Introduction to functions

Comp Sci 1570 Introduction to C++

MISSOURI

S ‘ bomputer Science




Outline

Basics

@ Basics




Basics

Functions

A function is a reusable sequence of statements designed
to do a particular job.

In C++, a function is a group of statements that is given
a name, and which can be called from some point of the
program

A function call is an expression that tells the CPU to
interrupt the current function and execute another
function.

The CPU “puts a bookmark” at the current point of
execution, and then calls (executes) the function named in
the function call.

When the called function terminates, the CPU goes back
to the point it bookmarked, and resumes execution.

The function initiating the function call is called the caller,
and the function being called is the callee or called
function.



Outline

@ Basics

Return type




Functions: return type

return_type function_name(parameter_list)

local variable declarations;
statements

return value_of_return_type;

}

e When you write your own functions, you get to decide
whether a given function will return a value to the caller

e return_type is the data type of the value the function
returns, which can be int, char, some pointer or even a
class object.

e Some functions perform the desired operations without
returning a value, with return_type is the keyword void.

e Return type does not indicate what specific value will be
returned.

e |t only indicates what type of value will be returned.




Outline

@ Basics

Function name




Functions: function name

return_type function_name(parameter_list)
local variable declarations;
statements;
return value_of_return_type;

}

e Function Name : is the name of the function, using the
function name it is called.




Outline

@ Basics

Parameter list




Functions: parameter list

return_type function_name(parameter_list)
local variable declarations;
statements;
return value_of_return_type;

}

e Parameters are variables to hold values of arguments
passed while function is called.

e Each parameter consists of a type followed by an
identifier, with each parameter being separated from the
next by a comma.

e Acts within the function as a regular variable which is
local to the function.

e Allows passing arguments to the function from the
location where it is called from.

e Parameters are optional and a function may contain none




Outline

@ Basics

Function body




Functions: function body

return_type function_name(parameter_list)
local variable declarations;
statements;
return value_of_return_type;

}

e Block of statements surrounded by braces that specify
what the function actually does




Outline

@ Basics

Return statement




Functions: return statement

return_type function_name(parameter_list)

{

local variable declarations;
statements;
return value_of_return_type;

}

e If a function has a non-void return type, it must return a
value of that type (using a return statement).

e The only exception to this rule is for function main(),
which will assume a return value of 0 if one is not
explicitly provided.




Outline

@ Basics

Declaration, calling, and definition




Functions: declare, call, define

return_type function_name(parameter_list);

int main()

{

function_name(parameter_list);

}

return_type function_name(parameter_list)

{

local variable declarations;

statements;
return value_of_return_type;

}

e Declare above main
e Call in main
e Define after main




Outline

Benefits

@ Benefits




Why functions

Break code down into smaller chunks
Modularity

Clarity

Code-reuse

Benefits

Ease of update

Hide function internals




	Basics
	Return type
	Function name
	Parameter list
	Function body
	Return statement
	Declaration, calling, and definition

	Benefits

