Overloading operators

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ Computer Science

Outline

Definitions

@ Definitions

Overloading operators

Definitions

e Function overloading provides a mechanism to create and
resolve function calls to multiple functions with the same
name, so long as each function has a unique function
prototype.

e This allows you to create variations of a function to work
with different data types, without having to think up a
unique name for each variant.

e In C++, operators are implemented as functions.

e By using function overloading on the operator functions,
you can define your own versions of the operators that
work with different data types (including classes that
you've written).

e Using function overloading to overload operators is called
operator overloading.

ReturnType classname(optional) :: operator OperatorSymbol (argument list)

\\ statements;

Outline

@ Rules

Outline

@ Rules

Basics

Rules for overloading operators

You cannot create new operators.

If you overload an operator, at least one of the parameters
must be a user-defined type. Thus, you cannot redefine an
operator for a built-in type.

There are some operators you are prevented from
overloading (see tables upcoming)

You cannot change the arity (number of operands
required) of a operator.

You cannot change the order of precedence or associativity
of operators by overloading them.

An overloaded operator cannot have default arguments.

Outline

Methods of
operator
overload

e Methods of operator overload

Operators can be overloaded in several locations

Methods of
operator
overload

e As a member function
e As a normal non-member function

e As a friend non-member function

Outline

e Methods of operator overload
Basic examples

Operator+

e See code implementing it all 3 ways

Outline

e Methods of operator overload

Member

Overloading as a member function

e For example, the assignment (=), subscript ([]), function
call (()), and member selection (— >) operators must be
overloaded as member functions

Outline

e Methods of operator overload

Non-member and non-member friend

Overload as non-member and Non-member friend

e For example, we are not able to overload operator << ()
as a member function.

e The overloaded operator must be added as a member of
the left operand.

e In this case, the left operand is an object of type
std::ostream. std::ostream is fixed as part of the standard
library. We don't modify the class declaration to add the
overload as a member function of std::ostream.

Outline

e Methods of operator overload

When to use each

When to use normal, friend, or member overload

e When dealing with binary operators that don't modify the
left operand (e.g. operator+), the normal or friend
function version is typically preferred, because it works for
all parameter types (even when the left operand isn't a
class object, or is a class that is not modifiable). The
normal or friend function version has the added benefit of
“symmetry”, as all operands become explicit parameters
(instead of the left operand becoming *this and the right
operand becoming an explicit parameter).

When to use normal, friend, or member overload

e When dealing with binary operators that do modify the
left operand (e.g. operator+=), the member function
version is typically preferred. In these cases, the leftmost
operand will always be a class type, and having the object
being modified become the one pointed to by *this is
natural. Because the rightmost operand becomes an
explicit parameter, there's no confusion over who is
getting modified and who is getting evaluated.

When to use normal, friend, or member overload

e Unary operators are usually overloaded as member
functions as well, since the member version has no
parameters.

Summary for which method

e If you're overloading assignment (=), subscript ([]),
function call (()), or member selection (— >), do so as a
member function.

e If you're overloading a unary operator, do so as a member
function.

e If you're overloading a binary operator that modifies its
left operand (e.g. operator+=), do so as a member
function if you can.

e |f you're overloading a binary operator that does not
modify its left operand (e.g. operator+), do so as a
normal function or friend function.

e Remember: Which method and syntax you use for each
operator depends on the particular arbitrary
implementation in C++, and requires
checking/memorizing the rules

Outline

Overview of
operators

@ Overview of operators

Outline

@ Overview of operators
Arithmetic

Arithmetic operators

e Here, a, b, and c represent valid values (literals, values
from variables, or return value), object names, or lvalues,
as appropriate.

e R, S, and T, stand for any type(s), and K for a class type
or enumerated type.

