
Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Looping and while() loops

Comp Sci 1570 Introduction to C++

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Outline

1 Control flow introduction
Loops

Loop control variable
Debugging

2 while loop
exiting loops

break
continue
exit

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Control flow

• if else

• switch case

• ternary

• Sentinel loops
• while
• do while

• counting loops
• for

• more?

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Outline

1 Control flow introduction
Loops

Loop control variable
Debugging

2 while loop
exiting loops

break
continue
exit

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Loops

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Loops and computation

• Being able to repeat an operation of any kind is the last
capability that we need to complete a fully functional
toolbox for computing.

• In every programming language there are looping
structures.

• But in general, there are two kinds of loops: sentinel loops
and counting loops.

• A sentinel loop has a sentinel value that triggers the
termination of the looping.

• You use a counting loop when you know a priori how
many times you wish the loop body to repeat.

• In C++, there are two sentinel loops: the do-while
statement and the while statement.

• There is one counting loop, it is the for statement.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Variable re-assignment

It is legal to make more than one assignment to the same
variable.

x =5; // 5
x =7; // 7
x=x +1; // 8
x++ // 9
x+=1; // 10

A new assignment makes an existing variable refer to a new
value (and stop referring to the old value).

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Loop control variable

In every loop, sentinel or counting, there should be a Loop
Control Variable (LCV), and there should also be statement(s)
to do the following three actions:

• initialize the LCV

• evaluate/check value of LCV

• update the LCV

If any of these three components are left out of your code for
the loop, you run the risk of having a loop that either does
nothing or does something, an ”infinite loop”!

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Infinite loops

• If you find yourself with an infinite loop, key in ctrl-C
(push the ’ctrl’ and ’c’ buttons simultaneously). This will
kill the process.

• The only way to exit an infinite loop is through a return
statement, a break statement, an exit statement, a goto
statement, an exception being thrown, or the user killing
the program.

• Programs that run until the user decides to stop them
sometimes intentionally use an infinite loop along with a
return, break, or exit statement to terminate the loop.

• It is common to see this kind of infinite loop in web server
applications that run continuously and service web
requests.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Debugging

• One way to debug an infinite loop (or any bad code) is to
place simple output messages in your code at appropriate
places.

• First, try to reason how much of the code is being
executed before the problem occurs.

• Then insert statements like:

cout<< ”made i t to t h i s p o i n t ” <<e n d l ;

• If that message is displayed to the screen, you know the
problem is after that point in the code.

• Keep doing this until you have narrowed it down.

• Warning: be sure to put the endl at the end of the cout
statement, which will flush the output buffer so that you
are sure the message is going to the screen before any
other process is executed.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Outline

1 Control flow introduction
Loops

Loop control variable
Debugging

2 while loop
exiting loops

break
continue
exit

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

while loop

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

The syntax for the while is:

whi le (e x p r e s s i o n)
s t a t e m e n t

• The while-loop simply repeats statement while expression
is true.

• This sequence of statement to be executed is kept inside
the curly braces known as loop body.

• After every execution of loop body, condition is checked,
and if it is found to be true the loop body is executed
again.

• When condition check comes out to be false, the loop
body will not be executed.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

while requirements

• while is a reserved word.

• Expression must be fully contained within the parentheses.

• Expression is a valid C++ expression that evaluates to
true or false or a numerical value.

• Statement is a simple or compound C++ statement (with
all semi-colons included).

• This is a pre-test loop, which means that the condition in
expression is checked before the body of the while loop
(statement) might possibly be executed. This implies that
the body of the loop may never be executed.

• Evaluation: expression is evaluated. If it is true, the body
(statement) is executed and control passes back up to
expression to be evaluated again. If it is false, control
passes out of the loop statement.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Loop control variables

• To execute a certain number of times, use a loop variable,
often called a counter.

• A loop variable is an integer variable that is declared for
the sole purpose of counting how many times a loop has
executed.

• Loop variables are often given simple names, such as i, j,
or k.

• If you want to know where in your program a loop variable
is used, and you use the search function on i, j, or k, the
search function will return half your program! Many words
have an i, j, or k in them.

• Consequently, a better idea is to use iii, jjj, or
”countRevolutions” as your loop variable names.

• Because these names are more unique, this makes
searching for loop variables much easier, and helps them
stand out as loop variables.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Scope

• Each time a loop executes, it is called an iteration.

• Because the loop body is typically a block, and because
that block is entered and exited with each iteration, any
variables declared inside the loop body are created and
then destroyed with each iteration.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

Outline

1 Control flow introduction
Loops

Loop control variable
Debugging

2 while loop
exiting loops

break
continue
exit

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

break

• C ++ provides the break statement to implement
middle-exiting control logic.

• The break statement causes the immediate exit from the
body of the loop.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

continue

• When a program’s execution encounters a break statement
inside a loop, it skips the rest of the body of the loop and
exits the loop.

• The continue statement is similar to the break statement,
except the continue statement does not necessarily exit
the loop.

• The continue statement skips the rest of the body of the
loop and immediately checks the loop’s condition.

• If the loop’s condition remains true, the loop’s execution
resumes at the top of the loop.

Control flow
introduction

Loops

Loop control
variable

Debugging

while loop

exiting loops

break

continue

exit

exit(0)

• If you want to terminate the whole program, use exit(), as
we discussed last class

	Control flow introduction
	Loops

	while loop
	exiting loops

