
Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Overloading functions, static variables in
functions

Comp Sci 1570 Introduction to C++

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Overloading functions

• C++ allows you to specify more than one definition for a
function name or an operator in the same scope, which is
called function overloading

• Two different functions can have the same name if at least
of of their parameters are different, either because they
have a different number of parameters, or because any of
their parameters are of a different type.

• You cannot overload function declarations that differ only
by return type.

• When you call an overloaded function or operator, the
compiler determines the most appropriate definition to
use, by comparing the argument types you have used to
call the function or operator with the parameter types
specified in the definitions.

• The process of selecting the most appropriate overloaded
function or operator is called overload resolution.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Why and how

• Function overloading is usually used to enhance the
readability of the program.

• If you have to perform one single operation but with
different number or types of arguments, then you can
simply overload the function.

• Ways to overload a function:
• By changing number of arguments.
• By having different types of argument.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Examples

• See the code!

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Return type does not count as uniqueness

• Function’s return type is NOT considered when
overloading functions.

• Consider the case where you want to write a function that
returns a random number, but you need a version that will
return an int, and another version that will return a
double.

• You might be tempted to do this:

i n t getRandomValue () ;
double getRandomValue () ;

• Don’t.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

How function calls match overloaded functions

Making a call to an overloaded function results in one of three
possible outcomes:

1 A match is found. The call is resolved to a particular
overloaded function.

2 No match is found. The arguments can not be matched to
any overloaded function.

3 An ambiguous match is found. The arguments matched
more than one overloaded function.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Which function to call?

When an overloaded function is called, C++ goes through the
following process to determine which version of the function
will be called:

1. First, C++ tries to find an exact match. This is the case
where the actual argument exactly matches the parameter
type of one of the overloaded functions.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Which function to call?

When an overloaded function is called, C++ goes through the
following process to determine which version of the function
will be called:

2. Second, if no exact match is found, C++ tries to find a
match through promotion:

• Char, unsigned char, and short is promoted to an int.
• Unsigned short can be promoted to int or unsigned int,

depending on the size of an int
• Float is promoted to double
• Enum (not covered yet) is promoted to int

.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Which function to call?

When an overloaded function is called, C++ goes through the
following process to determine which version of the function
will be called:

3. Third, if no promotion is possible, C++ tries to find a
match through standard conversion. Standard conversions
include:

• Any numeric type will match any other numeric type,
including unsigned (e.g. int to float)

• Enum will match the formal type of a numeric type (e.g.
enum to float)

• Zero will match a pointer type (not covered yet) and
numeric type (e.g. 0 to char*, or 0 to float)

• A pointer will match a void pointer

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Which function to call?

When an overloaded function is called, C++ goes through the
following process to determine which version of the function
will be called:

4. Finally, C++ tries to find a match through user-defined
conversion. Although we have not covered classes yet,
classes can define conversions to other types that can be
implicitly applied to objects of that class.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Ambiguity

If every overloaded function has to have unique parameters,
how is it possible that a call could result in more than one
match? Because all standard conversions are considered equal,
and all user-defined conversions are considered equal, if a
function call matches multiple candidates via standard
conversion or user-defined conversion, an ambiguous match will
result. For example:

void p r i n t (unsigned i n t v a l u e) ;
void p r i n t (f l o a t v a l u e) ;

p r i n t (’ a ’) ;
p r i n t (0) ;
p r i n t (3 . 1 4 1 5 9) ;

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Ambiguity

void p r i n t (unsigned i n t v a l u e) ;
void p r i n t (f l o a t v a l u e) ;
p r i n t (’ a ’) ;
p r i n t (0) ;
p r i n t (3 . 1 4 1 5 9) ;

• In the case of print(’a’), C++ can not find an exact match. It
tries promoting ‘a’ to an int, but there is no print(int) either.
Using a standard conversion, it can convert ‘a’ to both an
unsigned int and a floating point value. Because all standard
conversions are considered equal, this is an ambiguous match.

• print(0) is similar. 0 is an int, and there is no print(int). It
matches both calls via standard conversion.

• print(3.14159) might be a surprising, as you might assume it
matches print(float). But remember that all literal floating
point values are doubles unless they have the ‘f’ suffix. 3.14159
is a double, and there is no print(double). It matches both calls
via standard conversion.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Static variables

• When a function returns, the local variables (including
parameters) go out of scope and are deallocated.

• This is true for all “normal” variables, those declared local
to the function, and all the parameters.

• Static variables in a function persist after the function has
terminated.

• Here is the general form of the syntax:

void f ()
{

s t a t i c v a r i a b l e t y p e v a r i a b l e n a m e ;
}

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Static variables

• A static variable in a function is particular to that function.

• That is, you can only access the variable in that function.

• Because of this, you could have a static variable in 5
functions, each with the same name.

• There are simple rules governing static variable that you
will need to keep in mind.

• A static variable declaration is only executed once, the first
time the function is executed.

• A static variable is initialized only once (since this is part
of the declaration process) and will be initialized to 0
unless the programmer designates otherwise.

• Subsequent invocations of the function in which a static
variable resides will retain the last value of that variable.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Examples

Check out the code!

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Static duration

• Using the static keyword on local variables changes them
from automatic duration to static duration (also called
fixed duration).

• A static duration variable (also called a “static variable”)
is one that retains its value even after the scope in which
it has been created has been exited!

• Static duration variables are only created (and initialized)
once, and then they are persisted throughout the life of
the program.

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Outline

1 Overloading functions
Why and how
Examples
Return type?
Matching?
Ambiguity

2 Static variables
Examples
Static duration
Goals

Overloading
functions

Why and how

Examples

Return type?

Matching?

Ambiguity

Static
variables

Examples

Static duration

Goals

Why?

• Local static variables were inherited from the C
programming language, but their need has diminished with
the introduction of objects in C++.

• Functions with static variables provide a way to implement
executable code with persistent state.

• Objects provide a more natural and more flexible way to
achieve the same effect.

	Overloading functions
	Why and how
	Examples
	Return type?
	Matching?
	Ambiguity

	Static variables
	Examples
	Static duration
	Goals