Can C++ Prototype examples
Operator name Syntax inc
in C4++ L As member of K Outside class definitions
Basic assignment a=b Yes Yes R& K: :operator =(S b); NA
Addition a+b Yes Yes R K::operator +(S b); R operator +(K a, S b);
Subtraction a-b Yes Yes R K::operator -(S b); R operator -(K a, S b);
Unary plus (integer promotion) +a Yes Yes R K::operator +(); R operator +(K a);
Unary minus (additive inverse) -a Yes Yes R K::operator -(); R operator -(K a);
Multiplication a*b Yes Yes R K::operator *(S b); R operator *(K a, S b);
Division a/b Yes Yes R K::operator /(S b); R operator /(K a, S b);
Modulo (integer remainder)!a] a%b Yes Yes R K::operator %(S b); R operator %(K a, S b);
Prefix ++a Yes Yes R& K::operator ++(); R& operator ++(K& a);
Increment. R K::operator ++(int); R operator ++(K& a, int);
Postfix at+ Yes Yes Note: C++ uses the unnamed dummy-parameter int to differentiate between
prefix and postfix increment operators.
Prefix --a Yes Yes R& K::operator --(); R& operator -- (K& a);
Decrement R K::operator --(int); R operator --(K& a, int);
Postfix a-- Yes Yes Note: C++ uses the unnamed dummy-parameter int to differentiate between
prefix and postfix decrement operators.

Outline

@ Overview of operators

Comparison and relational

Comparison and relational operators

Can Included Prototype examples
Operator name Syntax overload
in C++ e As member of K Outside class definitions
Equal to R Y Ye bool K::operator ==(S bool operator ==(K const&
4 = e es const& b); a, S const& b);
al!=b S COATeiiy o bool operator !=(K const&
Not equal to = . Yes Yes const& b); bool K B ==
a not_eq b [0 a, S const& b);
1=(S const& b) const;
P 850 5 - bool K::operator >(S const& | bool operator >(K const& a
b) const; S const& b);
Less than a<hb Yes Yes bool K::operator <(S const& | bool operator <(K const& a,
b)const; S const& b);
— " —r Y v bool K::operator >=(S bool operator >=(K const&
reater than or equal to L E= e es const& b) const; a, S const& b);
bool K::operator <=(S bool operator <=(K consté
Less than or equal to a<=b Yes Yes

const& b);

a, S consts b);

Outline

@ Overview of operators

Logical

Logical operators

Can Included Prototype examples
Operator name Syntax
in C++ e As member of K Outside class definitions
'
Logical negation (NOT) not‘ aa b1 Yes Yes bool K::operator !(); bool operator !(K a);

Logical AND 2LEATD Yes Yes bool K::operator &&(S b); bool operator &&(K a, S b);
g a and b b i1 op i P , H

: allb
Logical OR Yes Yes bool K::operator ||(S b); bool operator [[(K a, S b);

a or bbl

Outline

@ Overview of operators

Bitwise

Bitwise operators

Can Prototype examples
Operator name Syntax inc
in C++ n As member of K Outside class definitions

Bitwise NOT com;:la albl Yes Yes R K::operator ~(); R operator ~(K a);
L a&b
Bitwise AND 2 bitand b b [ES Yes R K::operator &(S b); R operator &(K a, S b);
n alb
Bitwise OR a bitor b (bl Yes Yes R K::operator [(S b); R operator |(K a, S b);

~b
Bitwise XOR a ior b [o] Yes Yes R K::operator (S b); R operator (K a, S b);
Bitwise left shift{c] a<<b Yes Yes R K::operator <<(S b); R operator <<(K a, S b);
Bitwise right shift{clld] a> b Yes Yes R K::operator >>(S b); R operator >>(K a, S b);

