
Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Multiple files

Comp Sci 1570 Introduction to C++

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Monolithic vs Modular

One file before

• system includes

• prototypes

• main driver function

• function definitions

Multiple files now

• main driver file

• prototypes header file(s)

• functions definition implementation source file(s)

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Multiple files: diagram and source files: greet*.*

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

What does including iostream do at compile time?

#inc lude <i o s t r e a m>
i n t main ()
{

s t d : : cout << ” H e l l o , w o r l d ! ” << s t d : : e n d l ;
return 0 ;

}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

including iostream

Header enables calling, iostream is linked, not copied into main

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Example: add

• See files: add.cpp, add.h, add main.cpp

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Multiple files

Header allows separate compiling, and linking after, for speedy
compile and re-compile. Whereas including the add.cpp directly
in main would work, it would copy the entire add.cpp into main
at compile time, increasing compile time, especially for big
projects

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Multiple files

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Example main file

// Author : C lay ton P r i c e
// F i l e : main . cpp

#inc lude <i o s t r e a m>
#inc lude ” treeFarm . h”

using namespace s t d ;

i n t main ()
{

cout << t r e e p r i c e () ;

return 0 ;
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Example implementation file

// Programmer : C lay ton P r i c e date : 10−1−10
// F i l e : t reeFarmFuncs . cpp
// Purpose : Th i s f i l e c o n t a i n s the f u n c t i o n
// d e f i n i t i o n s f o r the t r e e farm program .

#i n c l u d e ” treeFarm . h”
u s i n g namespace s t d ;

f l o a t t r e e p r i c e (const i n t numtrees , const s t r i n g t r e e t y p e)
{

// body o f imp l ementa t i on he r e
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Example header file

// treeFarm . h i n uppe r ca s e f o l l o w s conven t i on
#i f n d e f TREEFARM H

// Can be any th i ng unique ,
// but keep ing t h i s c onven t i on i s n i c e
#def ine TREEFARM H

// Programmer : C lay ton P r i c e date : 10−1−10
// F i l e : t reeFarm . h
// Purpose : t h i s f i l e c o n t a i n s the p r o t o t y p e s f o r f u n c t i o n s f o r the t r e e farm program .
// Cons tant s f o r the t r e e farm program

// This c on s t an t s t a t e s the wt pe r board f o o t o f g reen oak . . .
const f l o a t OAK DENSITY = 4 . 2 5 ; // pounds pe r squa r e f o o t
// more heade r he r e . . .

#e n d i f

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Best practices for creating your own header files

• Always include header guards (a kind of preprocessor
directives)

• Do not define variables in header files unless they are
constants. Header files should generally only be used for
declarations.

• Do not define functions in header files.
• Each header file should have a specific job, and be as

independent as possible. For example, you might put all
your declarations related to functionality A in A.h and all
your declarations related to functionality B in B.h.

• Give your header files the same name as the source files
they’re associated with (e.g. grades.h goes with
grades.cpp).

• Try to minimize the number of other header files you
#include in your header files. Only #include what is
necessary.

• Do not #include .cpp files; it works, but why not?

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Preprocessor Directives for Header Files

Put at the top

#i f n d e f MYFILE H
#def ine MYFILE H

// heade r con t en t goes he r e

#e n d i f

at the bottom

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Preprocessor

• The preprocessor is perhaps best thought of as a separate
program that runs just before the compiler when you
compile your program.

• When the preprocessor runs, it simply scans through each
code file from top to bottom, looking for directives.

• Directives are specific instructions that start with a #
symbol and end with a newline (NOT a semicolon).

• There are several different types of directives, which we
will cover below.

• The preprocessor is not smart; it does not understand
C++ syntax; rather, it simply manipulates text before the
compiler runs.

• The output of the preprocessor is then sent to the
compiler.

• Note that the preprocessor does not modify the original
code files in any way; rather, all text changes made by the
preprocessor happen temporarily in-memory.

