
Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Passing by reference vs. value, and CONST

Comp Sci 1570 Introduction to C++



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Benefits of functions

• Organization – As programs grow in complexity, having all the code live
inside the main() function becomes increasingly complicated. Divide
complicated tasks into smaller, simpler ones, and drastically reduce the
overall complexity of our program.

• Reusability – Once a function is written, it can be called multiple times
from within the program. This avoids duplicated code and minimizes the
probability of copy/paste errors. Functions can also be shared with other
programs, reducing the amount of code that has to be written from scratch
(and retested) each time.

• Testing – Because functions reduce code redundancy, there’s less code to
test in the first place. Also because functions are self-contained, once we’ve
tested a function to ensure it works, we don’t need to test it again unless
we change it. This reduces the amount of code we have to test at one
time, making it much easier to find bugs (or avoid them in the first place).

• Extensibility – When we need to extend our program to handle a case it
didn’t handle before, functions allow us to make the change in one place
and have that change take effect every time the function is called.

• Abstraction – In order to use a function, you only need to know its name,
inputs, outputs, and where it lives. You don’t need to know how it works,
or what other code it’s dependent upon to use it. This is super-useful for
making other people’s code accessible (such as everything in the standard
library).



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

When to use functions

• Code that appears more than once in a program should
generally be made into a function. For example, if we’re
reading input from the user multiple times in the same
way, that’s a great candidate for a function. If we output
something in the same way multiple times, that’s also a
great candidate for a function.

• Code that has a discrete set of inputs and outputs is a
good candidate for a function, particularly if it is
complicated. For example, if we have a list of items that
we want to sort, the code to do the sorting would make a
great function, even if it’s only done once. The input is
the unsorted list, and the output is the sorted list.

• A function should generally perform one (and only one)
task.

• When a function becomes too long, too complicated, or
hard to understand, it should be split into multiple
sub-functions. This is called refactoring.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Simplicity of purpose

Typically, when learning C++, you will write a lot of programs
that involve 3 subtasks:

• Reading inputs from the user

• Calculating a value from the inputs

• Printing the calculated value

New programmers often combine calculating a value and
printing the calculated value into a single function. However,
this violates the “one task” rule of thumb for functions.

A function that calculates a value should return the value to the
caller and let the caller decide what to do with the calculated
value (such as call another function to print the value).



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Pass by value

Pass by value

• The call by value method of passing arguments to a
function copies the actual value of an argument into the
formal parameter of the function.

• changes made to the parameter inside the function have
no effect on the argument.

• By default, C++ uses call by value to pass arguments.

• This method copies the actual value of an argument into
the formal parameter of the function.

• changes made to the parameter inside the function have
no effect on the argument.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Pass by reference

• This method copies the reference of an argument into the
formal parameter.

• Inside the function, the reference is used to access the
actual argument used in the call.

• This means that changes made to the parameter affect the
argument.

• When a variable is passed by reference, what is passed is
no longer a copy, but the variable itself, the variable
identified by the function parameter, becomes somehow
associated with the argument passed to the function, and
any modification on their corresponding local variables
within the function are reflected in the variables passed as
arguments in the call.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Pass by reference versus value

Pass By Value

• The local parameters are copies of the original arguments
passed in

• Changes made in the function to these variables do not
affect originals

Pass By Reference

• The local parameters are references to the storage
locations of the original arguments passed in.

• Changes to these variables in the function will affect the
originals

• No copy is made, so overhead of copying (time, storage) is
saved



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

See code



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Outline

1 Overview
Benefits of functions
When to use functions
Simplicity of purpose

2 Call stack

3 Pass by reference and value
Value
Reference
Comparison

4 Examples
average
get point
duplicate



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

see code

• a, b, and c become aliases of the arguments passed on the
function call (x, y, and z) and any change on a within the
function is actually modifying variable x outside the
function.

• Any change on b modifies y, and any change on c modifies
z.

• That is why when, in the example, function duplicate
modifies the values of variables a, b, and c, the values of
x, y, and z are affected.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Advantages of passing by reference:

• References allow a function to change the value of the
argument, which is sometimes useful. Otherwise, const
references can be used to guarantee the function won’t
change the argument.

• Because a copy of the argument is not made, pass by
reference is fast, even when used with large structs or
classes.

• References can be used to return multiple values from a
function (via out parameters).

• References must be initialized, so there’s no worry about
null values.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Disadvantages of passing by reference:

• It can be hard to tell whether a parameter passed by
non-const reference is meant to be input, output, or both.
Judicious use of const and a naming suffix for out
variables can help.

• It’s impossible to tell from the function call whether the
argument may change. An argument passed by value and
passed by reference looks the same. We can only tell
whether an argument is passed by value or reference by
looking at the function declaration. This can lead to
situations where the programmer does not realize a
function will change the value of the argument.



Overview

Benefits of
functions

When to use
functions

Simplicity of
purpose

Call stack

Pass by
reference and
value

Value

Reference

Comparison

Examples

average

get point

duplicate

Use cases

When to use pass by reference:

• When passing big structs or classes (use const if
read-only).

• When you need the function to modify an argument.

When not to use pass by reference:

• When passing small fundamental types (can use pass by
value).

• When passing built-in arrays (use pass by address).


	Overview
	Benefits of functions
	When to use functions
	Simplicity of purpose

	Call stack
	Pass by reference and value
	Value
	Reference
	Comparison

	Examples
	average
	get point
	duplicate