Outline

@ Overview of operators

Compound assignment

Compound assignment operators

Can overload | Included Prototype examples
Operator name Syntax Meaning
incrs inc As member of K Outside class definitions
Addtion assignment asmb a-a+n Yes Yes | Rs Kisoperator 4=(5 b); R aperator +~(Ki a, S b);
Subtraction assignment amb aza-b es Yes | R Kisoperator R operator ~(Ki a, S b);
Multpication
ot a0 s RS . [CEooeom DoEs E o608
Division assignment a/b -a/b Yes Yes | R K:ioperator /=(5 b); R operator /=(K& a, § b);
Modulo assignment awb saxb Yes Yes | i K:soperator 4=(5 b);: R operator +=(K& a, § b);
Bitwise AND assignment | 2L a-asb Yes Yes Rs K: soperator 6(5 b); RS operator 6=(K a, 5 b);
orwseonosmen: |20l - P A ——— R partar 0 8, 50
Bivse XORassgnment |2 20 Yes Yes R K: toperator “=(5 b); R operator *=(K a, 5 b);
et aceb asa<h Yes Yes | RS Kiioperator <<-(s b); R aperator <<-(Ki a, S b);
e - — - Yo | R aerstor s b Corm e

Outline

@ Overview of operators

Member and pointer

Member and pointer operators

Can Included Prototype examples
Operator name Syntax overloadin
o, e As member of K Outside class definitions
Subscript albl Yes Yes R& K: :operator [1(S b); | NA
Indirection (“object pointed to by a") *a Yes Yes RS K: :operator *(); RS operator *(K a);
Address-of ("address of a") sa Yes Yes R* K::operator &(); R* operator &(K a);
Structure dereference (‘member b of
a->b Yes Yes R* K::operator ->(); [€] NA
object pointed to by a*)
Structure reference (‘member b of
a.b No Yes A
object a")
Member selected by pointer-to- “ . o - . G 08 . e @ 6o G006
member b of object pointed to by alfl ErEs es BACTRAL = 8 ORIRILL? € 8
Member of object a selected by — o o A
pointer-to-member b

Outline

@ Overview of operators

Other

Other operators

Canoverload included Prototype exampl
Operator name Syntax
inces inc As member of K Outside class defnitions
Functon call
ata, 22 ves ves R K:ioperator ()(5a, Tb, . s
See functon object. el 2] parster (5 2, ,
Comma ves Yes R K operator (5 b); R operator ,(K 3, 5 bl:
Termary conditional No ves W
Scope resolution No Yo [
User-defined iteraiss) — - - -
since C++11
sizeof () 1
size-of Yes "
sizeof (type) e w
Size o perometer pack N
sizeof... (Args o ™
since C++11 f... thrgs) b e v
Aign-of atignof (type)
- ™
since C++11 or _Alignof (type) 11 e - v
typeid (a)
Type identication No Yo o
o typeid (type)
Conversion (C-tyle cast) (e 2 No ves A
Conversion typeta) No Yo Note: behavs ke const_caststatc casteinterpre_cast™!
operatar R(); -
satic_cast conversion static_cast<type(a) ves o explicit K:soperator R(); since C++11
ot for name.
dynamic cast conversion aynanic_castetypes(2) No "o o
const_cast conversion const_cast<types (@) No "o [
reinterpret_cast .
e reinterpret_cast<types(c) No "o ™
Allocate storage ne type ves "o void® Kisaperator new(size t x); void: operator newlsize t x);
Allocate storage (array) new typeln ves o Void K saperator newl] (size_t 2); Void operator newl] (size ¢ 2);
Deallocate storage detete a ves Yo void K: operator delete(void *a); void operator delete(void “a);
Deallocate storage (arroy) detetel] o ves o void K: operator delete[] (void 'a); void operator detete[] (void 'a);
Exception check
noexcept(a o ™
since C++11 iz b Yo v

	Definitions
	Rules
	Basics

	Methods of operator overload
	Basic examples
	Member
	Non-member and non-member friend
	When to use each

	Overview of operators
	Arithmetic
	Comparison and relational
	Logical
	Bitwise
	Compound assignment
	Member and pointer
	Other

