know, say, the tens digit, d,
at run-time.

® How can we extract that from the value x, entered by the
user at run-time?

@ Well, x%100 is the integer de.

® This is because 100 goes into x abc times with a
remainder of de.

© Now, de/10 is d. That is, 10 goes into de d times.

int tens_digit;
tens_digit = (x%100)/10; //assigns tens digit




Modular arithmetic

11:00 + 4:00 = 3:00

(114 4)%12 = 3




Outline

More
operators

e More operators




Outline

e More operators
Increment and decrement




Increment and decrement operators

A=10; B=20;

Operator Description Example
+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A ™ B will give 200
/ Divides numerator by de-numerator B/ A will give 2

Modulus Operator and remainder of
after an integer division

% B % A will give 0

Increment operator [, increases

++ X A++ will give 11
integer value by one

Decrement operator [, decreases o
- . A-- will give 9
integer value by one




Increment and decrement operators

omin | ram | oprion |

‘ Prefix increment (pre-increment) ‘ ++ | +4+X ‘ Increment x, then evaluate x ‘
‘ Prefix decrement (pre-decrement) ‘ — | —X ‘ Decrement x, then evaluate x ‘
‘ Postfix increment (post-increment) ‘ ++ | X++ ‘ Evaluate x, then increment x ‘
‘ Postfix decrement (post-decrement) ‘ — | X— ‘ Evaluate x, then decrement x ‘



Syntax

To increment (or decrement) an integer variable's value.
This is common in looping structures (repeated operations).

val = val + 1, // retrieve val, add one, replac
val = val + 1; // increment

val ++; or ++val;

val = val — 1; // decrement

val ——; or —val;




Order matters

Equivalent to val = val + 1; but are much faster such that if
this operation is repeated millions of times, time savings is
significant.

int val = 6, num;

num = ++val;
// num is now 7, val is now 7

int val = 6, num;
num = val-++;
// num is now 6, val is now 7

e The two versions of increment (or decrement) are NOT
the same.

e val4+ is a post-increment while ++4-val is a pre-increment.

e It is when these statements are inserted into bigger
statements that the difference becomes apparent.



Order matters

Example 1 Example 2
X = 3; X = 3;
y = +4X; Yy = X++;
// x contains 4, y contains 3

// x contains 4, y contains 4

In any C++ statement, a pre-increment is executed before
anything else, while a post-increment is executed last.




Outline

e More operators

Other assignment operators




Other fast operators

x +=vy; // equivalent to x = x + y;

x —=y; // equivalent to x = x — y;

x /=1y, // equivalent to x = x / y;

x *x=y; // equivalent to x = x % y;

x %=vy; // equivalent to x = x % y;

expression equivalent to...

y += X; y =Y + X;

X -=5; X =X - 5;

X /=Y, X=Xx/Y,;

price *= units + 1;|price = price * (units+1);




Operator

Description

Simple assignment operator, Assigns
values from right side operands to left side
operand.

Add AND assignment operator, |t adds right
operand to the left operand and assign the
result to left operand.

Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand.

Multiply AND assignment operator, It
multiplies right operand with the left
operand and assign the result to left
operand.

Divide AND assignment operator, It divides
left operand with the right operand and
assign the result to left operand.

Modulus AND assignment operator, It takes
modulus using two operands and assign the
result to left operand.

Fast operators

Example
C = A + B will assign value of A +
Binto C

C += Ais equivalenttoC=C + A

C-=AisequivalenttoC=C- A

C*=Alis equivalenttoC=C* A

C/=Ais equivalenttoC=C/A

C %= Ais equivalenttoC=C % A



Outline

e More operators

Relational operators




Relational operators

What are expressions?
C++ statements that will evaluate to either true or false

false is interpreted as a 0 and 0 is interpreted as false

true is interpreted as 1 and any number other than 0 is
interpreted as true

Greater than x>y true if x is greater than y, false otherwise

Less than < X<y true if x is less than y, false otherwise

Greater than or equals | >= X >=y | trueif x is greater than or equal to y, false otherwise
Less than or equals <= X <=y | trueif x is less than or equal to y, false otherwise
Equality == X ==y | trueif x equals y, false otherwise

Inequality 1= x !=y | trueif x does not equal y, false otherwise




Assume variable A holds 10 and variable B holds 20

Operator Description Example

Checks if the values of two operands are
== equal or not, if yes then condition (A ==B)is not true.
becomes true.

Checks if the values of two operands are
equal or not, if values are not equal then (A !'=B)is true.
condition becomes true.

Checks if the value of left operand is
> greater than the value of right operand, if (A > B) is not true.
yes then condition hecomes true.

Checks if the value of left operand is less
< than the value of right operand, if yes (A <B)is true.
then condition becomes true.

Checks if the value of left operand is
greater than or equal to the value of right
operand, if yes then condition becomes
true.

(A >=B)is not true.

Checks if the value of left operand is less
than or equal to the value of right

<= q - ¢ (A <=B)is true
operand, if yes then condition becomes

true.




