
switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

switch case

Comp Sci 1570 Introduction to C++

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

switch case

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Syntax

switch (e x p r e s s i o n)
{

case con s t an t1 :
group−of−s ta tements −1;
break ;

case con s t an t2 :
group−of−s ta tements −2;
break ;

.

.

.
de fau l t :

default−group−of−s t a t emen t s
}

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Basics

sw i tch (e x p r e s s i o n){
case c o n s t a n t 1 :

group−of−s t a t e m e n t s −1;
break ;

case c o n s t a n t 2 :
group−of−s t a t e m e n t s −2;
break ;

d e f a u l t :
de f au l t−group−of−s t a t e m e n t s

}

• switch evaluates expression and checks if it is equivalent to constant1;
if it is, it executes statements-1 until it finds the break statement.

• When it finds this break statement, the program jumps to the end of
the entire switch statement (the closing brace).

• If expression was not equal to constant1, it is then checked against
constant2.

• If it is equal to this, it executes group-of-statements-2 until a break is
found, when it jumps to the end of the switch.

• If the value of expression did not match any of the previously
specified constants (there may be any number of these), the program
executes the statements included after the default: label, if it exists
(since it is optional).

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

How it works

• The value of control var is compared to constant1.

• If the values are equal, every statement after that is
executed until a break is encountered, at which point
control exits the switch-case statement.

• If they don’t match, then C++ makes comparison to the
value in the next case.

• This continues until a match is found, or until the default
is encountered or until the end of the switch-case
statement.

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Rules

• Typically this expression is just a single variable, but it can be something
more complex like nX + 2 or nX − nY .

• Expression must have an integral or enumerated type, or be of a class type
in which the class has a single conversion function to an integral or
enumerated type (that is, char, short, int, long, long long, or enum).
Floating point variables and other non-integral types may not be used here.

• Any number of case statements within a switch. Each case is followed by
the value to be compared to and a colon.

• Constant for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal, and known at compile time.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of
control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear
at the end of the switch. The default case can be used for performing a
task when none of the cases is true. No break is needed in the default case.

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Outline

1 switch case
Logic
Syntax
Basics
Functionality
Rules
Nested switch

switch case

Logic

Syntax

Basics

Functionality

Rules

Nested switch

Nested switch case

switch (ch1)
{

case ’A ’ :
cout << ”A from Outer sw i t c h ” ;
switch (ch2)
{

case ’A ’ :
cout << ”A from I n n e r sw i t c h ” ;
break ;

case ’B ’ : // . . .
}
break ;

case ’B ’ : // . . .
}

	switch case
	Logic
	Syntax
	Basics
	Functionality
	Rules
	Nested switch

