
Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Operators, integer division, casting, modular
arithmetic

Comp Sci 1570 Introduction to C++

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Integer division

#inc lude <i o s t r e a m>
using namespace s t d ;

i n t main () {
f l o a t c e l c ;
i n t f a h r ;

c e l c = (5 / 9)∗ (f a h r −32);
cout << c e l c << e n d l ;

c e l c = (5 . 0 / 9)∗ (f a h r −32);
cout << c e l c << e n d l ;

return 0 ;
}

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Integer division

• When an int (int-type) is divided by another int, the result
is an int.

• Program to convert Fahrenheit to Celcius (see code)

• Regardless of the value of fahr that is used, celc will be
assigned 0.

• Both of the literal constants 5 and 9 are stored by the
compiler as integers.

• Integer division will give you 0 (9 goes into 5 zero times),
and 0 times anything is 0.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Type conversion

Implicit conversions are automatically performed when a value
is copied to a compatible type.

short a =2000;
i n t b ;
b=a ;

• The value of a is promoted from short to int without the
need of any explicit operator.

• This is known as a standard conversion.

• Standard conversions affect fundamental data types, and
allow the conversions between numerical types (short to
int, int to float, double to int...), to or from bool, and
more

• Converting to int from some smaller integer type, or to
double from float is known as promotion, and is
guaranteed to produce the exact same value in the
destination type.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Conversions

i n t i n t e g e r 1 ;
f l o a t f l o a t 1 ;
f l o a t 1 + i n t e g e r 1 // g i v e s a f l o a t
f l o a t 1 − i n t e g e r 1 // g i v e s a f l o a t
f l o a t 1 ∗ i n t e g e r 1 // g i v e s a f l o a t
f l o a t 1 / i n t e g e r 1 // g i v e s a f l o a t
i n t e g e r 1 / f l o a t 1 // g i v e s a f l o a t
f l o a t 1 % i n t e g e r 1 // can ’ t be done
i n t e g e r 1 % f l o a t 1 // can ’ t be done

Alternatively, if conversion is from a floating-point type to an
integer type, the value is truncated (the decimal part is
removed). If the result lies outside the range of representable
values by the type, the conversion causes undefined behavior.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Casting

• C++ is a strong-typed language.

• Many conversions, specially those that imply a different
interpretation of the value, require an explicit conversion,
known in C++ as type-casting.

• Several forms for generic type-casting:

double x = 1 0 . 3 ;
i n t y ;
y = i n t (x) ; // f u n c t i o n a l n o t a t i o n
y = (i n t) x ; // c− l i k e c a s t n o t a t i o n

// s t a t i c c a s t i n g
i n t someValue ;
double Num1 , Num2 ;
someValue = Num1 + Num2 ; // warn ing i s s u e d
someValue = s t a t i c ca s t<int >(Num1 + Num2) ;

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Static casting

We want average age to have a decimal point, but the result of
the quotient on the rhs will be an int.

i n t t o t a l o f a g e s ;
i n t numPeople ;
a v e r ag e ag e = t o t a l o f a g e s / numPeople ;
a v e r ag e ag e = s t a t i c c a s t <f l o a t >(t o t a l o f a g e s) / numPeople ;

• We cast either the numerator or the denominator or both,
but NOT the quotient.

• Now, a float divided by an int will give you a float as
desired.

• Note: you have not changed the nature of either
total of ages or numPeople, and they are both still ints
after this line of code is executed.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

mod

The mod operator, %, works this way:

• a mod b is the remainder after a is divided by b.

• 4%7 is 4 (since 4/7 is 0 with remainder 4)

• 7%3 is 1 (since 7/3 is 2 with remainder 1)

• 27%3 is 0 (since 27/3 is 9 with remainder 0)

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

mod to choose place

1 Suppose you read in an integer from a user into a variable
named x.

2 Assume x is 5 digits long, and let’s represent it as
x=abcde.

3 So, e is the ”ones” digit, d is the ”tens” digit, etc.

4 Thus, we don’t know any of these digits at compile time.

5 But suppose that we need to know, say, the tens digit, d,
at run-time.

6 How can we extract that from the value x, entered by the
user at run-time?

7 Well, x%100 is the integer de.

8 This is because 100 goes into x abc times with a
remainder of de.

9 Now, de/10 is d. That is, 10 goes into de d times.

i n t t e n s d i g i t ;
t e n s d i g i t = (x %100)/10; // a s s i g n s t en s d i g i t o f x to v a r i a b l e t e n s d i g i t

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Modular arithmetic

(11 + 4)%12 = 3

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Increment and decrement operators

A=10; B=20;

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Increment and decrement operators

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Syntax

To increment (or decrement) an integer variable’s value.
This is common in looping structures (repeated operations).

v a l = v a l + 1 ; // r e t r i e v e va l , add one , r e p l a c e v a l ’ s v a l u e

v a l = v a l + 1 ; // inc r ement
v a l ++; or ++v a l ;

v a l = v a l − 1 ; // decrement
v a l −−; or −−v a l ;

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Order matters

Equivalent to val = val + 1; but are much faster such that if
this operation is repeated millions of times, time savings is
significant.

i n t v a l = 6 , num ;
num = ++v a l ;
// num i s now 7 , v a l i s now 7

i n t v a l = 6 , num ;
num = v a l ++;
// num i s now 6 , v a l i s now 7

• The two versions of increment (or decrement) are NOT
the same.

