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Functions help efficiency and code re-use

We have learned how to write functions that help make
programs easier to write, safer, and more maintainable.

int max(int x, int y)

{

return (x >vy) ? x @ vy;

}
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Overloading simplifies applying functions to types

int max(int x, int y)

{
return (x >vy) ? x @ vy;
}
double max(double x, double vy)
{
return (x >vy) ? x @ vy;
}

e To re-use function names, we can overload functions.

e The body of the double version of max() is exactly the
same as for the int version of max()!

e Implementation would work for all sorts of different types:
chars, ints, doubles, and event strings.

e However, because C++ requires you to make your
variables specific types, you're stuck writing one function
for each type you wish to use.
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Templates

Templates

e What is the general definition of a template?
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Templates

A template is a model that serves as a pattern for creating
similar objects

e One type of template that is very easy to understand is
that of a stencil.

Templates

e A stencil is an object (e.g. a piece of cardboard) with a
shape cut out of it (eg. the letter J).

e By placing the stencil on top of another object, then

Compiler spraying paint through the hole, you can very quickly
produce stenciled patterns in many different colors!

¢ Note that you only need to create a given stencil once.

e You can then use it as many times as you like, to create
stenciled patterns in whatever color(s) you like.

e Even better, you don’t have to decide the color of the
stenciled pattern you want to create until you decide to
actually use the stencil.
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Templating functions in C++

A template is a blueprint or formula for creating a generic
class or a function.

e Templates are the foundation of generic programming,
which involves writing code in a way that is independent
of any particular type.

e We define the function using placeholder types, called
template typename parameters. Once we have created a
function using these placeholder types, we have effectively
created a “function stencil”.

e The general form of a template function definition is
shown here:
template <typename type> ret—type func—name(parameter list)

// body of function
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Type placeholder

e You can name your placeholder types almost anything you
want, so long as it's not a reserved word.

e However, in C++, it's customary to name your template
types the letter T (short for “Type").

e Here's our new function with a placeholder type:

T max(T x, T y)

{
}

This is a good start — however, it won't compile because the
compiler doesn’t know what “T" is!

return (x >vy) 7 x @ vy;
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Template parameter declaration

e In order to make this work, we need to tell the compiler
two things:

e First, that this is a template definition
e Second, that T is a placeholder type.
e We can do both of those things in one line, using what is
called a template parameter declaration:

// this is the template parameter declaration
template <typename T>

T max(T x, T y)

{

}

return (x >vy) 7 x : y;



Outline

9 Templates

Multiple parameters




Multiple parameters

If the template function uses multiple template type parameter,
they can be separated by commas:

template <typename T1, typename T2>
// template function here
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Example

template<class TYPE>
void PrintTwice(TYPE data)
{

Compiler cout<<” Twice:." << data * 2 << endl;

processing }
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Compiler processing

The first line of code:
template<class TYPE>

tells the compiler that this is a function-template. The actual
meaning of TYPE would be deduced by compiler depending on
the argument passed to this function. Here, the name, TYPE is
known as template type parameter.
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For instance, if we call the function as:
PrintTwice (124);

TYPE would be replaced by compiler as int, and compiler
would instantiate this template-function as:

void PrintTwice(int data)

{

cout<<" Twice:." << data * 2 << endl;

}



Compiler processing

And, if we call this function as:
PrintTwice (4.5547);
It would instantiate another function as:

void PrintTwice(double data)

Compiler
processing {

cout<<”" Twice:." << data * 2 << endl;

}
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Compiler processing

If you call PrintTwice function with int and double parameter
types, two instances of this function would be generated by the
compiler:

void PrintTwice(int data) { ... }
void PrintTwice(double data) { ... }

e The code is duplicated, but these two overloads are
instantiated by the compiler and not by the programmer.

e Benefit is that you need not to do copy-pasting the same
code, or to manually maintain the code for different
data-types, or to write up a new overload for new
data-type that arrives later.

e Code size (at binary/assembly level) would increase, since
there are now two function definitions.

e Effectively, for N number of data-types actually called in
main, N instances of same function (i.e. overloaded
functions) would be created.



Operators are functions too

When templating a function, you must insure that any operator
used in the body of the templated function is implemented
(supported) for the types you may pass in.

Compiler
processing
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