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Includes

• When you #include a file, the preprocessor copies the
contents of the included file into the including file at the
point of the #include directive. This is useful when you
have information that needs to be included in multiple
places (as forward declarations often are).

• The #include command has two forms:
• #include < filename > tells the preprocessor to look for

the file in a special place defined by the operating system
where header files for the C++ runtime library are held.
You’ll generally use this form when you’re including
headers that come with the compiler (e.g. that are part of
the C++ standard library).

• # include ”filename” tells the preprocessor to look for the
file in the directory containing the source file doing the
#include. If it doesn’t find the header file there, it will
check any other include paths that you’ve specified as part
of your compiler/IDE settings. That failing, it will act
identically to the angled brackets case. You’ll generally use
this form for including your own header files.

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Duplicate variable definition

#inc lude <i o s t r e a m>
i n t main ()
{

// t h i s i s a d e f i n i t i o n f o r i d e n t i f i e r x
i n t x ;

// comp i l e e r r o r : d u p l i c a t e d e f i n i t i o n
i n t x ;

return 0 ;
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Duplicate function definition

#inc lude <i o s t r e a m>

i n t f o o ()
{

return 5 ;
}

// comp i l e e r r o r : d u p l i c a t e d e f i n i t i o n
i n t f o o ()
{

return 5 ;
}

i n t main ()
{

s t d : : cout << f o o () ;
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Double include mistake

math.h:

i n t g e t S q u a r e S i d e s (){
return 4 ;

}

geometry.h:

#inc lude ”math . h”

main.cpp:

#inc lude ”math . h”
#inc lude ” geometry . h”
i n t main (){

return 0 ;
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Double include mistake

After resolving all of the #include, main.cpp:

i n t g e t S q u a r e S i d e s () // from math . h
{

return 4 ;
}

i n t g e t S q u a r e S i d e s () // from geometry . h
{

return 4 ;
}

i n t main ()
{

return 0 ;
}

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Preprocessor directives

• Header guard preprocessor directives will prevent the
compiler from trying to create multiple definitions for the
functions and constants and anything else in the header if
this header is included in a translation unit multiple times.

• Even the system header files have them.

• Do this for every header file you create.

• The identifier convention is to use all uppercase versions
of the file names (as demonstrated in the example above).

• Incidentally, ifndef stands for “if not defined”.

• So, you can read those directives as “if not defined,
define”.

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Header guard conditional compilation directives

#i f n d e f SOME UNIQUE NAME HERE
#def ine SOME UNIQUE NAME HERE

// your d e c l a r a t i o n s and d e f i n i t i o n s he r e

#e n d i f

See example: square*.* source files

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Outline

1 Multiple files
Monolithic vs modular
Splitting main
Example

Main
Implementation
Header

2 Preprocessor directives
Preprocessor

Includes
Header guards

3 Compiling

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

User Includes and Compiling with multiple files

When you compile a program split into multiple files, normally,
the command would be

g++ prog . cpp −o my prog

The source code is prog.cpp and the executable’s name will be
my prog. We wish to compile the previous tree farm program:

g++ treeFarm . cpp treeFarmFuncs . cpp −o t r e e s

Provide the names of all compilable files as the source code
(italicized in the example above). Alternatively, you may use
the wildcard character, *

g++ ∗ . cpp −o t r e e s

This command will pick up all files in the current directory with
a .cpp extension. So, if you use this method, it is vitally
important to put your programming projects in their own
directory. You don’t want to have more than one main function
in your directory.

Multiple files

Monolithic vs
modular

Splitting main

Example

Main

Implementation

Header

Preprocessor
directives

Preprocessor

Includes

Header guards

Compiling

Code::Blocks with multiple files

To use multiple in this way with Code:Blocks, you must create
a project from and empty project file, and add the files to it.
Remember however, that you should compile and run on the
campus Linux computers before submission, since environments
can differ.

	Multiple files
	Monolithic vs modular
	Splitting main
	Example

	Preprocessor directives
	Preprocessor

	Compiling