• val++ is a post-increment while ++val is a pre-increment.

• It is when these statements are inserted into bigger
statements that the difference becomes apparent.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Order matters

In any C++ statement, a pre-increment is executed before
anything else, while a post-increment is executed last.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Other fast operators

x += y ; // e q u i v a l e n t to x = x + y ;
x −= y ; // e q u i v a l e n t to x = x − y ;
x /= y ; // e q u i v a l e n t to x = x / y ;
x ∗= y ; // e q u i v a l e n t to x = x ∗ y ;
x %= y ; // e q u i v a l e n t to x = x % y ;

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Fast operators

•

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Relational operators

• What are expressions?

• C++ statements that will evaluate to either true or false

• false is interpreted as a 0 and 0 is interpreted as false

• true is interpreted as 1 and any number other than 0 is
interpreted as true

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Assume variable A holds 10 and variable B holds 20

•

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Relational operators

The relational operators are:
”¡”, ”¡=”, ”¿”, ”¿=”, ”==”, ”!=”.

short v a l = 5 , num = 8 , bob = 0 ;
(v a l <= num) ; // e v a l s to t r u e (or 1)
(num % v a l > bob) ; // e v a l s to t r u e
(v a l == num) ; // t r u e
(num != (num/ v a l)) ; // t r u e

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

== vs. =

• The == operator is the ”is equal” operator and ”!=” is
the ”is not equal” operator.

• Many times, those learning C++ for the first time will
make a mistake when trying to use this operator that the
compiler will NOT catch.

• The code will compile and run, but incorrectly!

• They will use the = operator instead of the == operator.

• Thus, val = num will compile and run but will NOT
compare the two values.

• It will set the value of the variable val to that of num and
will return true...always.

• This is not the desired result.

• BE CAREFUL.

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Examples

Suppose that a=2, b=3, and c=6, then:

(7 == 5) // e v a l u a t e s to f a l s e
(5 > 4) // e v a l u a t e s to t r u e
(3 != 2) // e v a l u a t e s to t r u e
(6 >= 6) // e v a l u a t e s to t r u e
(5 < 5) // e v a l u a t e s to f a l s e
(a == 5) // e v a l u a t e s to f a l s e
(a∗b >= c) // e v a l u a t e s to t r u e
(b+4 > a∗c) // e v a l u a t e s to f a l s e
((b=2) == a) // e v a l u a t e s to t r u e

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

AND, OR

Assume variable A holds 1 and variable B holds 0

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

AND, OR

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

NOT

• The operator ! is the C++ operator for the Boolean
operation NOT.

• It has only one operand, to its right, and inverts it,
producing false if its operand is true, and true if its
operand is false.

• Returns the opposite Boolean value of evaluating its
operand.

! (5 == 5) // e v a l u a t e s to f a l s e because the e x p r e s s i o n at i t s r i g h t (5 == 5) i s t r u e
! (6 <= 4) // e v a l u a t e s to t r u e because (6 <= 4) would be f a l s e
! true // e v a l u a t e s to f a l s e
! f a l s e // e v a l u a t e s to t r u e

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

short-circuit

• When using the logical operators, C++ only evaluates
what is necessary from left to right to come up with the
combined relational result, ignoring the rest.

• Therefore, in the last example ((5 == 5)||(3 > 6)), C++
evaluates first whether 5==5 is true, and if so, it never
checks whether 3 > 6 is true or not.

• This is known as short-circuit evaluation, and works like
this for these operators:

• && if the left-hand side expression is false, the combined
result is false (the right-hand side expression is never
evaluated).

• || if the left-hand side expression is true, the combined
result is true (the right-hand side expression is never
evaluated).

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Which short-circuit?

short v a l = 5 ;
short num = 8 ;
short bob = 0 ;

((v a l == num) | | (! v a l)) ;
/∗
f a l s e , s i n c e v a l i s not equa l to num (F) ,
v a l i s t r u e (5 same as t r u e) ,
so not t r u e i s f a l s e ,
and F | | F i s f a l s e
∗/

((5 == 5) && (3 > 6)) // e v a l u a t e s to f a l s e (t r u e && f a l s e)
((5 == 5) | | (3 > 6)) // e v a l u a t e s to t r u e (t r u e | | f a l s e)

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

XOR

i f (a != b) . . . // a XOR b , assuming boo l
i f (a != b != c != d)

• C++ doesn’t provide a logical XOR operator.
• Unlike logical OR or logical AND, XOR cannot be short

circuit evaluated.
• Because of this, making an XOR operator out of logical

OR and logical AND operators is challenging.
• However, you can easily mimic logical XOR using the not

equals operator (!=):

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Outline

1 Integer division

2 Type conversion
Casting

3 Modular arithmetic

4 More operators
Increment and decrement
Other assignment operators
Relational operators
Logical operators
Precedence and associativity

Integer
division

Type
conversion

Casting

Modular
arithmetic

More
operators

Increment and
decrement

Other
assignment
operators

Relational
operators

Logical operators

Precedence and
associativity

Precedence and associativity

Not required to know this, just for anyone curious

	Integer division
	Type conversion
	Casting

	Modular arithmetic
	More operators
	Increment and decrement
	Other assignment operators
	Relational operators
	Logical operators
	Precedence and associativity