Relational operators

The relational operators are:

.o o, o on.n o, "o non_n

: CL L= :

short val = 5, num = 8, bob = 0;

(val <= num); // evals to true (or 1)
(num % val > bob); // evals to true
(val = num); // true

(num != (num/val)); // true



—— VS. —

The == operator is the "is equal” operator and "!=""is
the "is not equal” operator.

Many times, those learning C+-+ for the first time will
make a mistake when trying to use this operator that the
compiler will NOT catch.

The code will compile and run, but incorrectly!
They will use the = operator instead of the == operator.

Thus, val = num will compile and run but will NOT
compare the two values.

It will set the value of the variable val to that of num and
will return true...always.

This is not the desired result.
BE CAREFUL.



Suppose that a=2, b=3, and c=6, then:

(7 =15) //
(5 > 4) //
(3 1= 2) //
(6 >= 6) //
(5 < 5) //
(a = 5) //
(axb >= ¢) //
(b+4 > axc) //

((b=2) = a) //

evaluates
evaluates
evaluates
evaluates
evaluates
evaluates
evaluates
evaluates
evaluates

to
to
to
to
to
to
to
to
to

false
true
true
true
false
false
true
false
true

Examples



Outline

e More operators

Logical operators




AND, OR

Assume variable A holds 1 and variable B holds 0

Operator Description Example

Called Logical AND operator. If both the
&& operands are non-zero, then condition (A && B) is false.
becomes true.

Called Logical OR Operator. If any of the
1l two operands is non-zero, then condition (A]] B) is true.
becomes true.

Called Logical NOT Operator. Use to
reverses the logical state of its operand.
If a condition is true, then Logical NOT
operator will make false.

I(A && B) is true.

‘ Logical NOT ‘ ‘ true if x is false, or false if x is true ‘
‘ Logical AND ‘ && | x&&y ‘ true if both x and y are true, false otherwise ‘
‘ Logical OR ‘ | | x|y ‘ true if either x or y are true, false otherwise ‘




AND, OR

&& OPERATOR (and) || OPERATOR (or)

a b |a & b a b |a || b
true [true [true true |true |true
true |false|false ||true |false|true
false|true |false ||false|true [true
false|false|false ||false|false|false

Logical AND (operator &&)
Left operand | Right operand w

Logical OR (operator |[)
Left operand | Right operand m

‘ false ‘ false | false ‘ ‘ false ‘ false | false
‘ false ‘ true | false ‘ ‘ false ‘ true | true
‘ true ‘ false | false ‘ ‘ true ‘ false

‘ true ‘ true

| true ‘ ‘ true

| true ‘

‘ true | true




NOT

Logical NOT (operator!)
Right operand w

‘ true ‘ false ‘

‘ false ‘ true ‘

e The operator ! is the C++ operator for the Boolean
operation NOT.

e It has only one operand, to its right, and inverts it,
producing false if its operand is true, and true if its
operand is false.

e Returns the opposite Boolean value of evaluating its

operand.
(5 = 5) // evaluates to false because the
(6 <= 4) // evaluates to true because (6 <=
l'true // evaluates to false

I false // evaluates to true



short-circuit

When using the logical operators, C++ only evaluates
what is necessary from left to right to come up with the
combined relational result, ignoring the rest.

Therefore, in the last example ((5 == 5)||(3 > 6)), C++
evaluates first whether 5==5 is true, and if so, it never
checks whether 3 > 6 is true or not.

This is known as short-circuit evaluation, and works like
this for these operators:

&& if the left-hand side expression is false, the combined
result is false (the right-hand side expression is never
evaluated).

|| if the left-hand side expression is true, the combined
result is true (the right-hand side expression is never
evaluated).



Which short-circuit?

short val = 5;
short num = 8;
short bob = 0;

((val = num) || (!'val));

/%

false, since val is not equal to num (F),
val is true (5 same as true),

so not true is false,

and F || F is false

*/
( (5=5)&&% (3 >6) ) // evaluates to false
( (5 =25) || (3 6) ) // evaluates to true



XOR

Left operand | Right operand m

‘ false ‘ false | false ‘
‘ false ‘ true | true ‘
‘ true ‘ false | true ‘
‘ true ‘ true | false ‘
if (a!=Db) ... // a XOR b, assuming bool

if (al=bl=c I=d)

o C++ doesn't provide a logical XOR operator.

e Unlike logical OR or logical AND, XOR cannot be short
circuit evaluated.

e Because of this, making an XOR operator out of logical
OR and logical AND operators is challenging.

e However, you can easily mimic logical XOR using the not
equals operator (!=):




Outline

e More operators

Precedence and associativity




Precedence and associativity

Category Operator Associativity

Postfix O0->.++-- Left to right
Unary + -1~ ++ - - (type)* & sizeof Right to left
Multiplicative *1% Left to right
Additive +- Left to right
Shift << >> Left to right
Relational <<=>>= Left to right
Equality == Left to right
Bitwise AND & Left to right
Bitwise XOR n Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR I Left to right
Conditional s Right to left
Assignment =4z = *= [z Y=>>= <<= k== |= Right to left

Comma . Left to right

Not required to know this, just for anyone curious



	Integer division
	Type conversion
	Casting

	Modular arithmetic
	More operators
	Increment and decrement
	Other assignment operators
	Relational operators
	Logical operators
	Precedence and associativity


