Functions to manipulate C-string

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ Computer Science

Outline

Basic C-string
manipulation
functions

@ Basic C-string manipulation functions

Basic C-string
manipulation
functions

Some basic C-string functions

// Returns the length of string sl.
strlen(sl);

// Copies string s2 into string sl.
strcpy (sl1, s2);

// Concatenates string s2 onto
// the end of string sl.
strcat(sl, s2);

// Returns 0 if sl and s2 are the same;
// less than 0 if sI<s2;

// greater than 0 if sl>s2.

strcmp(sl, s2);

Outline

@ Basic C-string manipulation functions
strlen

strlen()

e The first of the functions we will look at is the simplest,
the string length function.

e This function returns an int and has a ntca as a parameter.

e |t returns the length of the data contained in the array,
returning an integer equal to the number of characters in
the array before reaching the first null character.

e The pitfall of the function is that there is nothing to keep
it from walking off the array if there is no null character in
the array!

e As a programmer, you must keep an eye on the data in
your null-terminated character arrays.

char a_string[10] = "Bob";

// will assign 3 to length
int length = strlen(a_string);

Outline

@ Basic C-string manipulation functions

strcpy

strcpy()

e Returns nothing but has two ntcas as parameters.

e First parameter is the target, a non-const ntca, and the
second as the source, a const ntca.

e strcpy() will copy the contents of source into target,
copying every character up to the first null character of
the source

e The pitfall is that this function can quite easily walk off
the array!

e There is nothing to stop the function from trying to copy
a ntca of length 10 into an array of length 5.

e Even if the source ntca that you pass to the function
indeed has a null character marking the data, the function
can still fail if you pass too short an array.

char source[20] = " Goodbye";
char target[20] = "Hello_there”;
strcpy (target, source); // source unchanged,

Outline

@ Basic C-string manipulation functions

strcat

strcat()

e Similar to strcpy(), strcat() will return nothing, but takes
two ntcas, the first non-const and the second const.

e It will concatenate the second (source) onto the first
(target).

e Pitfall: even worse than that of strcpy(), walking off the
array is very easy to do.

char source[20] = "There";
char target[20] = "Hello";

// leaves source unchanged, but target is modi
strcat(target, source);

Strings

strcmp()

strcmp stands for "string compare” and it performs the
functionality that you would normally get out of the ==
operator.

strcmp() returns an integer that gives information about
two ntcas passed to it.

Each character of the first parameter is compared to each
character of the second parameter until a difference is
encountered or a null character is reached. Thus, the
function first compares ntcal[0] to ntca2[0].

If they have the same ASCII value, it goes on.

It compares ntcal[l] to ntca2[1]. If they have the same
ASCII value, it goes on.

This continues until a difference if found. Suppose that a
difference is found in the nth index. If ntcal[n]'s ASCII
value is less than ntca2[n]'s ASCII value, then -1 is
returned. If the opposite is the case, then 1 is returned.
0 is returned if both ntcas are identical.

Outline

@ Basic C-string manipulation functions

strcmp

strcmp()

char ntcal[20] = "bob";
char ntca2[20] "bob" ;
char ntca3[20] = "Bob";

cout<<strcmp(ntcal, ntca2); // outputs 0
cout<<strcmp(ntcal, ntca3); // outputs 1
cout<<strcmp(ntca3, ntcal); // outputs —1

cout<<strcmp(ntcal, "bobby"); // outputs —1

if (!(strcmp(ntcal, ntca2))
cout<<”"these.strings_are_identical”"<<endl;

else
cout<<"these_strings._are_different”"<<endl;

Outline

@ Basic C-string manipulation functions

n versions of str functions

n versions of str functions

e |t is easy to write insecure or buggy code with C-string
input
e Using strncpy(), strncmp(), and strncat() can help

e Check out examples

Unsafe functions

e Range checking with strncopy, strncat, cin.getline, etc is
often suggested

Classic overflow fix?

#include <iostream>
#include <cstring >

int main(void)

{

char strDest[3]="hi";
char strSrc[]="Welcome”;
char anotherCstring[]="Hello";

strncpy (strDest, strSrc, 5);
std :: cout << strDest;

return O0;
}

strncopy can cause another overflow too (no NULL check)

Outline

Strings

@ Strings

Strings

Strings

e The standard C++ library provides a string class type that
supports all the operations mentioned for C-strings, but
additionally with much more functionality.

e Used to require #include < string >, but now it does not.

e Brief introduction today, much more next time

	Basic C-string manipulation functions
	strlen
	strcpy
	strcat
	strcmp
	n versions of str functions

	Strings

