Templating functions

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ Computer Science




Outline

Administrative
notes

o Administrative notes




Test 1 grade distribution

Administrative grade on y, each student on x, sorted by y
notes
120

Tkt 100

80
60
Compiler
processing
40
0

YEBEADHL LR DD HD D DD DL D

e 50 or below should talk to me.



Outline

Review

@ Review




Outline

@ Review

Functions




Functions help efficiency and code re-use

We have learned how to write functions that help make
programs easier to write, safer, and more maintainable.

int max(int x, int y)

{

return (x >vy) ? x @ vy;

}




Outline

@ Review

Overloading




Overloading simplifies applying functions to types

int max(int x, int y)

{
return (x >vy) ? x @ vy;
}
double max(double x, double vy)
{
return (x >vy) ? x @ vy;
}

e To re-use function names, we can overload functions.

e The body of the double version of max() is exactly the
same as for the int version of max()!

e Implementation would work for all sorts of different types:
chars, ints, doubles, and event strings.

e However, because C++ requires you to make your
variables specific types, you're stuck writing one function
for each type you wish to use.




Outline

Templates

9 Templates




Templates

Templates

e What is the general definition of a template?




Outline

9 Templates
Analogy




Templates

A template is a model that serves as a pattern for creating
similar objects

e One type of template that is very easy to understand is
that of a stencil.

Templates

e A stencil is an object (e.g. a piece of cardboard) with a
shape cut out of it (eg. the letter J).

e By placing the stencil on top of another object, then

Compiler spraying paint through the hole, you can very quickly
produce stenciled patterns in many different colors!

¢ Note that you only need to create a given stencil once.

e You can then use it as many times as you like, to create
stenciled patterns in whatever color(s) you like.

e Even better, you don’t have to decide the color of the
stenciled pattern you want to create until you decide to
actually use the stencil.




Outline

9 Templates

Templates in C++




Templating functions in C++

A template is a blueprint or formula for creating a generic
class or a function.

e Templates are the foundation of generic programming,
which involves writing code in a way that is independent
of any particular type.

e We define the function using placeholder types, called
template typename parameters. Once we have created a
function using these placeholder types, we have effectively
created a “function stencil”.

e The general form of a template function definition is
shown here:
template <typename type> ret—type func—name(parameter list)

// body of function




Outline

9 Templates

Type placeholder




Type placeholder

e You can name your placeholder types almost anything you
want, so long as it's not a reserved word.

e However, in C++, it's customary to name your template
types the letter T (short for “Type").

e Here's our new function with a placeholder type:

T max(T x, T y)

{
}

This is a good start — however, it won't compile because the
compiler doesn’t know what “T" is!

return (x >vy) 7 x @ vy;




Outline

9 Templates

Template parameter declaration




Template parameter declaration

e In order to make this work, we need to tell the compiler
two things:

e First, that this is a template definition
e Second, that T is a placeholder type.
e We can do both of those things in one line, using what is
called a template parameter declaration:

// this is the template parameter declaration
template <typename T>

T max(T x, T y)

{

}

return (x >vy) 7 x : y;



Outline

9 Templates

Multiple parameters




Multiple parameters

If the template function uses multiple template type parameter,
they can be separated by commas:

template <typename T1, typename T2>
// template function here



Outline

Compiler
processing

@ Compiler processing




Example

template<class TYPE>
void PrintTwice(TYPE data)
{

Compiler cout<<” Twice:." << data * 2 << endl;

processing }




Compiler
processing

Compiler processing

The first line of code:
template<class TYPE>

tells the compiler that this is a function-template. The actual
meaning of TYPE would be deduced by compiler depending on
the argument passed to this function. Here, the name, TYPE is
known as template type parameter.



Compiler
processing

Compiler processing

For instance, if we call the function as:
PrintTwice (124);

TYPE would be replaced by compiler as int, and compiler
would instantiate this template-function as:

void PrintTwice(int data)

{

cout<<" Twice:." << data * 2 << endl;

}



Compiler processing

And, if we call this function as:
PrintTwice (4.5547);
It would instantiate another function as:

void PrintTwice(double data)

Compiler
processing {

cout<<”" Twice:." << data * 2 << endl;

}




Templates

Compiler
processing

Compiler processing

If you call PrintTwice function with int and double parameter
types, two instances of this function would be generated by the
compiler:

void PrintTwice(int data) { ... }
void PrintTwice(double data) { ... }

e The code is duplicated, but these two overloads are
instantiated by the compiler and not by the programmer.

e Benefit is that you need not to do copy-pasting the same
code, or to manually maintain the code for different
data-types, or to write up a new overload for new
data-type that arrives later.

e Code size (at binary/assembly level) would increase, since
there are now two function definitions.

e Effectively, for N number of data-types actually called in
main, N instances of same function (i.e. overloaded
functions) would be created.



Operators are functions too

When templating a function, you must insure that any operator
used in the body of the templated function is implemented
(supported) for the types you may pass in.

Compiler
processing




	Administrative notes
	Review
	Functions
	Overloading

	Templates
	Analogy
	Templates in C++
	Type placeholder
	Template parameter declaration
	Multiple parameters

	Compiler processing

